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Abstract:

Oscillation criterion is investigated for all solutions of the first-order linear neutral
differential equations with positive and negative coefficients. Some sufficient
conditions are established so that every solution of eq.(1.1) oscillate. Generalizing
of some results in [4] and [5] are given. Examples are given to illustrated our main

results.
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Introduction:

The study of neutral differential
equations with positive and negative
coefficients has been  recently
considered the attention of many
authors all over the world for the last
several years, see [1]-[6] a few of them
have been investigated the case with
variable mixed coefficients, that is the
coefficients are variable positive and
negative, see [1],[4]Jand [6]. The
authors in [1] investigated the first
order delay differential equations with
positive and negative coefficients .
While in [2],[5] and [6] the authors
gave some sufficient conditions for
the oscillation of neutral differential
equation with positive and negative
coefficients and constant delays . In
this paper we give a generalization to
some results in [4] and [5] where we
have used a variable delays. Consider
the linear neutral differential equation
with positive and negative coefficients:

[y — P@)y(z(®)] +
Q®y(a(®)

—R(t)y(a(t)) =0 (1.2)
Where P,Q,R, € C[[ty,»); R*], and
T,0,Q are continuous strictly
increasing functions with

limt—)oo T(t) = @ llimt—)OO O-(t) = OO,

o(t) < a(t) and (t),a(t), a(t) <t.
(1.2)

By a solution of eg.(1.1) we mean a
function y € ([t,, ), R ) such that
y(£) — P(£)y(z(1)) is continuously
differentiable and y(t) satisfies eq.
(1.2),

t, = max{z(t),o(t),a(t)} in the
initial interval. A solution of eq.(1.1) is
said to be oscillatory if it has
arbitrarily large zeros , otherwise is
said to be nonoscillatory. The purpose
of this paper is to obtain sufficient
conditions for the oscillation of all
solutions of eq. (1.1).

Some Basic Lemmas:
The following lemmas will be
useful in the proof of the main results:

Lemma 1 (Theorem 2.1.1[4])

Suppose that p,q € C[R*,R™],
qit) <t for t =ty lim,,,q(t) =
oo and

(2.1)

y'(t) +
has no eventually

Pk t 1
liminf,_ fq(t)p(s)ds > -
Then the inequality

P(t)y(q)) <0
positive solutions.
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Lemma 2.
Let y(t) be an eventually positive
solution of (1.1) and set

W) =y@® - P@y(x®) -
f;_l(o(t)) R(s)y(a(s))ds,
a (o()) (2.2)

and the following assumptions are
hold.

t=

H1: Q(t) — R(a Y (a(®)[a " (a(®)]' =0

H2: lim sup,_.[P(£) + f;_l(a(t))R(s)ds] <1
Then W (t) is eventually positive and
non increasing function.

Proof. Suppose  thaty(t) >
O,y(‘r(t)) > 0, y(a(t)) >0 and
y(a@®) >0, t=¢

Differentiate (2.2) and use (1.1) we get
w'(t)

= [y(® - P@y(z®)] = R©Oy(a(®))

+R((@ (o)) y(o(®) (a7 (o))"

=—Q®y(a(®)) + R®)y(a(®))

— R(t)y(a(t))

+R(@  (0())y(a(0) (a1 (a(1)))

= -l -

R (@) (¢ (0®)) y(o(®) <

0 (2.3)

Hence W(t)is monotone

(nonincreasing ) function then
lim,,,w(t) =1, —c0o<[<o

we claim that [ > 0 otherwise [ <0,

we have two cases for y(t) to
consider :

Case 1:-
If y (t) is unbounded then there exist
a sequence {t,} such that

lim t, = oo, lim y(t,,) = o, and
n—->oo n—0o

y (tp) = max{y(t): t; St < t,}

from (1.2) we get

W(t,)

= yt(tn) — P(t)y(z(t)

- f R(s)y(a(s))ds
(Z_l(d(tn))
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= y(tn) : P(tn)y(r(tn))
e [ RG)ds
a~1(a(ty))
= y(t,) — P(t)y(ty)
t
@) [" R
a~1(o(tn)
=y(t_n)[1—P(t_n)

asn—oo, lim,,, W(t,)=12=0.

Case 2:-
Let y(t) be bounded , that is
lim sup;_, y(t) = k < oo then there

exist a sequence {s,} such that,
lim,,_, s, = k, and
() = max{y(£): 4,(s,) <t
< A2(sn)}
Where

21(8) = min{z(¢), 0 (D)}, A,(t) =
max{t(t), a(t)}.
W (sn)

= y(sns) - P(Sn)y(r(sn))

R(s)y(a(s))ds

a~1(o(sn))

y(sn) - W(Sn)
= P(s)y(x(s0)

+ R(s)y(a(s))ds
a~1(o(sp))

< P(sn)y(nn2
+y (1) R(s)ds
a~1 (J(Sn))

Sn

=y(M)[P(sn) + R(s)ds ]

a~1(o(sp))

n - o then k —1 <k which
>0, this is a

as
implies that
contradiction
The proof of lemma is complete. ]
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The proof of the following lemma is
similar to the proof of lemma 2, so we
state it without proof.

Lemma 3.

Let y(t) be an eventually positive
solution of eq. (1.1) and set
W(t) = y(t) = P()y(z(1))

— [ R@ ()y(s)ds  (24)
and the following assumptions are
hold.

H1: Q(®) —R(a™Yo(®)) o'(t) =0
H2": lim sup;_ [P (t) +

a(t) -1
o(0) R(a™'(s))ds] <1,

H3: a'(t) =1
Then W (t) is eventually positive and
nonincreasing function.

