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ABSTRACT

In this paper we have investigated three algorithms. In
the first algorithm we have derived a new optimal step size
gradient algorithm which is preferable over the classical SD
algorithm both in theory and in the real computation. In the
second algorithm we have derived and implemented a new

formula for the non-quadratic model with a new p,. In the third

algorithm we have tried to make a new hybrid algorithm between
the above three different step sizes.

Our numerical results are promising in general by
implementing ten non-linear different test functions with

different dimensions.
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1. Introduction

Concerned the unconstrained optimization problem
minimize f(X) xeR” (1)
where f is smooth and its gradient g(x)=Vf(x) is

available. The gradient algorithm for solving (1) is an iterative

algorithm of the form X =X, —0, g, (2

where g _, =Vf(x, ) and a, is a stepsize.

In the classical steepest descent algorithm (Cauchy, 1847);
the stepsize is optioned by carrying out an exact line search,

namely,

o, —arg min f(x, —o,g,) (3)
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However, despite the optimal property of (3), the steepest descent
algorithm performs poorly, its convergence linearly and is badly
affected by ill conditioning (Akaike, 1959) and (Forsythe, 1968).
Barzilai and Borwein (Barzilai and Borwein, 1988) proposed
two-point stepsize gradient algorithm by regarding H, =o,I as
an approximation to the Hessian inverse of f at x, and imposing

some QN condition on H, (I is the identity matrix). Denote

_ _ e .,
S = X T Xy and Yo = 8k — 8y By minimizing HH Skl — Y

>

then obtained the following choice for the stepsize

o, :%. (4)

Tthe motivation for this choice is that it provides two-point
approximation to the secant equation underlying quasi-Newten
method (Birgin and Etushenko, 1998). Raydan (Raydan, 1993)
proved that the two-point stepsize gradient algorithm (2) and (4)
i1s globally convergent. For the nonquadratic case, (Raydan,
1997) incorporated a globalization scheme of the two-point
stepsize gradient method using the technique of non-monotone
line search.

Dai and Yuan (Dai & Yuan, 2000) proposed another
stepsize which is derived from the quadratic model and from the
angle of interpolation which is very preferable than first stepsize
defined in (4).

In this paper we have discussed three new algorithms, first

we have investigated a new stepsize using the non-quadratic
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rational model and interpolation condition for derivation neither
with steepest conjugate gradient algorithm, second, we have
proposed a new formula discussed.

Third we have made a hybrid algorithm for those stepsize
as a new case and show that the numerical result of this
algorithm is competitive and sometime preferable over several
famous conjugate gradient algorithms, especially for large scale

unconstrained optimization.

1.1 The stepsize o, with the quadratic model (algorithm 1):
We list below the outline of the algorithm I:

For an initial point x,

Step (1): setk=1,d, =-¢g,

Step (2): set x,,, =x, +a,d, , where o, (k=1) is a scalar chosen in

such a way that f,,, <f,, ifk# 1 compute a, as:

T
— Sy Sk . — _
Ay = ’ where S = X — X and Yo = 8k — 8k

Sk Yk

Step (3): check for convergence, i.e. if ||g,.,|| <e, where e is small

positive tolerance, stop; otherwise continue.

Step (4): compute the new search direction defined by:

d, =-g, +B,d,,, where B, 1s computed by the following formula

Bk - gIYk—l .
dE—lYk—l
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Step (5): if k=n or if the restarting criterion

HgIgHH >0.2)g, |  (Powell, 1977) is satisfied go to step (1), else,

set k=k+1, and go to step (2).

