DOI: http://dx.doi.org/10.21123/bsj.2020.17.1.0136

On δ^* **-Supplemented Modules**

Alaa Abbas alawi¹

Tamadher Arif Ibrahiem ^{2*}

Received 13/12/2018, Accepted 25/6/2019, Published 1/3/2020

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract.

The main goal of this paper is to introduce and study a new concept named δ^* -supplemented which can be considered as a generalization of W- supplemented modules and δ -hollow module. Also, we introduce a δ^* -supplement submodule. Many relationships of δ^* -supplemented modules are studied. Especially, we give characterizations of δ^* -supplemented modules and relationship between this kind of modules and other kind modules for example every δ -hollow (δ -local) module is δ^* -supplemented and by an example we show that the converse is not true.

Key words: δ -hollow, δ -small submodule, δ^* - supplement, δ^* - supplemented, W-supplemented.

Introduction:

Throughout this paper all rings are commutative with identity and all modules are unitary left R-modules. A proper submodule N of M is called "small (N<<M), if N+K = M, for $K \le M$ implies K = M'' (1). Equivalently a submodule N of a module M is called "small (N<<M), if N+K \neq M, for every proper submodule N of M"(2). A module Μ called "singular (nonsingular) if is $Z(M)=M,(Z(M)=(0)), \text{ where } Z(M)=\{x \in M:ann(x) \leq_e M:ann(x) <_e M:$ R"(1). A submodule N of a module M is said to be "δ-small if N+K =M with $\frac{M}{K}$ is singular implies K = M" (1). A submodule N of a module M is called " supplement of a submodule N of M if N is a minimal element in the set of submodule $L \leq M$ with N+L= M"(3). Equivalently, M = N+K and $N \cap K \leq$ N "(3). And a module M is called a "supplemented module if every submodule of M has a supplemented in M" (4, p.348). An R-module M is called a "semisimple R-module if Soc(M) = M(where $Soc(M) = \Sigma$ A, where A is simple submodule of M"(4). It is known that an R-module M is a "semisimple module if and only if every submodule of M is a direct summand" (4).

In this paper we introduce the concept of δ^* -supplemented module: "M is called δ^* -supplemented module if for every semisimple

²Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq ^{*}Corresponding author:

*Corresponding <u>tamadherai_math@csw.uobaghdad.edu.iq</u> *ORCID ID: 0000-0002-7615-735x submodule N of M, there exist a submodule K such that M = N+K and $N \cap K \ll K''$ and investigate δ

characterizations and properties of δ^* -supplemented modules. Also the relationship between this kind of modules and some other modules is given.

Preliminary Definitions 1

 A submodule N of an R-module M is said to be "δ- supplement of a submodule K of M if N+K = M and N∩K << N" (1). And a module M is called a "δ-supplemented module if for every

called a " δ -supplemented module if for every submodule of M has a δ -supplement in M" (1).

- 2. A submodule N of an R-module M is called " δ small if N+K =M with $\frac{M}{K}$ is singular implies K = M" (1).
- 3. Let M be an R-module, then δ (M) = $\cap \{N \le M; M/N \text{ is singular simple}\} = \sum_{\substack{N \le M \\ s}} N$ (5).

Remarks and examples 2

- 1. Obviously, every small submodule of an R-module M is δ -small, but the converse is not true integral, for example \mathbb{Z}_2 as \mathbb{Z} -module is δ -small but not small(1)
- 2. If A is a supplement of B in an R- module M, then B need not to be a supplement of A in M. For example in the \mathbb{Z} -module \mathbb{Z}_4 , we have \mathbb{Z}_4 is a supplement of $\{\overline{0}, \overline{2}\}$. It is clear that $\{\overline{0}, \overline{2}\}$ is not a supplement of \mathbb{Z}_4 .

