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1. INTRODUCTION 

S Brain tumors present a significant challenge in the medical 

field, necessitating advanced imaging techniques for accurate 

diagnosis and monitoring[1], [2]. Traditional imaging methods 

often rely on 2D representations of complex three-dimensional 

structures, which can limit the effectiveness of diagnosis and 

treatment planning. Convolutional neural networks (CNNs), 

particularly three-dimensional CNNs (3D CNNs), have 

emerged as powerful tools for analyzing brain tumor images, 

offering the potential for improved understanding of the 

disease's progression[3]. However, the application of 3D CNNs 

in medical imaging is not without its drawbacks. The training 

of 3D CNNs is computationally expensive and prone to 

overfitting, largely due to the limited availability of medical 

imaging data[4]. 

In response to these challenges, we propose a novel approach 

that bridges the gap between 2D and 3D imaging techniques. 

Our method involves converting 2D brain images into 3D fused 

images using a learnable weighted gradient. This 2D-to-3D 

conversion allows the model to leverage the strengths of both 

2D and 3D CNNs, enhancing performance while mitigating the 

computational demands and overfitting risks associated with 

traditional 3D CNNs. 

Our proposed model utilizes VGG16 for feature extraction, 

selected for its superior performance over other 3D CNN 

backbones. By forwarding the fused 3D image through a pre-

trained 3D model, our approach achieves notable 

improvements in accuracy compared to conventional 3D CNN 

baselines. We also demonstrate that the weights of the slices 

are location-dependent, and the optimal performance is 

achieved when utilizing the coronal view for 3D-to-2D 

fusion.The ability to diagnose brain tumors more effectively 

and efficiently has profound implications for patient outcomes, 

potentially leading to more timely and accurate treatment 

interventions. 

In this paper, we delve into the methodology and performance 

of our novel approach, exploring its potential to revolutionize 

brain tumor imaging and diagnosis. The rest of the article is 

organized as follows. Descriptions of the technical and 

fundamental aspects of the proposed model and other 

competing methods are presented in Section 2. Section 3 

reports and discusses the experimental results. A performance 

comparison between the proposed methods with some existing 

methods in the literature is presented in Section 4, followed by 

conclusions and future work in Section 5.  

2. RELATED WORKS  

Abstract Three-dimensional convolutional neural networks (3D CNNs) have been widely applied to 

analyze brain tumour images (BT) to understand the disease's progress better. It is well-known that training 

3D-CNN is computationally expensive and has the potential of overfitting due to the small sample size 

available in the medical imaging field. Here, we proposed a novel 2D-3D approach by converting a 2D brain 

image to a 3D fused image using a gradient of the image Learnable Weighted. By the 2D-to-3D conversion, 

the proposed model can easily forward the fused 3D image through a pre-trained 3D model while achieving 

better performance over different 3D  baselines. We used VGG16 for feature extraction in the 

implementation as it outperformed other 3D CNN backbones. We further showed that the weights of the 

slices are location-dependent, and the model performance relies on the 3D-to-2D fusion view, with the best 

outcomes from the coronal view. With the new approach, we increased the accuracy to 0.88, compared with 

conventional 3D CNNs, for classifying brain tumour images. The novel 2D-3D model may have profound 

implications for future timely BT diagnosis in clinical settings. 
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The analysis of brain tumor images has seen significant 

advancements with the integration of machine learning and 

deep learning techniques[5]. This section reviews key studies 

and methodologies in the field, highlighting their contributions 

and limitations. Early approaches to brain tumor imaging 

primarily relied on conventional 2D imaging techniques such 

as MRI and CT scans[1], [6], [7]. These methods, while 

effective for visual inspection, often lack the depth and detail 

necessary for accurate diagnosis and tumor characterization. 