2. Derivation of the stepsize o, for the quadratic model:

Before the derivation of the new algorithm, let us see the
work of Dai and Yuan (Dai et al, 2000) for the quadratic form:

They suppose that o,, be defined by (4) and proposed that

t, =a,, so that

T
tk :M (5)

T
Sk—lsk—l

From the quadratic model q, (x):

! 1 "
qy (X) = fk +fk (Xk _X) +5fk (Xk _X)z (6)

f(x, +v,)=1f +f v, +%VI G, v, (7)
where v, =(x,,, -x,), similarly v, =0s,, ,s0 f(x, +0s,)is an
approximation to the quadratic model (q, (0)) so we have

q,(0)=f, +g| 0s,_, +%Gk 0°(s,,)’ (8)
from quasi-Newton condition

Hyy,, =s,, (9)

— -1 —
weE haVe kal - Hk Skfl = kal _Gkskfl

50 G, =2t = (10)
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substitute (10) in (8) to get

q,(0) =1, +gE Os,, + Bk 92(51“1)2 (1 1)

1

2

For any t € R, the above model satisfies interpolation conditions
q,(0) =1, (12)

It is easy to test that if t is given by (5), the quadratic model

(11) satisfies the interpolation condition

vqk(_l) :gI—]sk—l (13)
if (13) is replaced with another interpolation condition
qy (_1) = fk—l (14)
so (11) is becomes:
1—
foy =f, —g¢ 5 +Ebk(sk—l)2 (15)
—f +of
tk — 2(fk_1 Tfk gksk—]) (16)
sk—lsk—l
since t, =a,'
so we have
T
akz - Sk—lsk—l (17)

2(fk—] - fk + gzskq )

2.1 The stepsize o,, for algorithm II :

We list below the outlines of algorithm 3.2:
For an initial point x,

Step (1): setk=1,d, =-¢g,
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Step (2): set x,.,, =x, +a,d,, where o, (k=1) is a scalar chosen
in such a way that f,,, <f,, ifk# 1 compute a, by:

T
Si—1Sk

2f, -1, +gISk—1) ‘

Ay =

Step (3): check for convergence, i.e. if |g,,,| <e, where eis small

positive tolerance, stop; otherwise continue.
Step (4): compute the new search direction defined by:

d, =-g, +B,d, ,, where B, is computed by the following formula

B, = gEYk—l _
dI—lYk—l

Step (5): if k=n or if Hgggk_1 H >0.2)g, | is satisfied, go to step (1),
else, set k=k+1, and go to step (2).

Now, by using the same procedure of (Dai etal, 2000) let us
derive the new formula for the «,, but for the non-quadratic

model.

3. Derivation of the new stepsize o, for the non-quadratic

model
Since q(x) is quadratic function then a function f is
defined as nonlinear scaling of q(x) if the following conditions

holds

df

f =F(q(x)), aq =F >0 and q(x) >0 (18)

Many authors have proposed special model as follows:

1-F(q(x)) = (q(x)) p>0 (Fried, 1971) (19)
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2- F(q(x)) = Inq(x) (Al-Assady, 1991)  (20)
3- F(q(x)) = —1 9% (Al-Bayati, 1993)  (21)
- €, q(x)

4- F(q(x)) = (log(e q(x)~1), >0 (Al-Bayati, 1995)  (22)
5- F(q(x)) =sinh(e q(x)) (Al-Assady and Al-Ta’ai, 2002a) (23)
6-F(q(x)) =sin(e q(x))  (Al-Assady and Al-Ta’ai, 2002b) (24)
Now let f, =F(q,(x))so we have

£/ =g, =F G, (x,~x) (25)

f"=F G, +G(x, -x )’F (26)
Now since q, (0) =f, +g,0s, +%Gk62(sk—l)2

So we have
f.(0) =F (q(x))+F (q(x)) G, (x, —x")0s,_, +
27
+%[Fﬁ(q(X))Gk +F'(q(x) G; (x, =x)*10° (s,,)’ &7

Substitute for G, by t,; for (x, —x") by 0, ,)

f,(0) =F (q(x) +F(q(x))t, 67 (s,_)" + %Fk' (@)t 07 (s, )" +
(28)