¹ Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

- 3. Supplement needs not to be existing for example the module $2 \mathbb{Z}$ of the module \mathbb{Z} as \mathbb{Z} module has no supplement (since the only small submodule of \mathbb{Z} are $\{0\}$, $2\mathbb{Z}$ and \mathbb{Z} is an indecomposable.
- 4. If N, K are two a submodule of an R-module M such that K is a supplement of N, then:
- a) If W+K = M, for some W submodule of N,
- then K is a supplement of W(4, 4.41-1, p.348). b) For $L \le N$, $\frac{K+L}{L}$ is a supplement of $\frac{N}{L}$ in $\frac{M}{L}$

(4, 4.41-7, p.348)

Definition 3 (6) Let M be an R-module. M is said to be W-supplemented if every semisimple submodule of M has a supplement in M.

Definition 4 (7)((1)) An R-module M is called lifting (δ -lifting if and only if for every submodule N of M there exists submodule K, $K' \leq M$ such that $M=K \oplus K' \text{ with } K \le N \text{ and } N \cap K' << K'(N \cap K' << K').$

Lemma 5 (6) Let M = N+L, L is a submodule of an R-module M and N is semisimple submodule of M. Then $M = N' \oplus L$ for some $N' \le N$.

Characterization of δ^* -supplemented

Definition 6 An R-module M is called δ^* supplemented module if for every semisimple submodule N of M, there exists a submodule K such that M = N+K and $N \cap K \leq K$.

Definition 7 A submodule N of an R-module M is called δ^* -supplement of a submodule L of M means that N is semisimple submodule of M such that M =N+L with N \cap L << N.

Examples and Remarks 8

- 1. Every supplemented module is δ*supplemented module. But the converse is not true in general for example: Q as \mathbb{Z} module is δ^* - supplemented since Q has no semisimple submodule, but Q is not supplemented module.
- Every W-supplemented module is δ^* -2. supplemented.

Proof The proof is clear since every small submodule is δ -small (1).

3. If M is singular module then M is δ^* supplemented iff M is W- supplemented.

Proof Since M is singular then $N \cap K \ll K$ iff $N \cap K$

<<K (where K and N are two submodules of M.

δ*-4. Every direct of is summand supplemented δ*module is is supplemented

Proof Suppose that M is δ^* -supplemented module and $M = M_1 \oplus M_2$. Let N semisimple submodule of M₁. So, there exists a submodule K of M such that M= N+K with N \cap K << K. Thus M₁=N \oplus (M₁ \cap K) (by modular law). Therefore $M_1=L\oplus(M_1\cap K)$, for some L \leq N (by lemma 5). Hence M₁ \cap K \leq^{\bigoplus} M₁. M, then $N \cap K \leq K$ \leq Now, by (7, δ proposition(1.2.10)) N \cap K << M. Since N \cap K $\leq \delta$ $M_1 \cap K \leq \bigoplus M$, therefore $N \cap (M_1 \cap K) = M_1 \cap (N \cap K) =$ $N \cap K \ll M_1 \cap K$ (7, proposition 1.2.10).

- 5. If A is δ^* -supplement of B in a module M, then B needs not to be δ^* -supplemented of A in M. For example: \mathbb{Z}_2 is δ^* -supplement of \mathbb{Z}_6 in \mathbb{Z}_6 but \mathbb{Z}_6 is not δ^* -supplemented of \mathbb{Z}_2 in \mathbb{Z}_6 , since $\mathbb{Z}_2 \oplus \mathbb{Z}_6 = \mathbb{Z}_6$ and $\mathbb{Z}_2 \cap \mathbb{Z}$ $_{6} = \mathbb{Z}_{2}, \mathbb{Z}_{2} \ll \mathbb{Z}_{2}$ but \mathbb{Z}_{2} is not δ -small in Z₆.
- 6. Let M be an R-module with Rad(M) = 0, then M is semisimple supplemented module iff M is δ^* - supplemented .

Proof \Rightarrow)By (1) every supplemented module is δ^* supplemented

 \Leftarrow) Let K be a submodule of M, thus K is semisimple, but M is δ^* - supplemented ,thus there exists N \leq M such that N+K =M and N \cap K << K \leq

 $\delta(M)$. But $\delta(M) \leq \text{Rad}(M) = 0$, thus $N \cap K = 0 \ll K$ and hence M is a supplemented module.

