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Abstract

Generalized linear models (GLMs) are generalization of the
linear regression models, which allow fitting regression models
to response variable that is non normal and follows a general
exponential family. The aim of this study is to encourage and
initiate the application of GLMs to predict the maternal and fetal
blood lead level. The inverse Gaussian distribution with inverse
quadratic link function is considered. Four main effects were
significant in the prediction of the maternal blood lead level
(pica, smoking of mother, dairy products intake of mother,
calcium intake of mother), while in the prediction of the fetal
blood lead level two main effects showed significance (dairy

products intake of mother and hemoglobin of mother).
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1-Introduction

Generalized linear models (GLMs), as the name implies, are
generalizations of the classical linear regression model. The
classical linear model assumes that the mean of the response

variable Y 1is a linear function of a set of predictor variables

(Hardin & Hilbe, 2007), and that the response variable is
continuous and normally distributed with constant variance. As a
matter of fact, in many applications, the response variable is
categorical or consists of counts or is continuous but non normal,
so the ordinary least square method can't be applied to find the
regression models (De Jong & Heller, 2008). Generalized linear
models were introduced by Nelder and Wedderburn in 1972 to
address those limitations. GLMs are a family of models
developed for regression models with non normal response

variable. In the GLMs the mean of the response variable is
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modeled as a monotonic nonlinear transformation of a linear
function of the predictor variables.The inverse of the

transformation g is known as the link function.

Many applications had been done using GLM. (Vidoni, 2003),
(Jiao and Chen, 2004), (Zhukovskaya, 2007).

An example of non normal continuous distribution that has
many applications is the inverse Gaussian distribution. It is
skewed, takes on only positive values, and its variance is a
function of its mean. It is used to model a wide variety of
response variables that can take on only positive values, such as
income, insurance, survival time,...etc. Models with inverse
Gaussian distributed response variables can be models within a
GLM framework.

This paper focused on the application of the GLM to predict
the maternal and fetal blood lead level, in which the inverse
Gaussian distribution with inverse quadratic link function is
considered. This article has the following structure. The second
section contains the description of the exponential family. The
elaboration of the GLMs is presented in the third section. The
used distribution for analyzing and predicting maternal and fetal
blood lead level are considered in the fourth section. In the fifth
and sixth sections the application and its results and the

conclusion were given respectively.
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2- Exponential Family of Distributions

An important concept underlying GLM 1is the exponential
family of distributions. Members of the exponential family of
distributions all have probability density functions for a response
Yy that can be expressed in the form

ye—b(e)}
a(g)

wherea(-),b(-), and C(-)are specific functions. The parameter

f(y.0,0)=c( y,¢)Exp{

0 1is a natural location parameter, and ¢ is often called a
dispersion parameter. The binomial, Poisson, normal, gamma,
and inverse Gaussian distributions are members of this family.

(Myers et al., 2002). Here are some properties of the exponential

family:
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3- Generalized Linear Models

The theory and use of GLMs were introduced by Nelder and
Wedderburn (1972). They were developed to allow us to fit
regression models for univariate response data not normally

distributed. The i1dea of GLMSs is defined in terms of a set of
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independent random variables Yy;,Ys,.....,Y, e€ach with a

distribution from the (1).

There are three components specify a GLM.

1-

The random component consists of a response variable Y
with independent observations (Yi,Ys,......,¥,) from a
distribution in the canonical exponential family.

The  systematic component relates a  vector

(71,75 ,......,m, ) to explanatory variables through a linear

model. Let X; denote the value of predictor k, then

A kK .
77=X',B=,Bo+§1ﬂixi .................. (5)
This linear combination of explanatory variables is called
the linear predictor.
The link function component connects the random and
systematic component. Let g =E(y;),i=1,2,..,n , the

model links g; to 7;, so the link function is

m=0(s) i=12,ih ] (6)

where ¢ is a monotonic differentiable function. The term

link is derived from the fact that the function is the link
between the mean and the linear predictor (Myers et al.,

2002) .The expected response is
E(y;)=0"(n)=0"(XB)i=12,..n ........ )

