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A Proposed Technique for the Problem of Selecting 
the  best Forecasting Model in Time Series: A Case 

Study 
 

 Thafer R. Muttar* 
ABSTRACT : 
            Forecasting is considered as one of the essential goals 
regarding time series analysis, and forecasting accuracy 
decreases the risk possibility regarding decision making. Whereat 
the best model to represent the time series data, might not be the 
same model used for forecasting. The forecasting evaluation 
criterion used such as RMSE, MAPE, and MAE provides almost 
different results concerning one time series, which confuse the 
researcher to select the best model for forecasting. Therefore this 
research deals with the problems of criterion differences results, 
that affects the evaluation performance to select the best model, 
and providing a statistical manner that employs the forecasting 
criterion results that are mentioned as a weighted mean for each 
model of ARIMA which is considered as a candidate model with 
the least weighted mean that provides the best forecasting 
performance. This has been applied on the monthly time series 
for the water of the Tigris River (M-cu-m) that enters  Mosul 
City for the period 1963-1995. Meanwhile Box-Jenkins model 
shows SARIMA (1,1,2) * (3,1,1) 12Very encouraging forecasting 
results depending on the suggested manner compared with the 
rest of models, meanwhile the best model for representing the 
data is SARIMA (1,1,2) * (0,1,1) 12

  . 

 

 :اسلوب مقترح لمسالة اختيار افضل نموذج تكهن في السلاسل الزمنية
 حالة دراسية 

 الملخص
 

 التكهن أحد الأهداف الأساسية المتعلقة بتحليل السلاسل الزمنيـة ،وان دقـة      يعد

ان النموذج الأفضل لتمثيل بيانات السلسـلة       . التكهن تقلل المخاطر لدى متخذ القرار     

 أن معايير تقيـيم  اداء  بما، و نفسهلنموذج المستخدم للتكهن غالبا الايكون الزمنية 
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 تقـدم   , MAE MAPE, RMSE التكهن المستخدمة في السلاسل الزمنية مثـل 

يربـك   غالبا نتائج مختلفة للسلسلة الزمنية الواحدة باختلاف النماذج فأن هـذا ممـا  

تعامل مع اشكالية   الباحث في اختيار النموذج الأفضل للتكهن ، لذا فان هذا  البحث ي            

الـى  تناقض نتائج معايير تقييم اداء التكهن في ترشيحها للنموذج الأفضل ويهـدف             

تقديم اسلوب احصائي يعمل على توظيف نتائج معايير التكهن المـذكورة كوسـط             

 التي يتم ترشيحها ومن ثم اختيار النموذج        ARIMAموزون لكل نموذج من نماذج      

لقد تم التطبيق على    .  يقدم افضل اداء للتكهن      فهوصالذي يمتلك أقل وسط موزون ب     

 الداخلة الـى    )مليون متر مكعب   (السلسلة الزمنية الشهرية لمنسوب مياه نهر دجلة      

 وقد اظهـر نمـوذج بـوكس جنكنـز       1995 -1963مدينة الموصل للفترة من 

SARIMA (1,1,2) * (3,1,1) 12    نتائج مشجعة جدا في التكهن اعتمـادا علـى

المقترح مقارنة ببقية النماذج ، في حين ان النمـوذج الأفضـل لتمثيـل              الاسلوب  

 . SARIMA(1,1,2) * (0,1,1) 12البيانات هو 
1. Introduction 

Forecasting a time series is a common problem in many 
domains of science (electricity, hydrology, etc.), and has been 
addressed for a long time by statisticians ( Lendasse et al.,2000). 

Forecasting a hydrologic time series has been one of the 
most complicated tasks owing to the wide range of data , the 
uncertainties in the parameters influencing the time series and 
also due to the non availability of adequate data ,thus  the 
development and use of stochastic models of hydrological 
phenomena play an important role in water resources 
engineering, including their use to forecast river flows. The 
choice of the right model for a given hydrological series is an 
important aspect of the modeling process (Mujumdar & Nagesh 
Kumar , 1990;Kumar et.al.2004).Thus, forecasting will be 
essentially part in time series. 
 