SE@) € 0° (5,

f. (1) =F,(q(x)) + F (q(x)) b, (s,,)° +%Fk' (q(x)) by (5,)° +
(29)

SR@R)BE 65,

If we replace the interpolation condition with
f,.(=D=1f_ =F_.(q(x) (30)

then we have
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F,(@00) = B @00) + S F@OON, 5,0+ F@) ¢ 6,0 (1)
(@00~ F.(@00) = SR @), 6. + 5 F@e)  6.)" (32)

G GF@O 6,0+ GF@0) 65,0 ~TF,, (@00) - F (@x)] =0
(33)

—%Fk’(q(x» 5., t\/@F:(q(x» (5.,)) +4[§F:<q(x» (5.,) (., (@(x)) ~ F.(q(x)))]
t =

k

20 K00 5,.))
(34)

since t, =a.,'

so we have

F(g(x)) (s,,)"
—%Fk' @) (s,,)" * \/ (% F(a(x) (5,.)")" + 2AF/(q(x)) (s,.)* (., (a(x)) — F, (q(x))]
(35)

Oy =

Now we are going to derive a new p, for the proposed new

exponential non-quadratic model.

3.1 A new non-quadratic model for unconstrained optimization

In this section a new exponential function (base a, a>0) model
1s investigated and tested on a set of standard nonlinear
unconstrained test function, it is assumed that condition (18) holds.

The new model 1s follows:

€q(x)

F(q(x)) =a =" ,€,,€,>0 (36)
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€9(x) na
F(q(x)) == (37)
€4q(x) Ina
InF =In(e="™ ) (38)
po_ A9 (39)
€, (I-q(x))

and we first assume that neither €, nor €, is zero in (39),solving
(39) for ¢(x) gives
€, InF-¢, q(x)InF =¢, q(x) Ina (40)

€, InF=¢ q(x)Ina+e, q(x)InF

€, InF=(g, Ina+e, InF)q(x)

_ €, InF (41)
€, Ina+e, InF
S19
Fr - aez(l—q) €&, (l_q)+ E1262 q Ina (42)
(e, (1-q))
S|
F' =g=(0@ €% (43)

— =2 Ina
(e, 1-9))
F' in (43) contains three parts

€19

(i) a=%, (ii)

e] EZ
(e, (1-q)*’
first we find the part (1) and substitute (41) in this equation

(ii1) Ina
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. €, InF
e, q _ '\elnate,InF)]  ee,InF ¢ Ilnate, InF_InF
e, (1-9) { e, InF €, lnate, InF €€, Ina Ina
e —
? €, lnate, InF
€14 InF lnF1
©0-0) = ha —aha = ahF —
then a =ah =g =e¢" =F (44)

Now to find the value of (ii)

€S €S — €S

(e, 1-q))’ <[ €, InF ’ . €, Ina 2
’ €, Ina+e, InF *l € Ina+te, InF
€

_ | _¢, (g Inate, InF)’ _ (g Ina+e, InF)’
( €, Ina jz <, e’ Ina’ €€, Ina’
62

€, Inate, InF

o &S - (g, Ina+e, lle)2 (45)
(62 (l_q)) €S Ina
Now substitute (44) and (45) in (43) then we get
+ 2
F'=F (€, Inate, I?F) Ina (46)
€€, Ina
e1 2 2 e] 2
5 (e, (—Ina+InF)) €, (—Ina+InF)
F=F (€, Inat+ e, InF) _F €, ¢ €,
€€, Ina €€, Ina €€, Ina
then we get
F=F2 (Sllna+nF)’ 47)
€, Ina €,

Now to find the value of p, let

l
Fk—l qk—l T

: (48)
F.q,

P =
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T
_ o g, d
where o = kT (49)
since =K
P =—, (50)
Fk
B ®
SO P = Pu qcfl +W (51)
k kYlk

multiply both sides of (51) by q,

()

P9 = P9y +F (52)
k
Q)]