One way of assessing the adequacy of a model is to compare it

with a more general model with the maximum number of
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parameters that can be estimated. This is called a saturated
model, which is a generalized linear with the same distribution
and same link function as the models of interest. We define a
measure of the fit of the model to the data as twice the difference
between the log likelihoods of the model of interest and the
saturated models. Since this difference is a measure of the
deviation of the model of interest from a perfectly fitting model,

this measure is called the deviance. The deviance, D, is given by
n
D =% 2[y{0(yi)- 0w )}=blO(y i +b{O( )] ... ®)
i=1

In fitting a particular model, we seek the values of the parameters
that minimize the deviance. A good rule of thumb is that the lack
of fit be good when deviance/ (n-p) is less than 1.0 (Myers et al.,
2002).

The maximum likelihood estimates of the parameter £ in the
linear predictor can be obtained by using iterative weighted least
squares (McCullagh & Nelder, 1989).

4- Inverse Gaussian Distribution

The inverse Gaussian distribution is a positively skewed

continuous distribution having two parameters g4 and o 2

Several alternative parameterization appear in the literature. In

our paper we use the following p.d.f.

f(y; 02)_;5( _M o2 >0 (9)
ynua _Gm p 2ﬂ20-2y b ,ﬂ,y
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The mean and variance are E(y)=u , var(y)= o’ ,u3 where

o 2is the dispersion parameter (De Jong and Heller, 2008).

From equation (1), the exponential form is

| y? =21
f(y,0,¢)=c(y,¢)Exp{y = ”} ............. (10)
20
where C(y,¢)=—2 2{l/y+0'2In(2]_[y30'2)} ,
(o2
0=1/2u°,

a(¢)=-0c%,and b(0)=1/ u .
The log likelihood function of (10) may be derived as:

n 2 : 3 2
L = z{yl / Zlui 1/1u| + 1 _ In(2H i o )} (11)
i=1

g 22 y R

The link function is
m =06
=1/ u?
The sign and coefficient value are typically dropped from (12).
(Hardin and Hilbe, 2007).
In GLMs the mean is related to explanatory variables. Thus
the mean varies with the explanatory variables. As the mean

varies, so does the variance, through v(u). So, the variance

function, v( i), is

v(y)z% ................................... (13)
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Now, the v( & )of the inverse Gaussian distribution is

V(,u)=—,u3 ....................................... (14)

Finally, the deviance function, D, is calculated from the

saturated model and the model log-likelihood formulas

D=20'22n:{yi/2yi2_1/ Yi yilzﬂiz_llﬂi}

2 2

i=1  YiHi

5- Application

Great attention has been directed to study maternal and fetal
blood lead levels since pregnant women and young children are
the most sensitive populations to the lead exposure from various
sources.(AL-Mola, 2007).

The data was taken from AL-Mola (2007), which are
representing 350 pregnant women. The obtained data were taken
directly from mothers themselves through questionnaire form. In
this study we have two separated response variables, one for the
maternal blood lead level (MBLL) and the other for the fetal
blood lead level (FBLL). Many predictor variables are taken for

both response variables.
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5-1 Prediction of the Maternal Blood Lead Level
High levels of lead in pregnant women arise from various

affected variables. These explanatory variables are:

X, (residence, 1 for urban and 0 for rural), X, (Pica, 1 for No and
2 for yes), Xj(Physical activity), X,(Chronic disease, 1 for No
and 2 for Yes), Xg(Smoking of mother), X (Smoking of father),

X, (Diary products intake of mother), and Xg (Calcium intake of

mother).

The GLM equation is

YmLL = B. + BiXy + Py Xy + P3Xs + ByXy + PsXs + PeXe + Br X7 + Py Xs
Figure (1) shows that the response variable Y5, has a

distribution with a heavy right tail, and thus an inverse Gaussian

distribution be appropriate. (The value of ;(2=6.893, and

22(0.05, 8) =15.507)
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Figure (1): The histogram of the MBLL variable
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Using the function glm in STATA 10 program, the obtained

results are shown in table (1).

Table (1): The GLM results using inverse Gaussian distribution.

