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Abstract:

In this paper,the homtopy perturbation method (HPM) was applied to obtain the
approximate solutions of the fractional order integro-differential equations . The
fractional order derivatives and fractional order integral are described in the Caputo
and Riemann-Liouville sense respectively. We can easily obtain the solution from
convergent the infinite series of HPM . A theorem for convergence and error
estimates of the HPM for solving fractional order integro-differential equations was
given. Moreover, numerical results show that our theoretical analysis are accurate and
the HPM can be considered as a powerful method for solving fractional order integro-
diffrential equations.

Key words: Homotopy perturbation method, fractional calculas, integro-
differential equations.

Introduction:

In  recent years various using mathematics toolsfrom fractional
analytical and numerical methods have calculus, such as, frequency dependent
been applied for approximating the damping behavior of materials,
solutions of fractional order differential diffusion process and motion of alarge
equations  (FDEs). Since exact thin plate in a Newtonian fluid
solutions of most of fractional creeping, etc.,, [8].The fractional
differential equations do not exist, integro-differential  equations  are
approximation and numerical methods usually difficult to solve analytically so
are used for the solutions of the FDEs, it is required to obtain an efficient
[1-3]. He [1,2,3] was first propose the approximate solution. And there are
homotopy perturbation method (HPM) few techniques for solving fractional
for finding the solutions of linear and integro-differential equations,such as,
nonlinear problems. The (HPM) is the the Adomian decomposition method,
traditional perturbation method and the collocation method and the
homotopy in topology . This method fractional differential transform
has been successfully applied by many method, [9],[6]. The purpose of this
authors[4,2,5,6] for finding the paper is to extend the analysis of HPM
approximate solutions as well as to construct the approximate solutions
numerical  solutions of functional of fractional order integro-differential
equations which arise in scientific and equations.

engineering problems.Fractional order

= — B
integro-differential equations arise in D%y(x) = g(x) + IFK(y(X)) (1)

modeling processes in applied sciences where DI indicates the fractional
like physics, engineering,chemistry, order differential operator in the
and other sciences [7],which can be Caputo sense andI® is the fractional
described very successfully by models order integral operator in the
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Riemann-Liouville sense and K(y(X))
IS any nonlinear continuous
function, o, are real constants and g
are given and can be approximated by
Taylor polynomials.

Basic definitions

In this section, we shall give
some but not all, of the basic
definitions and properties of fractional
calculus theory which are further used
in this paper.

Definition(1), [10]:

The Riemann-Liouville
definition of the right side fractional
integral which is:

| (x—t)*Lu(t)dt.o> 0

a

O (x) =
alxu(x) = (o)

)
while the left hand sided integral:

b
%U(x) = %I(t ) Lu()dt,050
X

(3)

Definition (2), [2]:

The Caputo definition of fractional
derivative is given by:

1
r'(m-a)

X
oD%u(x) = j (x—t)™ 91y (t)dt
0

wherem -1 <a<m, m €N, x>0

Now, some properties of fractional
concerning differintegration are given
next, [11],[10]:

1-Ifm—-1<a<m, m eN and f is any
function, then:
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DEI*(x) = f(X)

Xk

n-1
1D (x) =f(x) - > (0% o

k=0
x>0

Where 0" refers to the right hand
side limit of f* at 0.

2- 1°f(x) =D °f(x) = f(X).

3- 1°1P£(x) = IP1F(x)= 1“*Pf(x), Y, B >
0.

4- 1f(x) =D*f(x), o> 0.
5-1%(0) =D7%0) = 0, o> 0.

Analysis of HPM

To illustrate the basic concepts of
HPM for fractional order integro-
differential equations, consider the
fractional order integro-differential
equation (1).

In view of HPM [2,3,6], construct the
following homotopy for equation (1):

(1- p)DEy(x) + p(DEy(x) - gx) ~ PK(¥(X))) = 0
(4)

or
D% y(x) = p (2() + IPK(y(x))) ()
where p €[0,1] is an embedding
parameter. If p = 0, then equation (5)
becomes a linear equation

Diy(x)=0 (6)

and when p =1, then equation (5)
turns out to be the original equation
Q).

In view of basic assumption of
homotopy perturbation method,
solution of equation(l) can be
expressed as a power series in p:
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y(x) = Fu(x] + Plr’i(x] + P:F: (x) + PHFE (x) -

()

setting » = 1, in (5) then we get an approximate solution of equation(1)

v(x) = yo(x) +yi(x) + v, (x) + ya(x) + -

(8)

Substitution (7) into (5), then equating the terms with identical power of p, we obtain
the following series of linear equations.

