LICCCE,VOL4, NO.2, 2004

A New Framework for Optical Flow Estimation

Dr. W. A. Mahmoud* Dr, M. S. AbdulWahab** H. N. AL-Taai**
Received On: 24/5/2004
Accepted On: 11/9/2004

Abstract

This paper presents a new method to estimate optical flow in a differential
framework. The image sequence is first convolved with a spatiotemporal filter similar to
those that have been used in other early vision problems such as texture and stereopsis.
The brightness constancy constraint can then be applied to each of the resulting images,
giving in general an over determined system of equations for the optical flow at each
pixel. It is based on prediction of global flow field parameters, performs better than
multi-resolution estimation methods and has been verified using standard test sequences
as well as real-world data.
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1. Introduction intermediate result in the 3D motion
Motion is one of the most estimation process, and then try to
important research topics in computer recover the 3D motion field from its 2D
vision. It is the base for many other projection. However, this seems to be
problems such as visual tracking, impossible without a prior knowledge
structure from motion, 3D on the motion field. Instead, we extract
reconstruction, video representation, an optical flow, which is a 2D field of
and even video compression. Let us first velocities associated with the variation
define some basic concepts [1]: of brightness patterns of the image. The
Motion field is a 3D field of object evolution of the image in time is caused
velocities at point of space. The 3D by two main factors [2]:
motion of object in a time varying scene » Sudden changes between two
is defined completely by the motion successive sequences, that are
field.Image flow is the visible portion of usually relatively rare,
the 2D projection of the motion field » The relative motion between objects
onto the image plane. We would like to in the scene and the camera.
obtain the image flow as an The relative motion between
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objects and the camera is a three-
dimensional vector field in the reference
frame of the camera which we call the
real motion. The scene is then projected
to the camera image plane, and we can
thus define a second vector field: the
projected motion field. A velocity
vector is associated with each image
point, and a collection of such velocity
vectors is a 2D motion field.

In Fig. QI), pisa3D point, ie., p =
[X; Y; Z]' , and m is its image
projection, i.e., m = [x ; y]". Then we
have: P=Zm
where m is the homogeneous
coordinate of m. Then we have [3]:

b iz x dx/dt
—p:---— 2 y +Z Gb}/dr 2 (])
dr dt
1 0
ie., p=2Zm+Zm
Vo = (V7k)in+ 2, -2

where £ is the unit vector of the depth
direction, So,

1

vn =V =7 k)ri) .3

which means that the 2D motion field
v 18 a function of Vp/Z

The purpose of optical flow
measurement is only to estimate this
motion in the image plane from the
knowledge of the images sequence
I(t;x). Optical flow is defined as the
projection of velocities of 3D surface
points onto the imaging plane of a
visual sensor.

The following two examples help to
understand the difference between an
image flow and an optical flow. The
first one is a uniformly painted ball
rotating around its center in some way.
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In this case, the image flow is non-zero
for every point of the ball projection on
the image plane, while the optical flow
is zero, since the image brightness does
not change at all. The second example is
a stationary scene with moving light
source. Here the situation is exactly the
opposite: The optical flow is non-zero
due to intensity changes in the image,
whereas absence of motion causes zero
image flow.

Now the motion recovery problem
can be introduced. It is formulated as
follows: given a sequence of images of
a dynamic scene, recognize moving
objects and find their velocities
(trajectories). The solution of this
problem, like many others in computer
vision, can be, somewhat artificially,
divided into two main stages [1]:
> Low-Level Processing: During this

stage a 2D field of velocities (the

optical flow) associated with a

velocity vector to each point of the

image plane is determined.

» High-Level Processing: At this
stage, the 3D velocity field (the true
motion field) is estimated from the
2D field, determined at the previous
stage, and analyzed in order to get
the motion description of objects in
the 3D scene.

While the high level stage of
motion recovery assumes that it
receives the image flow as its input, the
low level stage, which is also called the
optical flow estimation stage, can only
produce the optical flow defined by the
image sequence. It is immediately seen
that there is a problem of equivalence of
these two fields.