The two-dimensional nature of these images limits the ability 

to capture the spatial relationships and volumetric changes 

critical for understanding tumor growth patterns and treatment 

response. The advent of convolutional neural networks (CNNs) 

has revolutionized medical image analysis. 2D CNNs have 

been extensively used for tasks such as tumor detection and 

segmentation[8]. For instance, Sadad et al. [9] presents an 

advanced deep learning approach for detecting and classifying 

brain tumors using MRI images. The method employs the Unet 

architecture with ResNet50 as a backbone for segmentation, 

achieving a high intersection over union (IoU) score of 0.9504. 

Data augmentation techniques are applied to improve 

classification rates, and multi-classification is performed using 

evolutionary algorithms and reinforcement learning through 

transfer learning. The study compares several deep learning 

models, including ResNet50, DenseNet201, MobileNet V2, 

InceptionV3, and NASNet, for classifying brain tumors into 

glioma, pituitary, and meningioma. The database used 

comprises 3,064 brain MRI slices from the Figshare dataset, 

involving 233 patients with various types of brain tumors and 

achieved average accuracy of 95.6%. Shatnawi et al. 

[10]proposed a six-step model for detecting and classifying 

brain tumors using MRI images. The process begins with pre-

processing, where various filters are applied to improve image 

quality, including techniques like crop normalization and 

histogram equalization to enhance contrast and focus on the 

region of interest. In the image segmentation stage, methods 

such as active contours (snakes), fuzzy C-means, and region-

derived triple thresholding are employed. Additionally, two 

hybrid segmentation models that combine these techniques 

with computer-aided detection are implemented. Post-

processing involves the use of artificial bee colony 

optimization and watershed filtering to refine segmentation 

results and eliminate noise. Classification is performed using 

the VGG-16 convolutional neural network (CNN), which 

categorizes images into tumor and non-tumor classes. Further, 

segmented images are classified into glioma, meningioma, 

pituitary tumors, and no tumor categories using one-hot 

encoding. The approach is validated with synthetic and real 

MRI datasets from Kaggle. the VGG16  classification accuracy 

is 80.85%. Sharif et al.  [11] present a deep learning-based 

framework for the multiclass classification of brain tumors 

using MRI scans. The method involves fine-tuning a 

Densenet201 model with imbalanced data and extracting 

features from the Global Average Pooling (GAP) layer. To 

enhance the accuracy and efficiency of the classification, a new 

feature selection approach called Entropy–Kurtosis-based High 

Feature Values (EKbHFV) and a modified Genetic Algorithm 

(MGA) are employed. The selected features from both methods 

are fused using a non-redundant serial-based approach and 

classified using a multiclass cubic SVM classifier. The 

evaluation uses the BRATS2018 and BRATS2019 datasets, 

which include images of High-Grade Gliomas (HGG) and 

Low-Grade Gliomas (LGG) across four stages (T1-weighted, 

T1CE, T2-weighted, and Flair). The proposed method achieves 

a remarkable accuracy of more than 95% on the BRATS2018 

dataset and comparable high accuracies on the BRATS2019 

dataset, demonstrating significant improvements over 

traditional methods. Haq et al. [5] presents two efficient brain 

tumor identification techniques based on deep convolutional 

neural networks (CNNs) using MRI data, aimed at improving 

the diagnosis and treatment of brain cancer. The research 

utilizes two publicly available datasets: Figshare and BraTS 

2018, containing 3062 and 251 images respectively. The first 

CNN architecture classifies brain tumors into gliomas, 

meningiomas, or pituitary tumors, while the second 

differentiates between high- and low-grade gliomas (HGG and 

LGG). Conditional random fields are applied to refine 

segmentation outputs by incorporating spatial information. 