D:(Futx] + PFi[xj T PV (x) + PEFE (x)+ )

= p (809 + IPK(y,(:) + Py (=) + PPy, () + ) ), implies to:

Dfyo +pDly, + p*Df y; + p°DE y; +--
= pg(x] + PIEKﬂ’D + P‘IEK:}H + PEIEKEF: + P4IEK4F: + -+ thus

p°: Dy, = 0

)

P1= Diy, = g(x) + IEK1(FQ]
(10)

p~: Diy, = IEK: (Flj

(11)

P3= Diys = IEKE [F:]

(12) :

where the functions K, K,,---satisfy the following condition:
K(yo(x) + pyy () + py, () + -+ )=K, (v () + pK, (v, () + p* K3 (v (x)) + -+ ),
xe[0,T]

Equations (9)-(12) can be solved by @, (%) = @y (x) + 1%g(x) +H1** K, (v (x))
applying the operator I®, which is _

inverse of the operator DI and then by @, (x)=y, (%).

simple computation, we approximate If E.(x)=y,(x)—y(x) and K in
the series solution of HPM by the equation (15) satisfies Lipschitz
following n-term truncated series: condition with constant L,,n = 1such

@, () =y, () +y; () +y, (OHy; () ++y, (=) that L=max{L, ,n = 1} and
L <TI(a+ B).then the sequence of

(13) approximate solution

{¢,},n=0,1,---,converges to the

Now , we show that the series defined exact solution v.

by (13) with y,(x) = y,converges to

the solution Proof

of (1). To do this we state and prove Consider the fractional order integro-
the following theorem. differential equation of fractional order
Theorem(1): Dy(x) = g(x) + IEK[}F[X]), v(0) =y,

1 - - -
Let v € C'[0,T] which defined with  XEOT]

maximam norm ||. ]l . . ) i
= where the approximate solution usin
DEy(x) = g(x) + PK(y(x)), ¥(0) =y, P given by: ’

(14) ‘pﬂ‘l'j. Ex) = ‘pn Exj-l- I:+EKH+1[ n(xj) » n E 1 .
and ¥, € (C*[0,TLIl.|l..)be obtained
solution of the sequence defined by
et () = 0, () + 15K (7,(0) ,mn 2 1.

(15)

@, (x) = @o(x) + 1%g(x) +H1**PK (y,(x))

Q;JU (x) =¥o (x).
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Since ¥ is the exact solution of the hence subtracting ¥ from e, Yields
integro-differential equation of to:
fractional order, hence:

y(x) = y(x) + 1%g(x) + I**BK(y(x))

Ppeq (%) — y(x)
= @, (%) —y(x) + 1%g(x) — I%g(x) + I**E(K (p,(x)) — K(y(x)))
@re1 () = 0, (%) + I"B((K (@,(x))—K(y(=)))
Prea (¥) — @, (x) = I"B((K (g,(x) —K(y()))
=I"[K (g,(x)—K(v(x))], sety=a+p

1 [* . — K(v(s
= mj; (x=s) ' [K (@,(s)) = K(y(s))]ds

Now, taking the maximum- norm of the two sides of @, (x) — @, (x) will give:

1 = .
mf (x—s)"" [K (@,(s)) — K(y(s))]ds

||‘Pn+1 (x:] — @y (K] I =

=]

S it GO CO) I

—ﬁj mas [ — 57 Lllg, () — y().

1
i:_f x?_lLllEn(S:]lla: d.'i', Vn= D! 1!“‘
r(v)J,

From (9-12 ), we have that
IE 21 (Ml = llypse(x) —y(x) I =
[1B[K (o)) —K ()] < IIIL**E@,, () =y

1 -4 1
Eﬁj maxle — sl Lllya(s) —y()ll ds < 1 jf xVLIE, ().