2. Optical Flow Constraint Equation
As defined above, the optical

flow is a velocity field associated with
brightness changes in the image. This
suggests an assumption often made in
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methods for optical flow estimation, the
brightness conservation assumption,
which states that brightness of an image
of any point on the object is invariant
under motion.

We denote an image intensity
function by I(x , y , t), and the velocity
of an image pixel m=[x , y]T is:

vy =tn=ly, v, [ {:;m .. (@)

The initial hypothesis in measuring
image is that the intensity structures of
local time varying image regions are
approximately constant under motion
for at least a short duration (dt), i.e.:

I(x+dx, y+dy, t+dr)=!(x,y,t)

dx dy
I| x+—dt, y+—dt, t+dt |=I{x,y,t
(x dt 7 dt J (x 4 )
I(x+vxdr, y+v,dt, t+dr)=f(x,y,t)

. (5
If the brightness changes smoothly with

X, ¥, and t, we expand the left-hand-side
by Taylor series:

a al d
Ix, y,!) +5c vxdt+-t-3—) vydr+—§ dt+dd12) =1{x,)
. (6)

So, we have
gvx+-a—1vy+§{=0 siu{)
ox oy ot
ie.
ol
VIiv,+-—=0 sl
Ut (8)
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o
Where VI = 2,9{ 1s image gradient
ox oy

at pixel m, which can be obtained from
images. Also % can also be obtained

from images easily. We call this
equation optical flow constrained
equation.

Apparently, for each pixel, we have
only one constraint equation, but we
need to solve two unknowns, i.e., v, and
vy, which means that we cannot
determine optical flow uniquely only
from such optical flow constraint
equation. Fig. (2) gives a geometrical
explanation of the constraint equation

B3]

3. Smoothness Constraints

In case of rigid body,
neighboring points of a body move
similarly, their velocities differ only
slightly. This results in a rather smooth
optical flow. Horn and Schunk [4] were
first to make this assumption and
exploit it for determining an optical
flow. As a measure of a field
smoothness  (or, more precisely,
unsmoothness), they used the square of
the magnitude of the velocity field
gradient, i.e..

auY (au)' (o) (ov)
— | H == +| =] ... (9
ox oy Ox oy
They transformed optical flow
estimation into an optimization problem
involving a combination of the two
criteria:

» The error in the image brightness
changes measurement:

Ey=Iy, +Iv, +], .. (10)
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» The quantity reflecting a “non-
smoothness” of the velocity field

[4]:

I o

A weighted sum of these two quantities

summed over the image
is to be minimized:
E? = [[(E? + &*E2)dx dy . (12)

or

B = [(V1v LY +a” ([Valf +[vofP)

Since the input image is corrupted
by noise and quantization error, we
cannot expect £, to be identically zero.
This quantity would have a magnitude
proportional to the noise in the
measurement, therefore the weighting

factor ¢’ in the sum should be chosen
equal to the estimate of the noise
variance in the image [4].

4. Optical Flow Techniques

Many methods for computing
optical flow have been proposed and
others continue to appear. Lacking,
however, are quantitative evaluations of
existing methods and direct
comparisons on a single set of inputs.
These can be roughly grouped into
gradient-based, correlation-based,
energy-based, phase-based and wavelet-
based techniques [4-8].

A typical gradient-based approach
was proposed by Horn and Schunck,
which is mainly based on optimizing an
energy function shown in equation (12)
that is function of an image constraint
and a smoothness constraint. In general,
there are two possible ways to solve the
optimization problem for the energy
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function shown in (12). The first is to
convert the optimization problem into
one of solving partial differential
equations based on variational calculas.
This kind of approach estimates flow
vector iteratively. The other kind of
approach directly uses the discrete
version of (12) to calculate the flow
vectors. The discretization process
converts the original optimization
problem into the problem of solving a
linear system. However, such intuitive
discretization might lose precision of
the original energy function and
information about the interaction
between the image brightness function
and the flow field.