Now, we have the following

Remark 9 Let M be an R-module, then M is δ^* supplemented iff every semisimple submodule N of M, there exists a submodule N' such that $M = N' \oplus L$ and $N \cap L << L$.

Proof Let N be a semisimple submodule of M, since M is δ^* - supplemented and M = N+L and $N \cap L \ll L$, then by lemma 5 there exists $N' \le N$ such

that M= N' \oplus L and N \cap L <<L. Conversely, let N be δ a semisimple submodule of M. Then by assumption,

there exists $N' \leq N$ such that $M = N' \oplus L$ and $N \cap L <<$

L implies M=N+L. Hence M is δ^* - supplemented.

Proposition 10 Let M be a δ^* - supplemented, then every semisimple submodule of $\frac{M}{\delta(M)}$ is a direct summand.

Proof. Suppose that M is a δ^* - supplemented. Then every very semisimple submodule of $\frac{M}{\delta(M)}$ has the form $\frac{N}{\delta(M)}$ for semisimple submodule N of M and $\delta(M) \subseteq N$. So there exist a submodule L of M such that M=N+L and N∩L <<L implies N∩L⊆ $\delta(M)$.

Now, $\mathbb{N}\cap(\mathbb{L}+\delta(M))=(\mathbb{N}\cap\mathbb{L})+\delta(M) = \delta(M)$. So, $\frac{M}{\delta(M)} = \frac{N+L}{\delta(M)} = \frac{N}{\delta(M)} \bigoplus \frac{L+\delta(M)}{\delta(M)}$. Thus $\frac{N}{\delta(M)}$ is a direct summand of $\frac{M}{\delta(M)}$.

The following theorem gives a characterization for δ^* - supplemented module.

Theorem 11 Let M be an R-Module, then the following statements are equivalent:-

- 1. M is δ^* supplemented.
- 2. For every semisimple submodule N of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \le N$ and $N \cap M_2 \le M_2$.
- 3. Every semisimple submodule N of M can be written as N= A \oplus B, where A is a direct summand of M and B << M.

Proof (1) \rightarrow (2) Following Remark (9)

(2) \rightarrow (3) Let N be a semisimple submodule of M, then by(2), M= A \oplus B for some A \leq N and N \cap B $\ll \delta$

B. By Modular Law, N= A \oplus (N \cap B) (where A \cap N \cap B = 0).Since N \cap B << B \subseteq M, then by (7, δ

proposition 2.1.10), we have and $N \cap B \stackrel{<}{\underset{s}{\leftarrow}} M$.

(3) \rightarrow (1) Let N be a semisimple submodule of M, thus by the hypothesis N= A \oplus B, where A is a direct summand of M and B << M. Now, M= A \oplus k

, for $K \le M$ and $A \le N$, then $M = N+K = (A \oplus B)+K = A \oplus (B+K)$ and $(A \oplus B) \cap K = (A \cap K) \oplus (B \cap K) = 0 \oplus (B \cap K) = B \cap K$. Since $B \le M$ and $K \le K$, then δ

B \cap K << M \cap K = K. That is M = N+K and N \cap K = δ

B \cap K << K ≤ M. Therefore, M is δ^* -supplemented

module. The following proposition is similar to (5,

proposition 2.3). **Proposition 12** Let M be an R-module A and B are submodules of M such that $A \le B$. Then:

1. If B is a δ^* - supplement submodule in M, then $\frac{B}{A}$ is a δ^* - supplement submodule in $\frac{M}{A}$. 2. If B is a δ^* - supplement summand of C in M, then $\frac{C+A}{A}$ is a δ^* - supplement of $\frac{B}{A}$ in $\frac{M}{A}$