Hence

1 x
B s ()1l ﬂ—f =Y LI, (5)Il.. ds
2Ol =165,

Now if n = 0, then:

||?91 (x) — @y (=)l

<1 f IEg(s)l..ds

1"( Y)

L X
< x¥1 E v lds = v-1 E f ds
rm f max [, ()] o e |

L
ﬂ::]_—}x Max, g Eq ()]

also, for n = 1, we have

1 1 * ;
E Luﬁltjuxds

EF?Y)KY_l-E [FIE?] ' n%afdlE”(SN]

L v L 32 x%
{( ) xr1 maxlED[s:]lf ds = (—) max |E,(s)|
r(y) se[0d 0 r'(y)/ v+ 1seloxd

Similarly, for n = 2, then

e, (x) — o, .. =
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s () — 0, (Ol < F[lﬂxv-l f IE, ()l ds
L -1 ) L s ax 5
SOk H(rm) Y+ 15lEs ”']‘“

=(%) 1 I&gxmu(smf ‘Y]

=( L ) x¥™! max |E,(s)

2y

r'(y) selod (v +1)(2y+1)
L 3 xEy
B (r(yj) G+ Dy + 1) g )

' L n xn}'
0.9~ 00-11- = (555) GFDETD =Dy 7D

L " ™
= (T"_y}) (y+1(2y+1) - ((n—1)y+1) MaXe[o,lEg (s)|  for n = 1,
and since L < I'(y),so as n — o2, we have ll@,., (%) — @, (x)|| = 0 .
Now, we have that
Y(X)=@p (%) + Zizo(@ns1 (%) — @,(x))

i1
Now we have that @ (x) = @p(x) + ij 1 (@ () — @ (x))

Y(X¥) =@ (x) = Zo5(@n1 () — @ (x))

|Eﬁ(5]|

ly6o— 2, Zu@mtx) 22l

- -
Z(rm) G+ D+ D - (= Dy + Dscta o)

max |E|}(S)|

;’(F(Lﬂ) (v+ D(2y+ 1JT---[(n— Dy+1)

. i
Since L < I'(y) therefore T'¥ (rliﬂ) -0 as j—o . Hence @ —=y.

Applications Example(1)

In this section the (HPM) has Consider the following linear fractional
bon applied to linear and nonlinear orderintegro-differential equation
fractional order integro-differential DOy (x) = —— x5 — _=_ 375 L [075y(y)

equations in order to illustrate the (32s) rlars)

validity of the proposed method.

The following examples had
been studied and discussed by using
iteration variational method in [6].

(16)y(0) = 0,x € [0.,2]

for comparison purpose, the exact
solution of equation(16) is given by
y(x) =x*,

1641



J. Baghdad for Sci.

Vol.11(4)2014

According to HPM, we construct the phiDITy; = =k — x84 075y, ()
following homotopy:
[ . [
DX7y(x) = p 1"[3.25)}{“‘5 B 1"(4.?5)}{”5 - sty(x}) 2 075 0.75 (18)
it i =Dy, =10y (%)
Substitution of (5) into (14) and then P U Vs 1
equating the terms with same powers (139) oS 075
of p yield the following series of linear p*: Dy = 1My, (x)
equations: (20)
p°: Dy, =0 . 0.75
(17) Applying the operator I*"® to the
above series of linear equations, we get
yo(x) =y(0) =0
ID'?EDD'?E}F [Xj — II}.'.'-’E [ 6 KE.EE KE.?E _I_ Iu'?E}? [X]:|
1 r(3.25) r(4.75) 0
(o) + — I}'.'-’E [ 6 225 3.75 075 :|
0 — x> +1
— II}.?E [ 225 3.75 + Iﬂ.?E :|
y1(x) 1"(3.25jx r(4.75) Yo(®)
yo(x) = 1%7°1%7%y, (x)
ya(x) = 1°71%7%y, (x)
Hence we find that
. Bx = _ T4 a5 i |4:I 5 (?}.t:?'g
yi(x) = T(s5) Y2 (x) = .55}x 120 V3 (%) = T~ T 1zomes)
_ T4y 75 & g _ '4} & 10,5
ya(x) = r(es) rao s (x) = rao”  rais)
and
r(4) 105 _ & x12
ve(x) =1 T(115) " Ts -
and according to equation (8) the 3 23 7% 1 12
. : : = 11078 x ™% — ————x 12
approximate solution of equation (16) can () ="+ * 79833600

be written as
@p(x) = y1(x) + y2(x) + ¥3(x) + -+ y,(x)

Thus therefer the approximate solution
up to seven terms given as

1642
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Table(1):The absolute error between the exact and approximate solutions of
example (1).