Despite their difference, many of

these techniques can be viewed
conceptually in terms of three stages of
processing [5,6]:

» Prefiltering or smoothing with low
pass or band pass filters in order to
extract signal structures of interest
and to enhance the signal to noise
ratio.

> Measurement extraction of the
basic image structures, such as

spatiotemporal ~ derivatives  (to
measure normal components of
velocity) or local correlation
surfaces.

» The integration  of  these
measurements either by
regularization, correlation, or a

least-squares computation aims to
produce a 2D flow field, which
often involves assumptions about
the smoothness of the underlying
flow field.

S. The Proposed Image Velocity
Calculation
We have developed a new
algorithm for computing optical flow in
the differential framework which
performs comparably to the Horn and
Schunck approach, but with less
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computational cost and a higher density
of estimates. The computation of image
velocity can be viewed by these steps:
Step 1. presmoothing the images to
reduce noise and aliasing effect using a
spatiotemporal Gaussian filter with
standard deviation of 1.5. By the term
Gaussian filter, we mean a low-pass
filter with a mask shaped similar to that
of the Gaussian probability density
function [9]. The term spatiotemporal
means that the Gaussian filter is used
for low pass filtering in both spatial and
temporal domains.

Step 2: Computation of spatio-temporal
intensity derivative: The numerical
analysis contains many methods for
approximating gradient filters. Most of
the papers describing optical flow
estimation through the brightness
change constraint equation (12) apply
simple gradient filters like

%—[ﬂl 0 1]. In many papers, the

choice of these filters is even not
mentioned. In their original paper [4],
Horm and Schunck proposed an
approximation of the gradient filter with
no pre-smothing. The gradient were
obtained by averaging the first
diffrences over a neighborhood of 2 x 2
in the image sequence. These gradient
estimates refer to a center point of a 2 x
2 X 2 cube (which means that the
estimated flow corresponds to points
between pixels). No motivation or
justification for this choice of gradient
estimation is given. According to
Barron et. Al. [6], these gradient filters
are said to be “relatively crude form of
numerical differentation and can be the
source of considerable error”. Barron
et. Al. propose the application of a 5 X 5
X 5 spatio-temporal pre-smoother,
construction using a sampled Gaussian
filter with 1.5 variance at each axis.
This variance was found empirically to
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give the best result. The gradient filters
proposed by Barron is the S5-tap-1-D

filter %[,.1 8 0 -8 1], which is

the result of the design procedure
described in [10]. This 1-D gradient
filter i1s used to produce 3 types of
derivatives (x-derivative, y-derivative,
and t-derivative) as described in Fig.
(3). As can be seen, a 3-D [5 X 5§ x §]
pre-smoothing kernel is first applied to
the image sequence. Then, each axis is
differentiated separately.

Step 3: Perform Iteration: Given the
spatio-temporal derivatives, Iy, Iy and I;
computed as described in the previous
step (and hence, the normal velocities),
we integrate small neighbourhoods of
these values into image velocities. First
of all, we reorganize equation (12) into
the form:

E* =Y ¥ (E? +a?E?)
X

or ?

B =YY, u+], v+ I} +a2(V’2u +V2v)
Xy

wrntdd)

The optical flow quantities # and v
can be found by minimizing the total
error.  V’denotes the Laplacian
operator. The Laplacian of u and v are
approximated by

Viu=a(x,y)-u(x,y)

...(14)
V3 =v(x,y)-v(x,y)

Equivalently, the Laplacian of » and v,
V2uand V*v, can be obtained by
applying a 3x3 window operator, shown
in Fig. (4), to each point in the » and v
planes, respectively. The solution for
velcity vector (#,v) is given as a set of
Gauss Seidel equations, which are,
solved iteratively:
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o - Lt +1,5* +1,]
&’ +I2+1

u

sisi (1D
vm:ik_l},[lxuk+1yvk+i‘,] (1)
o +I2+1

where:

k  : the iteration number.

u°,v": Initial velocity estimates (set to
ZEro).