Proof 1 Suppose that B is a δ^* - supplemented of N in M, so B is semisimple submodule of M with M = B+N such that B \cap N << N. Now, $\frac{B}{A}$ is semisimple submodule in $\frac{M}{A}$. Then $\frac{M}{A} = \frac{B}{A} + \frac{N+A}{A}$ and $\frac{B}{A} \cap \frac{N+A}{A} = \frac{B \cap (N+A)}{A} = \frac{A + (B \cap N)}{A} << \frac{N+A}{A}$ and so $\frac{B}{A}$ is a δ^* supplemented in $\frac{M}{A}$, where f:A $\rightarrow \frac{N+A}{A}$ is a homomorphism and A \cap B << N, implies f(A \cap B)

$$= \frac{(A \cap B) + A}{A} < < \frac{N + A}{A}$$

2. It is similar to proof 1.

Corollary 13 Every factor of δ^* - supplemented module is δ^* - supplemented module.

Remark 14 An inverse image of δ^* - supplemented module needed not δ^* - supplemented. For example: Let f: $\mathbb{Z} \to \mathbb{Z}_6$ be an epimorphism $\frac{\mathbb{Z}}{(6)} \approx \mathbb{Z}_6$ and \mathbb{Z}_6 is semisimple but $f^{-1}(\mathbb{Z}_6) = \mathbb{Z}$ and \mathbb{Z} is not semisimple. **Proposition 15** Let M be an R-module and $A \le B \le$ M. If $\frac{B}{A}$ is δ^* -supplement in $\frac{M}{A}$ and A is a δ^* supplement in M. Then B is a δ^* - supplement in M. **Proof** Suppose that A is A δ^* - supplemented of L in M and $\frac{B}{A}$ is δ^* - supplement of $\frac{N}{A}$ in $\frac{M}{A}$. Thus, $\frac{M}{A} = \frac{B}{A} + \frac{N}{A}$ and $\frac{B}{A} \cap \frac{N}{A} \ll \frac{N}{A}$, also M = A+L and A $\cap L \ll L$ with each of A and $\frac{B}{A}$ is semisimple. Since B = B \cap (A+L) = A+(B \cap L) and $\frac{B}{A} \cap \frac{N}{A} = \frac{B \cap N}{A} < < \frac{N}{A}$, that is $\frac{B \cap N \cap L}{A \cap L} \ll \frac{N}{A \cap L}.$ Notice that, $A \cap L \ll L \leq N$ and δ hence $A \cap L << N$.Furthermore $B \cap (N \cap L) << N$ (7, proposition 2.1.10). By Modular Law, N = A+(N \cap L), but B=B+A, then M = B+N = B+(N \cap L). Therefore B is δ^* - supplement in M. Now, we have the following proposition

Proposition 16 Let $M = M_1 \oplus M_2$ if A is δ^* -supplement of A_1 in M_1 and B is δ^* -supplement of B_1 in M_2 , then $A \oplus B$ is δ^* -supplement of $A_1 \oplus B_1$ in M.

Proof Since each of A and B is semisimple, then so is $A \oplus B$. Now, $M_1 = A + A_1$ with $A \cap A_1 \leq A_1$ and δ $M_2 = B + B_1$ with $B \cap B_1 \leq B_1$, then $M = (A + A_1) \oplus$ δ $(B + B_1) = (A \oplus B) + (A_1 \oplus B_1)$. Since $(A \cap A_1) \oplus$ $(B \cap B_1) \leq A_1 \oplus B_1$. So, $(A \oplus B) + (A_1 \oplus B_1) \leq \delta$ $A_{l} \oplus \ B_{1}$. That is $A \oplus B$ is a $\delta^{*}\text{-}$ supplement of $A_{l} \oplus$ B₁. So that $(A \oplus B) \cap (A_1 \oplus B_1) \stackrel{<}{<} A_1 \oplus B_1$.

Therefore $A \oplus B$ is δ^* - supplement of $A_1 \oplus B_1$.

Proposition 17 Let M_1 and M_2 are two submodules of M with M_1 is δ^* - supplemented and M_1+M_2 has δ^* - supplement in M, then M₂ has δ^* - supplement in M.