No. of Iteration=6 Scale parameter=0.1111

Residual df = 341 Deviance = 32.656998

AIC =5.523189

Optimization : ML
No. of Observation=350
Log likelihood = -957.55802

Coef. Coef. | Std.Err. t P>‘t‘ 95% Conf. Int.
value

Const. 0.08289 | 0.0608 | 1.36 | 0.173 | -0.036276 0.202
X, -0.00172 | 0.0068 | -0.25| 0.8 -0.015 0.0466
X, 0.03079 | 0.00808 | 3.81 | 0.00 -0.0289 0.007
X3 -0.01095 | 0.00916 | -1.19 | 0.232 -0.0166 0.058
X, 0.02068 0.019 1.08 | 0.278 | -0.00012 0.01715
Xe 0.008515| 0.0044 | 1.93 | 0.05 -0.00641 0.0147
X 0.004158 | 0.0053 | 0.77 | 0.441 0.00562 0.02449
X, 0.01505 | 0.00481 | 3.13 | 0.002 -0.1116 -0.0515
Xg -0.08158 | 0.0153 | -5.32 | 0.000 -0.0362 0.202

The predicted equation is

§vaLL = 0.08289+0.03079, +0.008515x + 0.015X,, — 0.08158x,

From Deviance = 32.656998/( Residual df = 341) the lack of fit
for this equation is good since it equal to 0.0957 < 1. The normal

probability plot of the residuals and the scatter plot between the
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deviance residual and the fitted value are shown in figure (2) and

).
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Figure (2): Normal probability plot Figure (3): Scatter between deviance

of the residuals and fitted value

5-2 Prediction of the Fetal Blood Lead Level

Maternal blood is one of the important sources of the lead
exposure for fetus and infant. There is no apparent maternal -fetal
barrier to lead, therefore fetal blood lead level (FBLL) are nearly
equal to MBLL.(AL-Mola,2007). The explanatory variables are:

X; (smoking of mother), X, (dairy products intake of mother),
X3 (blood pressure of mother), and X, (hemoglobin of mother).

The GLM equation is
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YmeLL = Bo + BiXy + BaXy + B3X3 + PyXy
Figure (4) shows the histogram of the response variable

YegLL » thus an inverse Gaussian distribution be appropriate (The

value of y°=14.9, and y?(0.05, 8) =15.507). Using the function
glm in STATA 10 program, the obtained results are shown in
table (2).
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Figure (4): The histogram of the MBLL variable
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Table (2): The GLM results using inverse Gaussian distribution.

No. of Iteration=4 Scale parameter=0.24708

Residual df = 341 Deviance = 74.37703

AIC =4.56926

Optimization : ML
No. of Observation=350
Log likelihood =-794.7019908

Coef. Coef. Std.Err. t p>‘t‘ 95% Conf. Int.
value

Const. -0.32515 | 0.09569 | -3.40 | 0.001 -0.5127 -0.1376

Xy 0.03269 | 0.0104 | 1.66 | 0.098 | 0-0.00601 0.0623

X, 0.041919 | 0.02707 | 4.03 | 0.000 0.02153 0.0623

Xq -0.04032 | 0.006781 | -1.49 | 0.136 -0.0933 0.01273

X, 0.028646 | 0.09569 | 4.22 | 0.000 | 0.015355 0.0419366

The predicted equation is

YmeLL =—0.325+0.0419x, + 0.0286 X,

From Deviance = 74.37703/( Residual df = 341) the lack of fit
for this equation is good since it equal to 0.281< 1. The normal
probability of the residuals and the scatter plot between the
deviance residual and the fitted value are shown in figure (5) and

(6) respectively.
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Figure (5): Normal probability plot Figure (6): Scatter between deviance
of the residuals and fitted value

6- Conclusion

The generalized linear regression models for predicting
MBLL and FBLL assuming the inverse Gaussian distribution as
the response distribution are considered. From table (1), four
explanatory variables (pica, smoking of mother, dairy products
intake of mother, calcium intake of mother) have shown
significant effects, while from table (2), dairy products intake of
mother and hemoglobin of mother show main effects. The
normal probability plot for the residuals for both response
variables are represented on figure (2) and (5) which show that
the residuals have normal distribution. The scatter plot between
deviance residuals and fitted values for both MBLL and FBLL
are shown in figure (3) and (6), which points out that the variance

1S not constant.
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