#*,v*: Neighborhood averages of
uk,v*.

There are two different ways to
iterate; one way is to iterate at a pixel
until a solution is steady. Another way
is to iterate only once for each pixel. In
the latter case, a good initial flow vector
is required and is usually derived from
the previous pixel.

6. Evaluation Test Of The Results

We applied here our method to
estimate the optical flow on real
sequences and synthetic sequences for
which 2-D motion fields were known.
All image sequences are downloaded
from fip.csd.uwo.ca.

6.1 Synthetic Image Sequences

The main advantages of
synthetic input are that the 2-D motion
field and scene properties can be
controlled and tested in a methodical
fashion. In particular, we have access to
the true  2-D motion field and can
therfore quantify performance. Our
synthetic image sequences include:
Sinusoidal Inputs: This consists of the
superposition of two sinsoidal plane
waves:

sink; - x +wt)+sin(k, - x +wyt) ... (16)

The result reported is based on spacial
wavelengths of 6 pixels, with
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orientations of 54° and —27°, and speeds
of 1.63 and 1.02 pixel/frame
respectively, and is called Sinusoid 1 as
shown in Fig. (5). The resulting plaid
pattern  translates with  velocity
v=(1.5539,0.7837) pixel/frame.
Translating Squares: Our other simple
test case involves a translating dark
square (with a width of 40 pixels) over a
bright background as shown in Fig. (6).
Yosemite Sequence: The Yosemite
sequence is a more complex test case as
shown in Fig. (7). The motion in the
upper right is mainly divergent, the
clouds translate to the right. This
sequence is challenging because of the
range of velocities and the occluding
edges between the mountains and at the
horizon, There is severe alliasing in the
lower portion of the images however,

causing most methods to poorer
velocity measurements.
6.2 Real Image Sequences

Two real image sequences,

shown in Fig. (8) and Fig. (9), were also
used:

Rotating Rubik Cube: In this image
sequence, a rubic’s cube is rotating
counterclockwise on a turntable. The
motion field induced by the rotation of
the cube includes velocities less than 2
pixel/frame.

Hamburg Taxi Sequences: In this street
scene, there were four moving
objects:1) the taxi turning the corner; 2)
a car in the lower left, driving from left
to right; 3) a van in the lower right
driving right to left; and 4) a predestrain
in the upper left.

7. Conclusions

This paper has proposed a new
algorithm for optical flow computation
using a gradient-based methods. The
original problem of minimizing the
constraint function can be converted
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into one of solving partial differential
equations based on variational calculas.

Observing that the first order
difference is used to approximate the
first order differentiation in Horn and
Schunk’s  original algorithm, and
regarding this as a relatively curde form
and a source of error, our algorithm
developed a modified version of Horn
and Schunk method. It features a spatio-
temporal presmoothing and a more
advanced approximation of
differentiation. Specifically, it uses a
Gaussian filter as a spatiotemporal
prefilter.

Our algorithm has achieved better
performance than the original one. This
success indicates that a reduction of
noise in image (data) leads to a
significant reduction of noise in optical
flow (solution).

Expermental results show that in
term of accuracy, our approach
outperforms the existing methods which
adopted the same objective function as
ours. This method is quite stable under
noise, though it has one drawback; it
fails at sharp changes in image flow i.e.
at edges of moving objects. This is
explained by the fact that the
smoothness assumption used by the
method is clearly violated in such edge
regions.
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Fig. (4): A 3x3 window operation for
estimation of the Laplacian mask.

Fig. (5): a) Sinusoidl Image. b) Sinusoidl Flow.
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Fig. (6): a) Square Image. b) Square Flow.

(b)
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@ )
(a) (b)
Fig. (8): a) Rotating Rubik Image. b) Rotating Rubik Flow.
(a) )
Fig. (9): a) Hamburg Taxi Image. b) Hamburg Taxi Flow.