Py (qk _qk—l) :F (53)
k

to find the value of (53) we first find the value of (q, —q,_,)we use

(41), then we have

_ €, InF, €, InF_|
e —qus = -
€ Inat+te, nF, € lnate, nF
_ €,€, Ina(InF,_ —InF_)) (54)
(¢, Inat+ e, InF, )(g, Inate, InF_))
substitute p, defined by (49) in (53) then we get
F., ®
- = 55
F (A =) F (55)

multiply both sides by F,

Fli—l (qk - qk—l) -0 (56)
using (47) and (54) in (56)to get
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F (—llna+lan71) €€, Ina(InF, —InkE,_)) —o

G lna <, E ( ]na+lnF )( 1na+lan 1)
2

(InF, —InF_, )(j Ina+InFE_))F |,
. - =¥ (57)
(—Ina+InF)

2

now let

(InE, —InF_)=¢ (58)

(ilna+lan_]) =y (59)

2

and (ilna+lan):ilna+lan_l—lan_] +InE, =y+& (60)

€ <,

substitute (58), (59) and (60) in (57)

% —o 61)
BYF, = oy +ok
W, o) =0k
R (©2)

add (-InF_,) for the both sides of (62), then

y—InF_ = FQ(D —InE

k-1
k-1 — @

since (—lna +InF,_,) =y which defined in (59) so we have
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Siina=—° —InF,_, (63)

<, & -o

Now to find the value of p,, let

EF _ S (i Ina+InF,_,)?

o _F € Ilna €,
k '
F g S (Sima+mE)
€ lna €,
F_ (S'lna+InF,_)
SO p, = 22 (64.2)
F, (—“Ilna+InF )’
e2

For simplicity (3.62a) may be simplified to

= Fk_]\vz = . éFk_l - = ! [gj (64b)
E (g + C)z ( Ew jz 9
F +&
EF  -o

Py

to compute p, we may use either (64.a) or (64.b).

3.2 The optimal stepsize o,, with the non-quadratic model
(algorithm III):
We list below the outlines of the new algorithm I11
For an initial point x,
Step (1): setk=1,d, =-¢g,
Step (2): set x,,, =x, +a,d,, where a, in (k=1) is a scalar

chosen in such a way that f,,, <f,, if k=1 compute «, by
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F(q(x)) (5,.)"
- ;Fk' @) (s,)" * \/ (z F(a(x)) (5,.)")" +2[F/(a(x)) (5,.)" (F, (a(x)) - F, (@(x))]

Step (3): check for convergence, i.e. if |g,,,| <e, where eis small

Oy =

positive tolerance, stop; otherwise continue.

Step (4): compute con = 50 -InF_,,
F,—-o

T
o d
where £ =InF_ —-InF_, and ® = M_

+ 2
Step (5): Compute the new p, = F(con+InFk k—lz)
F (con+InF,)

Step (6): Compute the new search direction defined by:
d, =-g, +p, B,d,,, wWhere B, 1is computed by the following

gIYk—]
T

k=1 k=1

formula g, =

Step (7): if k=n or if Hg,fgk_lu > O.2||gk||2 is satisfied go to step (1),

else, set k=k+1, and go to step (2).

4. A new hybrid algorithm for the three optimal stepsizes

We have discussed earlier in this chapter three different
stepsizes for both quadratic and non-quadratic models. In this
section it 1s important to make an interleaving scheme between
those stepsizes mentioned in (3.2), (17) and (35) respectively. All

the details may be found in the following new algorithm.
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4.1 New hybrid algorithm (algorithm IV):
We list below the outlines of the new procedure:
For an initial point x,
Step (1) setk=1,d, =-g,.
Step (2): compute a,, where o, in (k=1) is a scalar chosen in
such a way that f,,, <f_, ifk# 1 compute o, by
_ E'(q(x) (s,,)*