The challenge of predicting future values of a time series 
spans a variety of disciplines. The multiplicity of techniques 
developed to make predictions manifests a heritage from biology, 
computer sciences, economics, engineering, mathematics, 
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physics, statistics, and other areas. These methods find 
applications in such diverse data sets as animal populations, 
equity market prices, disease control, meteorological 
measurements, astronomic observations, and others (Pomares & 
Rojas, ,2004). 
              
2.Box – Jenkins Analysis 

Traditionally, time series analysis is defined as a branch of 
statistics that generally deals with the structural dependencies 
between the observation data of random phenomena and the 
related parameters. The observed phenomena are indexed by time 
as the only parameter; therefore, the name time series is used 
(Ajoy & Dobrivoje ,2005). 

The primary objective of time series modeling is to study 
techniques and measures for drawing inferences from past data. 
It accounts for the fact that data points taken through time may 
have an underlying structure (such as autocorrelation, trend or 
seasonal variation) and this structure will persist over time. The 
approach consists of establishing mathematical models to 
represent the data set. Then, the models can be employed to 
describe and analyze the sample data, and make forecasts for the 
future. The main advantage of time series models is that they can 
handle any persistent patterns in data (Abdullah & Tayfur ,2004). 
In statistics, two basic mathematical system models are used: 
*deterministic models, mathematically viewed as analytical 
models represented  by  deterministic relations like xt=f(t)  or the 
succession of values in a time series is usually influenced by 
some external (or exogenous) information. If this information is 
not known, only the past values of the series itself can be used to 
build a model, i.e. a mathematical function of the form 
recurrence equations like 
 

(1) ...),x,(xfx 1-tt1t Kθ+ =
 
where an unknown new value xt+1 is estimated from the known 
current and past values of x . The parameters θ of the model 
θf are chosen according to the information available, i.e. to all 

known values of x ; this step if called learning or fitting, most 
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widely known prediction tools use linear models θf , sometimes 
other information is available, in this case, it is a good idea to use 
this external information in the model, usually in the form  
 

(2) ...)y,,y,y,x,,x,(xfx p
t

2
t

1
t1Nt1-tt1t KK +−θ+ =

 
where the values at time t of p external (exogenous) variables are 
used in the model ( Lendasse et al.,2000). 
*stochastic  models, statistically viewed as functions of random 
variables, mathematical models used of time series analysis are 
generally (regression models, time-domain models such as 
transfer functions models and state-space models, frequency 
models )       ( Lendasse et al.,2000;Ajoy & Dobrivoje ,2005). 
   

The Box-Jenkins variant of the ARMA model is 
predestinated for applications to nonstationary time series that 
become stationary after their differencing. Differencing is an 
operation by which a new time series is built by taking the 
successive differences of successive values, such as x(t) – x(t-1) 
along the nonstationary time series pattern. In the acronym 
ARIMA, the letter I stands for integrated. The widely accepted 
convention for defining the structure of ARIMA models is 
ARIMA(p, q, d), where p stands for the number of autoregressive 
parameters, q is the number of moving-average parameters, and d 
is the number of differencing passes (Ajoy & Dobrivoje ,2005).  
    
         The basic concepts necessary to study the time dependent 
dynamics of random phenomena  are called random signals, 
stochastic processes, or random time series. The emphasis here is 
on random dynamics which are stationary, that is governed by 
underlying statistical mechanisms that do not change in time 
(Wojbor,2006).A time series is said to be stationary, if its 
statistical properties remain constant over time, i.e., its mean is 
independent of time and its autocorrelation function is 
independent of time for each lag. The autocorrelation function 
provides valuable information about how much successive values 
in a time series depends on each other. It can be thought of an 
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indication of change in one observation if there is a change in the 
other. In addition, it plays an important role in forecasting future 
values based on the present and past values. Box and Jenkins 
(1976) provides a methodology for fitting a model to an 
empirical data set. The systematic approach identifies a class of 
models appropriate for empirical data sequence at hand and 
estimates its parameters. A general class of Box and Jenkins 
models include ARIMA models that can model a large class of 
autocorrelation functions (Box and Jenkins 1976, Brockwell & 
Davis 2002),The model is a combination of auto regressive (AR) 
and moving-average (MA) models for differenced data. An AR 
model is simply a regression of the current observation to the 
previous ones. Formally,                  if {xt }, t = 0, 1, 2, . . . are the 
values of observations recorded at time t , then  
 