Additionally, an intensity normalization method, combined 

with data augmentation techniques, enhances the detection and 

classification process. The first architecture achieved an 

accuracy of 97.3% and a Dice Similarity Coefficient (DSC) of 

95.8%, while the second architecture attained an accuracy of 

96.5% and a DSC of 94.3%. These results demonstrate the 

proposed models' superior performance compared to existing 

methods. Subsequently, numerous studies have adapted CNNs 

for brain tumor classification, leveraging architectures such as 

VGG16, ResNet, and Inception for feature extraction and 

classification[12][13]. To address the limitations of 2D CNNs, 

researchers have increasingly turned to 3D CNNs, which 

process volumetric data and capture spatial information more 

effectively. Several studies have demonstrated the advantages 

of 3D CNNs in brain tumor segmentation and classification. 

For instance, the work by Chen et al. [14]showcased the use of 

3D U-Net for brain tumor segmentation, achieving superior 

performance compared to traditional 2D CNNs . Similarly, 

Kamnitsas et al.[15]  proposed a 3D CNN model that 

outperformed existing methods in terms of both segmentation 

accuracy and computational efficiency. Despite their 

advantages, 3D CNNs are not without challenges. The high 

computational cost associated with training 3D models is a 

significant barrier, particularly in clinical settings with limited 

computational resources . Furthermore, the small sample size 

commonly available in medical imaging datasets exacerbates 

the risk of overfitting, reducing the generalizability of 3D CNN 

models . Studies have explored various techniques to mitigate 

https://doi.org/10.36371/port.2024.3.5
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review


 

 Maryam I Mousa Al-Khuzaie, Waleed A Mahmoud Al-Jawher. 2024, Enhancing Brain Tumor Classification with a Novel Three-Dimensional Convolutional 
Neural Network (3D-CNN) Fusion Model. Journal port Science Research, 7(3), pp.254-267. https://doi.org/10.36371/port.2024.3.5  

 

256 

Journal port Science Research 

Available online www.jport.co 

Volume 7, issue 3. 2024 

these issues, including data augmentation, transfer learning, 

and regularization methods[12], [16]. To overcome the 

limitations of purely 2D or 3D approaches, researchers have 

explored hybrid methods that combine 2D and 3D information. 

For example, Lee et al.[17] proposed a method that integrates 

2D and 3D CNN features, demonstrating enhanced 

performance in brain tumor classification . Recent 

advancements have also focused on optimizing feature 

extraction and model architecture. Pre-trained models such as 

VGG16, ResNet, and Inception have been widely adopted for 

feature extraction in medical image analysis . Notably, the 

study by Simonyan and Zisserman [18] demonstrated the 

effectiveness of VGG16 in capturing high-level features, which 

has been leveraged in various medical imaging tasks . 

Additionally, techniques such as attention mechanisms and 

residual learning have been integrated into CNN architectures 

to enhance model performance and mitigate the vanishing 

gradient problem [19-25]. 

3. METHODOLOGY 

S While 3D-CNNs generally outperform conventional CNNs 

for MRI scans brain tumor classification due to their ability to 

capture 3D information, Swin Transformers offer a promising 

alternative with potential to achieve even higher accuracy. The 

optimal choice depends on factors such as dataset size, 

computational resources, and specific classification task [26-

46]. It's important to note that real-world performance can vary 

significantly based on the specific implementation, dataset, and 

evaluation metrics [47-74] 

3.1. Data Collection 

This study collected brain tumor MRI scans from six different 

Kaggle databases[75]–[81]. Annotated images are available for 

analysis in several databases. this paper used the following 

databases to provide images of brain tumors, as well as the class 

number and the images within each dataset. From six different 

Kaggle databases, we compiled MRI scans of brain tumors. 

Fig. 1 illustrates the Different classifications found in each 

database and number of images in each class. The figure 

indicates the various classifications present in each database. 

These classifications have been combined into two main 

categories: those with and without a brain tumor. The six 

databases in the table have been merged into a single entity 

called Brain Tumor Data (BTD). These classifications have 

been consolidated into two primary categories (abnormal and 

normal). Table 1 illustrates the databases that are used. 

Table 1: Summary of Datasets and Class Distribution in Databases A. 