x y(x) @7 (x) ly(x) — @, ()|
0 0 0.000000000000000 0
0.2 8-107° 7.999999999999950e-3 | 0
0.4 0.064 0.063999999999790 2.102-107%
0.6 0.216 0.215999999972734 2.727-10711
0.8 0.512 0.511999999139216 8.608-107%°
1 1 0.999999987473946 1.253-107°
1.2 1.728 1.727999888316442 1.117 - 1077
1.4 2.744 2.743999289848980 7.102-1077
1.6 4.096 4.095996474229187 3.526- 107°
18 |5.832 5.831985509467422 1.449-107°
2 8 7.999948693282024 5.131-10°°
Example(2): o p%: D2y, = 199 (25, )y, () + (v, ()°)
Consider the following linear integro-
differential eﬂquation . ) 25)
PEYE) = o Trag T H IO g posy, = 2105 (y, (0)y, () + (vo(ys ()
(21) 27)
0)=0,xe |01 z
?cgr ]compariso[n [])urpose, the exact piDys = 1% [Zy[,(xjy4(xj +2(y; () + (7)) )
solution of equation (21) is given (28)
byy(x) = x*. p®:D*y. =0
According to homotopy perturbation (29)
method, we construct the following p7: D0y, = 105 (2};’1 ()ys(x) + (v (x:]):)
homotopy:
Pyt =e (r(j.aj S l“r(gj e (y(xj)z) (30)
Substitution (7) into (21) and then P?:D2%%ye= 0 (31)
. . 9.15,, — 05
equating the terms with same powers P7D7ye= 177 2( ya(X) y7(X)+ ya(X)ys(X))
of p yield the following series of linear (32)
equations: :
p%: D%y, =0 Applying the operator 1%5 to the above
(22) ser;e; of 'I]mear equations:
1,08, —_2 _15_ T a5, 05 2 Vplx) =
ph: D28y, = —Zoxt® - T yss 4 105 (y()) v () = 1519552 | in general we
(23) obtain that,
p*: DXy, = 21%°y, (x)y, (x)
(24)
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FZn [X:] = II: (Iﬂ (EFD[X:]FEH—E [Xj + 23‘?1 [ler’zn—l [Xj + + z}rn—l[xj}rzn—(n—ljl [X:]

+; (xj))
n=1234,- (33)

Vansq(x) =1% (IE (EFDEX:]FEn+1(K] + }’1(Kj}’uizn+1}—1(x] + -+ ¥, ()Vans1-n [Xj))
(34)
n=1234 -
Thus, by solving equations (22)-(32), we obtainy,, ¥, **- as follows:

y,(x) = x* —.20000000000000000001x° , y,(x) =0

y3(x) = 3.6363636363636363640- 10 3x** — 5.0000000000000000003 -

107%x® + .20000000000000000000x°

,¥a(x) =0

vs(x) = B.5561497326203208569- 10 °x*" + 1.9480519480519480522
-1073x1* — 1.6363636363636363637 - 10 2x 1t
+ 5.0000000000000000- 1072 x2

Fs[x] =0,

and hence the approximate solution of example (2) up to 6-terms may be given as

@5(5‘5] = Fi(x] TV (x) T ¥3 (x) + F4(x] T T Ve (x)

The comparison between the exact and approximate solution up to 6-terms of
example (2) is given in table (2):

Table (2):The absolute error between the exact and approximate solutions of
example (2).

x y(x) @(x) ly(x) — @(x)|
0 0 0.000000000000000 0

0.1 0.01 0.010000000000000 0

0.2 0.04 0.039999999999999 1.082-1071°
0.3 0.09 0.089999999998939 1.061-10712
0.4 0.16 0.159999999860521 1.395-1071°0
0.5 0.25 0.249999993924831 6.075-10"°
0.6 0.36 0.359999869075625 1.309-1077
0.7 0.49 0.489998272615760 1.727-107°
0.8 0.64 0.639984171065769 1.583.107°
0.9 0.81 0.809890823887024 1.092-1074
1 1 0.999401830014784 5.982.10~*

In order of the remarks in [ 6 ], Concluding remarks (1):

we referred that the other types of
equations may be consider as a special
case of the Homtopy perturbation
method formula given by eq. (3)

Recall the fractional order
integro-differential equation (1) and
the Homotopy perturbation method
formula (3), then the following special
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cases may be derived from fractional

integro-differential equations:

1. If o= 0, then eqg. (1) will be
reduced to:

u(x) = g(x) + IPk(u(x)) (35)

which is known as the fractional
integral equation.