Qs =
- % F (q(x)) (5,.)" % \/ (% F (q(x)) (5,.)")" +2[E'(q(x)) (5,.,)" (F, (4(x)) ~ F, (q(x)))]

Step (3): if 0<a,,<l, set a, =a,, and go to step (5), else

T
Skfl Skfl

2(fk—1 - fk +gESk71) ‘

compute a,, =

Step (4): if 0<a,, <1, set a, =a,, and go to step (5), else

-1 Skfl

T
compute o, =—
k—

Ikal
Step (5): set x,,, =x, ta,d,.
Step (6): check for convergence, i.e. if |g,,,| <e, where eis small

positive tolerance, stop; otherwise continue.

Step (7). compute con = 50 —InF_,,
F_, —o

T
0‘kgk—ldk—l

where £ =InF, —InF,_, and © = 5

F,_,(con+InF,_,)?
Step (8): Compute p, =+ k-l
P () P P F, (con+InF,)’
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Step (9): Compute B, ; the conjugate coefficient, which is defined
as:

B, = Is conjugate coefficient of quadratic model defined by

B = 2 Yi
) .
! dE—lYk—l

B., = Is conjugate coefficient of non-quadratic model defined by

g Y

P =Ps ity
Step (10): check if 0<B, <1, set B, =B,, and go to step (11),
else set B, =p,., continue.
Step (11): compute the new search direction defined by:
d, =—g, +B,d, ;-
Step (12): if k=n or if Hg,f g,HH >0.2|g,| is satisfied, go to step (1),
else, set k=k+1, and go to step (2).
5. Numerical results and conclusions

We have tested four algorithms with double precisions, the

first two algorithms are based on stepsizes a,,, o,, defined on
quadratic model and the third new algorithm is based on a,, for

non-quadratic model, the fourth new algorithm is the new hybrid

among the stepsizes (a,,, o,,, o, ).
The stopping condition is |g,J|<107, a cubic fitting

procedure which was described in details by Bundy (Bundy,

1984) used as a line search procedure.
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All the results are obtained by using Pentium 4 and all
programs are written in FORTRAN language. The comparative
performance for all of these algorithms are evaluated by

considering NOF, NOI.

We compared these stepsizs a,,, a,,, a,, with the hybrid

algorithm. Our numerical results are reported in Table (3.1) with
dimension n=50, Table (1) with n=100, Table (2) with n=1000,
Table (3) with n=10000, with different non-linear unconstrained
test functions (see Appendix).

The comparative performance for all of these algorithms
are evaluated by considering NOF, NOI where NOF is the
number of function evaluations, NOI is the number of iterations.

The gains are some time significant for example, Powell
with n=50, 100 and Cantrel with n=1000 and Rosen with all
dimensions. Therefore our numerical results suggest two efficient
modified stepsize:

1- stepsize gradient algorithm o, with non-quadratic model.

2- the hybrid algorithm with the stepsize o, ,a,,,0,;.

k2?2

Which require few more storages and computational

effectiveness in every iteration.
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Table (1):Numerical comparisons of the new gradient

Function

algorithm and hybrid algorithm (n=50)

O(‘kl

O(’kZ

a’k3

hybrid

NOF NOI

NOF NOI

NOF NOI

NOF NOI

Powell

124 35

151 38

112 31

108 31

Wood

84 26

81 27

87 26

9% 29

Canterl

29

33

25

132 19

Rosen

42

32

92 30

92 30

Cubic

64 15

44 13

44 13

Sum

75 12

78 12

12

Edeger

15 5

18 5

16 5

Beal

34 10

29

39

34 11

Shallow

26

24

30

24

Wolfe

141 47

143 47

141 47

141 47

Total

900 240

981 244

742 206

735 199
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Table (2)

Numerical comparisons of the new gradient

Function

a‘k]

a‘kZ

a’k?:

algorithm and hybrid algorithm (n=100)