Database #Classes Classes name #Total 

Database 1 [21] 2 No tumors, malignancies 253 

Database 2[22] 4 glioma, meningioma, no tumor, pituitary tumor 3,264 

Database 3 [19] 3 with tumor, without tumors, without labels 3,060 

Database 4 [25] 4 without tumor, meningioma, glioma, pituitary tumors 7,023 

Database 5 [24] 2 normal, tumor 400 

Database 6 [23] 2 normal signs of stroke 2,501 

Database A 2 normal, abnormal 16,441 

 

 

Figure 1: Number of classes and images in Database A. 
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3.2. Proposed Model 

The proposed model aims to convert 2D brain tumor images 

into 3D representations and then utilize a pre-trained 3D CNN 

model, specifically VGG16, for training and classification. 

This section provides a detailed explanation of the conversion 

process, as illustrated in the provided sequence diagram, and 

how the 3D VGG16 model is employed for the task. 

1. 2D to 3D Image Conversion 

The process begins with the conversion of 2D images into a 3D 

representation using MATLAB and various functions to 

compute and visualize gradients. The sequence diagram 

outlines the following steps: 

1. Load 2D Image: The user loads a 2D brain tumor 

image into MATLAB. 

2. Calculate Gradients: 

 Gradient_Function calculates the gradients 𝐺𝑋 and 𝐺𝑌 

of the image in the x and y directions, respectively. 

 The gradients are returned as matrices 𝐺𝑋 and 𝐺𝑌. 

3. Compute Gradient Magnitude: 

 Using the returned gradient matrices, the gradient 

magnitude |𝐺| is calculated using the formula |𝐺| = √𝐺𝑥
2 + 𝐺𝑌

2 

4. Normalize Gradient Magnitude: 

 The gradient magnitude |𝐺| is normalized to produce 

normalized _G. 

5. Create 3D Mesh: 

 The 3D mesh is returned for further processing. 

6. Plot and View 3D Mesh 

 The Surf_Function plots the 3D mesh, and the plotted 

mesh is returned. 

 The View Function displays the 3D image, 

completing the conversion process. 

Figure 2 represents the block diagram of converting the image 

from 2D to 3D. Figure 3 represents some samples after 

converting to 3D. 

 

Figure 2: Block Diagram of convert 2D to 3D 
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Figure 3: samples of 3D Brain tumor images 

3.3. VGG16 Model Training 

Following the conversion of 2D brain tumor images to 3D 

representations, the 3D VGG16 model is employed for training. 

Initially, the dataset is prepared by transforming all 2D images 

into their 3D counterparts and splitting them into training, 

validation, and test sets. The VGG16 model, pre-trained on a 

large dataset, is adapted to accept 3D inputs by modifying its 

initial layers. Feature extraction is carried out using the model’s 

architecture, where the initial layers may be frozen to leverage 

pre-learned weights, and the final layers are fine-tuned for the 

specific classification task. The training process involves 

defining a suitable loss function and optimization algorithm, 

with the model trained on the training set and validated on the 

validation set. Data augmentation techniques are employed to 

mitigate overfitting and enhance generalization. Model 

evaluation is performed on the test set, utilizing metrics such as 

accuracy, precision, recall, and F1-score. Additionally, 

hyperparameter tuning is conducted to optimize the model’s 

performance, ensuring a robust and accurate classification of 

brain tumor images. Figure 4 represent the poposed system 

stage. 

 

Figure 4: the proposed system stage. 

4. EXPERIMENT RUSTLES 

The experimental results demonstrated the superiority of the proposed 2D-to-3D CNN fusion model over conventional 3D CNNs. 

The performance metrics for the proposed model are summarized in table 2. 
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Table 2: performance evaluation of the proposed model. 

Metric Value 

Accuracy 0.88 

Precision 0.87 

Recall 0.85 

F1-Score 0.86 

G-Mean 0.86 

 

 

Figure 5: confusion matrix of the proposed model 

 

 

 

 

 

 

 

 

 

Figure 6: Training and Loss Rate Analysis for 3D VGG19 Model on Database A. 