2. If B= 0, then eq. (1) will be
reduced to

Du(x) = g(x) + k(u(x)) (36)

which is known as fractional order
differential equation.

3. Ifa=1, B=1 then eq. (1) will be
reduced to

u'(x) =g(x) + [ KIx, t;u(t)]dt (37)
a

which is known as integro-differential

equation.
4. If o= 0, =1 then eq. (1) will be
reduced to
X
u(x) =g(x)+ [ KIx, ;u(v]dt (38)
a
which is the usual volterra integral
equation.
5. If a= 1, B= 0 then eq. (1) will be
reduced to
u'(x) = g(x) + k(u(x)) (39)

which is a first order ODE.

The following examples are designed
to illustrate the above concluding
remark

Example(3):

Consider the following linear fractional
order integral equation of fractional
order

y(x) =x—

2 IS ()T
(40)

ri4s)

for comparison purpose, the exact
solution of equation(40) is given by
v(x) ==x

According to HPM, we construct the
following homotopy :

y(x) =p (x “tan® T (F(x])z)

Substitution of (5) into (40) and then
equating the terms with same powers
of p yield the following series of linear
equations:

p? = Yo(x) =0

(41)

phiy, =x— e x4+ 115 (y, (:))?
(42)

p’: ¥, = 21"y, (x)y, (%) (43)

p*ys = 1852y, (v, () + (v.()°)
(44)

p*: Ys = 21*® (}’1(}{]}’: () + (¥ (=)y3 [Xj)
(45)

P = 1% (70 (9y4() + 2073 (7,0 + (12 (9)°)
(46)

p®: ve =0

(47)

pT:y, =1 [Fl (x)ys(x) + [}’3 (X])‘)

(48)

Hence,

¥o(x) =y(0) =0,

2 3.5
:l‘;rl [xj =X r(a.s)
y,(x) =0

ys(x) = —2.5.1072x% + 0.1719.x= + 1.249. 1073
va(x) =0

and hence the approximate solution of
example (2) up to 4-terms may be
given as

Fa (x) = ¥ (x) + ¥z (x) + ¥3 (x) + ¥a (x)
The comparison between the exact and

v(0) approximate elufion up to 4-terms of

example (3) is given in table (3):
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Table(3):The absolute error between the exact and approximate solutions of

example (3).

x y(x) @(x) ly(x) — @(x)|
0.000 0.000 0.000000000000000 0.000
0.100 0.100 0.099999987540024 1.246e-8
0.200 0.200 0.199999210062249 7.899e-7
0.300 0.300 0.299991141535752 8.858e-6
0.400 0.400 0.399951302058240 4.870e-5
0.500 0.500 0.499819391869387 1.806e-4
0.600 0.600 0.599479087530889 5.209e-4
0.700 0.700 0.698739660702434 1.260e-3
0.800 0.800 0.797323641026904 2.676e-3
0.900 0.900 0.894863519789006 5.136e-3
1.000 1.000 0.990907308909784 9.093e-3

Example(4): p°: DE'?S}’E. =X (}’u (%)y,(x) + 20y, ()5 () + (}’: (KJ))

Consider the following linear integro-
differential equation

DYy(0) =x* - s - (0

0

N —-—

r(2s) » ¥(0)
(49)

for comparison purpose, the exact
solution of equation (49) is given by
y(x) ==x7,

According to homotopy perturbation
method, we construct the following
homotopy:

D2y (5) =p (x° 1 e ~ 20 )')

Substitution (49) into (7) and then
equating the terms with same powers
of p yield the following series of linear
equations:

% D275y, = 0
1. pl75,, _ .5 125 E
p:D. 7y, =x +1-.(2_25:]x [}’u[xj)
p*: DIy, = —2xy,(x)y, (%)
(50)
3,075, _ E
p*:D."yy = _K(ZYH(K]F: (x) + [}’1(}{]) )
(51)
p*: DYy, = —Zx[yl (x)y, (%) + (yo(x)ys (x:])

(52)

1646

53
6. po7s (53)

p ¥ =0

(54)