NOF NOI

NOF NOI

NOF NOI

Powell

124 35

151 38

158 37

Wood

184 39

181 38

112 30

Canterl

276 33

296 33

292 37

Rosen

163 43

695 174

97 30

97

Cubic

64 15

56 13

44 13

44

Sum

88 14

80 13

99 14

91

Edeger

15 5

21 5

18 5

16

Beal

34 10

34 10

46 11

29

Shallow

26

24

36

24

Wolfe

150 50

153 49

147 49

141

Total

1124 235

1691 381

1049 235

796 206
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Numerical comparisons of the new gradient

Function

0‘k]

0'k2

a’k?y

algorithm and hybrid algorithm (n=1000)
hybrid

NOF NOI

NOF NOI

NOF NOI

NOF NOI

Powell

163 42

151 38

138 45

151 46

Wood

187 37

181 37

104 27

89 27

Canterl

276

258 27

162 22

17

Rosen

163

696

103 29

29

Cubic

66

56

44 13

44 13

Sum

33

Edeger

17

18

Beal

34

34 10

41

30

Shallow

26

24

33

28

Wolfe

182 6l

163 52

148 50

148

Total

1269 276

1751 394

1016 242

829 230
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Table (4)

Numerical comparisons of the new gradient

algorithm and hybrid algorithm (n=10000)

O(‘kl

a’kZ

a’k3

hybrid

NOF NOI

NOF NOI

NOF NOI

NOF NOI

Powell

173 44

172 41

245 57

184 45

Wood

81 27

122 29

95 31

Canterl

Rosen

Cubic

66

58

44

Sum

Edeger

17

23

27

Beal

34

34

52

34 10

Shallow

26

28

40

28

Wolfe

523 179

531 170

529 170

517 165

Total

1726 415

2303 532

1640 382

1440 369
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Appendix:
These test functions are famous and form general literature

1- Generalized Powell function:

n/4
f(X) = Z_ll[(xzn—s +1OX41—2)2] + 5(X41—1 _X4i)2 + (X41—2 _2X4i—1)4 + 10(X4i—3 - X41)4]

x, = (3,-10,5;..)".

2- Generalized Wood function:

n/4
f(X) = ;100[(X4i—2 _Xzzﬁ-s)z] + (1 - X4i-3)2 + 90(X4i - Xzzﬁ—1 )2 + (1 — X4 )2
+10.1((x,_, _1)2 +(xy, _1)2) +19.8(x,,, —D(xy; — 1),

X, =(-3,-1,-3,-1;..)"..
3- Generalized Cantrel function:

f(X) = Z [(exp(x4i—3) X 4io2 )4 + 100(X4i—2 — X4in )6 + arCtan(X4i-1 — Xy )4 + X 4iz3o

n/4
1

x, =(1,2,2,2;..)".

4- Generalized Rosenbrock function:

n/2
f(x)= ;100[(&1» —X3) +(1=x,,)° ],

x, =(-1.21;..)".

5- Generalized Cubic function:
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n/2
f(x)= ZI:IOO [(x _XZH)Z +(1_X2171)2]a

X, = (-1.2,1;..)".

6- Generalized Sum function:

£(x) =z [(x, 1%,

X, =(2;..)".
7- Generalized Edeger function:
f(x)= 2:1: [(X5 -2)"+ (X214 -2)* *X212 +(X,, +1)*],

x, = (1,0;..)" .

&- Generalized Beal function:

£00) =20 115 =%, (1x3)) + (225 -, , (1= x3))” +[2:625 - x,, ,(1-x}))’],

X, =(0,0;..)".
9- Generalized Shallow function:
n/2
f(x)= 2:1: [(Xgi—IXZi)z +(1 _X2i—1)2]7
X, =(-2;...)"

10- Generalized Wolfe function:
£(x) =[=x,B=x, /2+2x, —1F +3 [(x., —x, B—=x, /2) +2x.,
i=l

+[Xn—1 _Xn(3_xn /2)_1]2’
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