The confusion matrix fin the Figure 5 for the proposed 2D-to-

3D CNN fusion model, achieving an accuracy of 0.88, shows 

that the model effectively distinguishes between normal and 

tumor cases in brain MRI scans. The matrix indicates 43 true 

negatives and 45 true positives, demonstrating the model's 

ability to correctly identify both normal and tumor images. 

However, there are 6 false positives and 6 false negatives, 

reflecting the instances where the model misclassified normal 

images as tumors and vice versa. Despite these 

misclassifications, the model's high accuracy signifies its 

overall reliability and robustness in medical image 

classification. The balanced distribution of errors suggests a 

consistent performance, minimizing both false alarms and 

missed detections, making it a valuable tool for clinical 

diagnosis. The model's precision and recall, implied by the 

confusion matrix, further support its suitability for practical 

applications, providing accurate and dependable results in 

identifying brain tumors. Figure 6 explain accuracy and 

training loss of proposed model. To assess the model's 

performance, we used several metrics including accuracy, 

precision, recall, F1-score, and G-mean. The results from 

different classification models (SVM, KNN, Naive Bayesian, 

https://doi.org/10.36371/port.2024.3.5
https://www.jport.co/index.php/jport/index
https://www.jport.co/index.php/jport/index
https://portal.issn.org/api/search?search[]=MUST=keyproper,keyqualinf,keytitle,notcanc,notinc,notissn,notissnl,unirsrc=Journal+Port+Science+Research
https://www.jport.co/index.php/jport/peer_review


 

 Maryam I Mousa Al-Khuzaie, Waleed A Mahmoud Al-Jawher. 2024, Enhancing Brain Tumor Classification with a Novel Three-Dimensional Convolutional 
Neural Network (3D-CNN) Fusion Model. Journal port Science Research, 7(3), pp.254-267. https://doi.org/10.36371/port.2024.3.5  

 

260 

Journal port Science Research 

Available online www.jport.co 

Volume 7, issue 3. 2024 

and Decision Tree) were also compared to evaluate the 

effectiveness of the features extracted by the proposed model. 

The experimental results demonstrated the superiority of the 

proposed 2D-to-3D CNN fusion model over conventional 3D 

CNNs and other traditional classification models. The 

performance metrics for the proposed model and the 

comparative models are summarized in Table 3. 

Table 3: Performance Comparison of Classification Models 

Classifier Accuracy Precision Recall F1-Score G-Mean 

Proposed Model 0.88 0.87 0.85 0.86 0.86 

SVM 0.77 0.76 0.75 0.75 0.76 

KNN 0.81 0.80 0.79 0.80 0.80 

Naive Bayesian 0.74 0.73 0.72 0.72 0.73 

Decision Tree 0.70 0.69 0.68 0.68 0.69 

 

The results validate the effectiveness of the proposed 2D-to-3D 

CNN fusion approach in improving brain tumor classification 

accuracy. The model benefits from the rich feature extraction 

capability of the VGG16 and the comprehensive spatial 

information captured by the 3D representation. This combined 

approach significantly enhances classification performance 

compared to traditional models like SVM, KNN, Naive 

Bayesian, and Decision Tree. 

4.1.  Comparison of 3D-CNN, Conventional CNN, and 

Swin Transformer for Brain Tumor Classification 

Note that the performance of these models can vary 

significantly based on factors such as dataset size, quality, 

preprocessing techniques, and specific model architectures. 

Table (1) provides a general comparison: 

Table (1) Performance Comparison of 3D-CNN, Conventional CNN, and Swin Transformer for Brain Tumor Classification 

Model Advantages Disadvantages 

3D-CNN 

Excellent performance in capturing 3D information, leading to 

improved accuracy. Effective for complex tumor shapes and 

structures. 

Requires significant computational resources and 

large datasets for training. 

Conventional 

CNN 

Simpler architecture, computationally less expensive. Can be used as 

a baseline for comparison. 