Applying the operator 1%7* to the
above series of equations:
vo(x) =0

H
-
&

yi () = 1775 (x° + r(:.:s}xllm - [FD (Kj)zj
y ¥a [x] = Iﬂ'?E[_Ex}’u[xj}H[x]) ]
y3(¥) = 175 (—x (25, @)y, ) + (5:))°))

hence

v, (x) = x* + 0.26489x>"% |
y2(x) =0,

ya(x) = —0.26489x>™ - 9.693 - 1077 — 100321 - 107 3%

and hence the approximate solution of
example (2) up to 3-terms may be
given as

@3 (x) =y, (x) +y,(x) +y5(x)
The comparison between the exact and
approximate solutions up to 3-term of
example (4) is given in table (4):
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Table (4):The absolute error between the exact and approximate solutions of

example (4).
x NOMIG, G — @)
0 0 0.000000000000000 0.000000000000000
0.1 0.01 9.999999984673746e-3 1.532625588940295e-11
0.2 0.04 0.0399999889096390 1.109036124741225e-8
0.3 0.09 0.089999479112133 5.208878669227257e-7
0.4 0.16 0.159992038914931 7.961085068536322¢e-6
0.5 0.25 0.249934517057493 6.548294250710574e-5
0.6 0.36 0.359638304475523 3.616955244774567e-4
0.7 0.49 0.488496457657771 1.503542342229325e-3
0.8 0.64 0.635000214445637 4.999785554362868e-3
0.9 0.81 0.796355168210930 0.013644831789070
1 1 0.969904622919535 0.030095377080465
Conclusion: 6. Wadea M.H. Variational Iteration

In this paper, homotopy perturbation
method (HPM) has been successfully
applied to integro-differential
equations. Two examples are presented
toillustratethe accuracy of the present
schemes of HPM and the efficiency of
the methods.

References:

1. He J.H.2003.Homotopy Perturbation
method: a new nonlinear Analytic
technique, Applied Mathematics
Computation 135:73-79.

2. Hel.H.1999.Homotopy Perturbation
method. Computer Methods in
Applied Mechanics and Engineering
178: 257-262.

3. He J.H.2000. A coupling method of
homtopy technique and Perturbation
technique for nonlinear problems
International Journal of Nonlinear
Mechanics 35(1):37- 43.

4. Ahmet Yildirim.2008. Solution of
BVPs for fourth-order integro-
differentials by using homtopy
perturbation method .Computer and
Mathematics applications 56:3175-
3180.

5Momani S., Odibatz. 2007.
Application  of  homtopy -
perturbation method to fractional
IVPs, Journal of Computational and
Applied Mathematics 207(1):96.

1647

Method for Solving Fractional
Order Integro-Diffrential Equations.
M.Sc.Thesis college of eduction,
Al-Mustansiriya University.2012.

7. Mittal R. C., Nigam R.2008.
Solution of fractional integro-
diffrential equations by
A domain decomposition method.
International Journal of Appll.M.
and Mech.,4(2): 87-94.

8. Wang W. H.2009. An Effective
Method for solving fractional
integro-diffrential Equations. Acta

Universitatis  Apulensis. 20:229-
235.

9. Kurulay M.,Secer A.2011.Varational
Itration method for  solving
nonlinear factional integro-

diffrential equations, International
Journal of Computer Science an
Emerging Technologies. 2:18-20.

10. Hilfer R.2000.Fractional Calculus
in Physics, First Edition, World
Scientific  Publishing, Singapore,
New Jersey. London and Hong
Kong,.

11.Yasir Nawaz.2011.Variational
iteration method and homotopy
perturbation method for fourth-
order fractional integro-diffrential
equations. Journal of computer and
mathematics  with  applications
61:2330-2341.



J. Baghdad for Sci. Vol.11(4)2014

~Aalaleil) e aleal) Jad daanal) Ay 6f ga gl ALBIEAY ARy o o )RS
A a1 ) ) Attty

Silacaly ) and /A il S/ 4 patived) daaladi®

DAl

Al sl e Jpanll (HPM) &ssiposedl Al 6l ks 5 ¢ Gnd) 1 b
i) ey s 535S R g a1l LS g Ayl ELLRl) i 8 A slomil) LS Y slaall
L Loiions o800 Jadl it gt Aludusio JMA (30 Jadl e seaad) &l gy Uil | 151 e
Ayl Ul i il Al slhel 3 QS (HPM) dassipesell Al Zipyh  (3arks
Bl Calall 26 Loaall i)y il ol Jle 5l AL alELALIS cyaledl I (HPM)
ALl LIS Vbl Ja 3 (HPM) 4 yb s 6 5 Lial

1648