Proof Since M_1+M_2 has a δ^* - supplement in M, so there exist a submodule L of M such that M = $(M_1+M_2) + L$ and $(M_1+M_2)\cap L \leq L$. Furthermore

 M_1 is δ^* -supplement with the submodule $M_2+L\cap M_1$ of M_1+M_2 , hence $(M_2+L)\cap M_1$ is semisimple submodule of $M_1\!\!+\!\!M_2$. But $M_1\!\!\leq\!\!M_1\!\!+\!\!M_2$, so M_1is also semisimple (since (M_1+M_2) is semisimple). Hence $(M_2+L)\cap M_1$ is semisimple in M_1 . This means that there exists a submodule K of M1 such that $((M_2+L)\cap M_1)+K=M_1$ with $((M_2+L)\cap M_1)\cap K$ $(M_2+L)\cap K << K.$ << K. That is Now, δ $M=M_1+M_2+L$ = $(((M_2+L)\cap M_1)+K)+M_2+L=$ $M_2+(K+L)$. Since $M_2\cap(K+L) \leq ((M_2+M_1)\cap L)+$ $((M_2+L)\cap K)$. So $M_2\cap(K+L) \ll K+L$. But M_2 is δ

semisimple. Thus M_2 is δ^* - supplement of K+L in M.

The following proposition gives some properties of δ^* - supplemented modules

Proposition 18 Let M be an R-module, N and K be submodules of M such that K is δ^* - supplement of N then

- 1. If W+K = M for some submodule W of N then K is δ^* - supplement of W.
- 2. If K is δ^* supplement of L \leq M, then K is δ
- *- supplement of N+L. 3. If $L \le N$, then $\frac{K+L}{L}$ is δ^* supplement of $\frac{N}{L}$ in $\frac{M}{T}$.

Proof

1. Since K is δ^* - supplement of N thus K is semisimple submodule of M and N+K = M, $N \cap K \mathop{<} K. But W \leq N and W \cap K \leq N \cap K \mathop{<} K,$ so W \cap K << K(8,lemma1.3-1). Therefore K is δ

 δ^* - supplement of W.

Since K is δ^* - supplement of N thus K is 2. semisimple submodule of M, N+K = M and $N \cap K \leq K$. Also K is δ^* - supplement of L,

thus K+L = M and $K \cap L \leq K$. Therefore M=δ

N+L+K and by Modular law $(N+L)\cap K=(N\cap K)+(L\cap K) \leq K$ (8, lemma1.3- δ

1). Hence K is δ^* - supplement of N+L.

3. Suppose that N+K = M and $N \cap K \ll K$ (K is

 δ^* - supplement of N). Now, L \leq N, N \cap (K+L) = $(N \cap K)+L \text{ (modularity) and } \frac{N}{L} \cap \frac{K+L}{L} = \frac{(N \cap K)+L}{L}.$ Since $N \cap K \ll K$ thus $\frac{(N \cap K)+L}{L} \ll \frac{K+L}{\delta}$ (8, lemma1.3-1). Now, the assertion follows from $\frac{N}{L} + \frac{K+L}{L} = \frac{M}{L}.$

An R-module is called "δ-hollow if every proper submodule of M is δ -small (1)". The following proposition shows that the classes of δ-hollow modules is an embedding in the classes of δ^* supplemented modules.

Proposition 19 Every δ -hollow module is δ^* supplemented module.

Proof

Let N be a semisimple submodule of δ -hollow module M. Thus by (8), $M = N \oplus K$, for $K \le M$. Then by N= N \oplus (N \cap K). Since M is δ -hollow, thus N <<

M and N \cap K \leq N, hence N \cap K<<M. Therefore by

theorem 11 M is δ^* - supplemented.