Main results:

The next result provides a
sufficient conditions for the oscillation
of all solutions of eq. (1.1)

Theorem 1.

Let W (t) defined as in (2.2) and the
assumptions H1 - H2 hold, in addition
to the condition
lim inf,_o, [} [Q(s) —
R(a™(a(s))) (@ (o(s))T[1 + P(a(s)) +

Je(o(otsy) REr]ds > s (3.1)
Then every solution of eq.(1.1)
oscillates.

Proof . Suppose y(t) be eventually
positive solution of eq.(1.1) then by
lemma 2 it follows that W(t) is
positive  nonincreasing  function,

differentiate (2.2) and use eq.(1.1) we
get (2.3) and from (2.2) we obtain
W (t) < y(t), hence
y(©) =wW(©) +P@Oy(r@®)
t

+ R(s)y(a(s))ds
a 1(a(t)
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>W(t) + POW(z(D))
t

+ R(S)W(a(s))ds
a=1(a(®)

>W() + POW(z(D))

+ W(a(t)) R(s)ds

a~1(a (1)
>W(t)+ P(OW(t)

+ W(t) R(s)ds

a (o (1)
=W()[1+P()
t

+ R(s)ds ]
a 1)
y(a(t) = W(a(t)) [1+ P(a(t)) +
Je1o0y RS ]

d
W@ +[Q® ~ R @) ga (0®)] 1

+
o(t)

f R(s)ds |[W(a(t)) <0

a‘l(a(a(t)))
by lemma 1, and the condition (3.1)

+P(oc(®)] +

the last inequality cannot has
eventually positive solution, which is a
contradiction. ]

Example 1.

Consider the neutral differential
equation:

o (-5 + (4
2Pe_%) y(t—m) — (P —
2e‘34—”) y(t-3)=0 (ED)

P(t) = P, where 0 < P < 1.178082.
3w
Q(t) = e ™+2Pe +,R(t) =P —
31T

2e 4
We can see that:
e o(t) <a(t),letP=0.92 then

Q) —R(@™ (e (a " (e(®)))’
2.8552 >0
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o limsup;_.[P(t) +
fa_l(a(t))R(s)ds] =
e liminf,_ o f(:(t)[Q(s) -
R(a™(a(s))) (™ (a(s)))][1 +
P(a(s)) +

f;—l(c(c(s))) R(r)dr]ds =

1739 > 1
e

all the conditions of theorem 1 are
hold, so according to theorem 1 every
solution of eq.(E1 ) is oscillatory, for
instance the solution y(t) = e 'sint
is such a solution.

094 <1

Theorem 2.
Let W (t) defined as in (2.4) and the
assumptions H1 - H2 hold and

liminf, ., f;(t)[Q(s) -
R(a™(0(s)))o'()]ds > ;
(3.2)

Then every solution of equation (1.1)
oscillates.

Proof.  Assume for the sake of
contradiction that y(t) is eventually
positive solution of eq.(1.1). then by
lemma 2 it follows that W(t) is
eventually positive and non increasing
function, differentiate (2.2) and use
(1.1) we get
w'(t)
=—[Q(®
—R(@ ' (a()))a'®) Iy(e(®)) <0
<-[Q(®
— R(a"*(0())d’' (&) W (a(t))
<0
then

w'(t)

+[Q(0)

— R(a"*(0(£))a’®OIW (o (D))

<0

it follows from lemmal and condition
(3.2) that the last inequality has no
eventually positive solution. The proof
is complete .
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Theorem 3.

Let W (t) be defined as in (2.2) and
the assumptions H1', H2' and H3 hold
and suppose that

lim inf,_., f:(t)[Q(s) -

R( (0()))o’ ()][1 + P(o(s)) +
f:((tt))R(a_l(u))du lds > é (3.3)

Then every solution of equation (1.1)
oscillates.

Proof.
The proof is similar to the
proof of theorem 1 and we omitted it.

Example 2.
Consider
differential equation;

[y(®) = G —2sin20) (¢ - 271)]’ +
o tona) (o)

- dsnay(-) =0
to (E2)

the neutral

>

We can see that
* Q) —R(@(o(®)) (@ (e(®) =
2>0
10 "
* PO+ [ (o))
0971238 <1
. . t
e liminf,_ fg(t)[Q(s) —15 1
-1 ' _br 1
R(a (a(s))a (s)]ds =53
all the conditions of theorem 2 or
Theorem 3 are hold and so according
to Theorem 2 or Theorem 3 every
solution of eq.(E2 ) are oscillatory, for

. . t
instance the solution y(t) = ————
y( ) %+%sin2t

R(s)ds =

is such solution. n

Theorem 4.

Let W (t) defined as in (2.4) and the
assumptions H1',H2', H3 hold,
suppose that
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lim inf,c f ., [Q(s) —
R(a"1(o(s))) o'(s)] ds > é (3.4)

Then every solution of equation (1.1)
oscillates.

Proof. The proof is similar to the
proof of theorem 2. and will be
omitted.

Example 3.
Consider the neutral differential
equation:
1 5m\1 3 T
yo 55 y(t-F)] +37(e-3)
1 T
277 (073)
= (E3)
Solution: We can see that

e Q() —R(a Yo (®))(ao(®) =
0
o P(O)+ fdt((a_l(g(t))t)R(s)ds =
0.63123

<1
e liminf,_ fat(t)[Q(s) -

R(a™(a(s))o’'(s)]ds =

1.785 > =.

e
all the conditions of theorem 4 hold
and so according to theorem 4 every
solution of eq.(E3 ) are oscillatory for

instance the solution y(t) =sint is
such a solution. m
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[y(® - P@y(r®)] + e®y(a(®) - RE®Y(a(®)) =0
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