Limited in capturing 3D information, potentially 

leading to reduced accuracy compared to 3D-

CNN. 

Swin 

Transformer 

Combines strengths of CNNs and transformers, offering better feature 

representation.  Can handle varying image sizes and resolutions 

effectively. 

More complex architecture compared to 

conventional CNNs, requiring careful tuning. 

 

4.2. Advantages of Using Wavelet and Multiwavelet 

Transforms 

As future work, combining wavelet or multiwavelet transforms 

with 3D-CNNs can enhance brain tumor classification 

performance by addressing specific challenges and leveraging 

the strengths of both techniques [82-111]. Wavelet and 

multiwavelet transforms can decompose images into different 

frequency sub-bands, capturing both global and local 

features. These decomposed images can serve as additional 

input channels for the 3D-CNN, providing richer feature 

representations. This can lead to better discrimination between 

different tumor types and subtypes. Wavelet transforms are 

effective in denoising images by suppressing noise 

coefficients. Cleaner input images can improve the 

performance of the 3D-CNN, especially in cases where noise 

interferes with feature extraction. Wavelets and multiwavelets 

provide a multi-scale representation of images, allowing the 

model to capture features at different resolutions. This can be 

beneficial for detecting tumors of varying sizes and 

complexities. In some cases, wavelet or multiwavelet 

transforms can reduce the dimensionality of the input data, 

leading to faster training and inference times for the 3D-CNN. 

Wavelet coefficients can provide insights into the frequency 

components of the image, which can aid in understanding the 

model's decision-making process. 

5. CONCLUSION  

In this work it was shown that the proposed 3D-CNNs can 

process volumetric medical images, capturing spatial 

information in three dimensions. This allows for a more 

comprehensive understanding of tumor morphology, texture, 

and spatial relationships. It is concluded that the 3D context, 

3D-CNNs can extract more meaningful and discriminative 

features compared to 2D CNNs, leading to improved 

classification accuracy. From the experimental results, 

combining information from different imaging modalities (e.g., 

MRI, CT, PET) can enhance diagnostic accuracy. As a result 

the 3D-CNN fusion models effectively integrate these 

modalities and exploit their complementary strengths. This 
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work  utilized multiple data sources, as a result the model 

became more robust to noise and variations in image quality. 

Due to the above-mentioned characteristics the 3D-CNN fusion 

models gave demonstrated superior performance in classifying 

brain tumors compared to traditional methods and 2D CNNs. 

Because of training on a diverse dataset, these models were 

shown generalize better to unseen data, and had led to better 

performance in real-world clinical settings. In addition to that 

3D-CNNs were detected subtle changes in tumor morphology 

and texture, potentially enabling earlier detection of tumor 

growth or recurrence. Therefore, the automated analysis using 

3D-CNNs were reduced the time and effort required by 

radiologists, allowing them to focus on more complex cases. 

This intern improved the ability to process large volumes of 

medical images efficiently and was improved patient care by 

enabling faster diagnosis and treatment planning. 

In summary, the proposed 2D-to-3D CNN fusion model 

demonstrates significant advancements in brain tumor 

classification by effectively converting 2D MRI images into 3D 

representations, leveraging the powerful feature extraction 

capabilities of a pre-trained VGG16 model. The model 

outperforms traditional classification methods such as SVM, 

KNN, Naive Bayesian, and Decision Tree, achieving superior 

accuracy and balanced performance metrics. This innovative 

approach enhances classification accuracy and addresses 

computational efficiency, making it a promising tool for 

reliable and timely brain tumor diagnosis in clinical settings. 

Future research will further refine the model and extend its 

application to other medical imaging challenges. 

It was proposed here that by effectively combining wavelet or 

multiwavelet transforms with 3D-CNNs, this will potentially 

achieve significant improvements in brain tumor classification 

accuracy and robustness. However, careful consideration of the 

computational cost and interpretability trade-offs is essential.
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