Examples 20

- 1. The \mathbb{Z}_6 -module \mathbb{Z}_6 and the \mathbb{Z} -modules \mathbb{Z}_4 , $\mathbb{Z}_{p^{\infty}}$, \mathbb{Z}_8 are δ -hollow(1), and hence they are δ^* - supplemented.
- 2. The converse of the last Proposition is not true as the following example: The \mathbb{Z} -module, \mathbb{Z}_{12} is δ^* -supplemented since \mathbb{Z}_{12} has only one semisimple submodule which is $<\overline{2}>$, and $\mathbb{Z}_{12} = <\overline{4}>$ $\oplus <\overline{3}>$, $<\overline{4}> \leq <\overline{2}>$ and $<\overline{2}> \cap <\overline{3}> = <$ $\overline{6} > \stackrel{<}{<} \stackrel{<}{<} \stackrel{<}{<} 3$ > by Theorem11, \mathbb{Z}_{12} as \mathbb{Z}_{-}

module is δ^* - supplemented but \mathbb{Z}_{12} as \mathbb{Z} module is not δ -hollow(1).

Corollary 21 Every hollow module is δ^* supplemented module.

Proof It's an obvious, since every hollow is δ hollow, and by proposition 19 the proof is omitted.

The converse is not true for example, Q as \mathbb{Z} module is δ^* - supplemented module but not hollow module.

Corollary 22 Every indecomposable and δ -lifting module is δ^* - supplemented.

Proof By (1, proposition 3.8) every indecomposable and δ -lifting is δ -hollow and by proposition 19, M is δ^* - supplemented module.

Following (5), a module M is " δ -local if, δ (M) << M and δ (M) is a maximal submodule of M".

Corollary 23 Every local (δ -local) module is δ^* -supplemented module.

Remark 24 The converse of corollary 23 is not true in general: \mathbb{Z}_{12} as \mathbb{Z} -module is δ^* - supplemented module but not local module.

Conflicts of Interest: None.

References:

1. Hadi I M A, Aidi S H , δ-Hollow Modules, IJPAS. 2014; 27 (2).

- Onal E, Calisici H, Turkmen E, Modules that have a Weak Supplement in every Extension, MMN. 2016; 17 (1), 471–481.
- 3. Nebiyev C, On a Generalization of Supplement Submodules, IJPAM. 2017; 113(2), 283-289.
- 4. Wisbauer R, Foundation of Module and Ring Theory, 1991, Gordon
- 5. Abdioglu C, Sahinkaya S, Some Results on δ -Semi Perfect Rings and δ Supplemented Submodules, MJ. 2015; 55, (2), 289-300.
- 6. Bilhan G, Groglu A T, A variation of Supplemented Modules, TJM.2013; 37, 418- 426.
- 7. Hassan S S, Some Generalizations of δ -Lifting Modules, 2011, M.Sc. Thesis, University of Baghdad.
- Nemalallal M J, On δ-Supplemented Submodules, Tarbiat Modlen Univ., 20th Seminar on Algrbra 2-3 Ordibeheshtm, 2000; 1388 (Apr.22-23), 155-15.

المقاسات التكميلية من النمط $-\delta^*$

تماضر عارف ابراهيم²

الاء عباس عليوي

¹ قسم الرياضيات، كلية العلوم ، جامعة بغداد، بغداد، العراق ² قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق

الخلاصة:

الهدف الرئيسي من هذا البحث هو تقديم ودراسة مفهوم جديد اسميناه مقاسات تكميلية من النمط - ^{*}5 و التي يمكن اعتبار ها إعمام للمقاسات التكميلية من النمط –W والمقاسات المجوفة من النمط- 6 . كذلك قدمنا مفهوم المقاس الجزئي التكميلي من النمط-الكثير من العلاقات لهذا المفهوم مع مفاهيم أخرى حيث تم البر هنة على كل مقاس مجوف من النمط-δ (محلي من النمط- ^{*}6) هو مقاس تكميلي من النمط - ^{*}5 ومن خلال اعطاء الامثلة الداحظة بر هنا بأن العكس غير صحيح.

الكلمات المفتاحية : المقاسات المجوفة من النمط - δ ، المقاسات الجزئية الصغيرة من النمط δ، المقاسات التكميلية من النمط -^{*}δ ، المقاسات التكميلية من النمط -^{*}δ ، المقاسات التكميلية من النمط -W^{*}