)3...(z x  . . . x  x  x tp-tp2-t21-t1t +ϕ++ϕ+ϕ=
 
 
is called an AR process of order p where zt is a white noise 
process with mean 0 and variance 2σ and s,ϕ  are finite weight 
parameters. On the other hand, an MA model is a regression of 
the current value against the previous white noise, i.e., 
 

)4...(z   . . . z  z  x q-tq1-t1tt θ++θ+=
 
 

where s,θ  are constants. Then, {xt } is an ARMA(p,q) process,if 
{xt} is stationary and if for every t, 
 

)5...(z   . . . z  z x  . . . x  x -x q-tq1-t1tp-tp2-t21-t1t θ++θ+=ϕ++ϕ+ϕ  
The process {xt}  is said to be an ARMA(p,q) process with mean 
µ, if {xt−µ}, deviations from the mean, is an ARMA(p,q) 
process. Finally, the integrated ARMA model, ARIMA(p,d,q), is 
an ARMA(p,q) model to the d times differenced data. 
Differencing is a tool in order to remove trend and seasonality 
from the empirical data. (Abdullah & Tayfur,2004).  
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 There are three steps in ARMA modeling: (Jack & John,1997) 
1. Check the series for stationarity , and, if necessary, transform 

the series to induce stationarity. 
2. From the autocorrelation properties of the transformed series 

choose a few ARMA specifications for estimation and testing 
in order to arrive at a preferred specification with white noise 
residuals. 

3. Calculate forecast over a relevant time horizon from the  
preferred specification. 

 
Last chatfield(1995) provide the difference between terms 
predication and forecasting ,'' where some authors using terms 
'prediction' and 'forecasting' interchangeably , but some authors 
do not, for example Brown (1963) uses 'prediction' to describe 
subjective methods and 'forecasting' to describe objective 
methods, whereas Brass (1974) uses 'forecast' to mean any kind 
of looking into the future, and 'prediction' to denote a systematic 
procedure for doing so. Prediction is closely related to control 
problems in many situation''.  
 
3. Model Selection 
 

The problem of model selection is an important one in 
time series analysis as there are infinitely many possible 
models and the choice of a wrong model may result in a costly 
decision (Mujumdar & Kumar, 1990). 
Several criteria proposed for selecting time series models such as 

(A) the Akaike information criterion (AIC), nLn(S/n)+2p; 
(B) the Bayesian information criterion 

(BIC),nLn(S/n)+p+pLn(n); 
where p denotes the number of parameters fitted in the model and 
n denotes the number of effective observations used in fitting the 
model , 
the residuals sum of squares ,S, can only become smaller and the 
residual standard deviations aσ̂  will tend to become smaller as a 
model is made 'larger'. Thus the minimization of a criterion such 
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as the AIC or BIC is more satisfactory for choosing a 'best' model 
from candidate models having different numbers of parameters. 
Strictly speaking (a) and (b) above are approximations to the 
variable part of the AIC and BIC respectively. In both cases the 
first term is a measure of (Lack of) fit and the remainder is a 
penalty term to prevent overfitting. The BIC penalizes extra 
parameters more severely than the AIC dose, leading to ' smaller' 
models. Several similar criterion have been proposed including 
alternative closely related Bayesian criterion which depend on 
different priors on model size. In particular Schwarz's Bayesian 
criterion (SBC) has the penalty term pln(n) rather than p+pLn(n).   
 (see Chatfield and Faraway,1998) 
 
Mujumdar and Nagesh Kumar (1990) gives flaws in the AIC 
rule. Firstly, the AIC has no optimal property, i.e. it does not 
minimize the average value of any criterion function. Secondly, 
the AIC rule is not consistent, i.e. the probability that the 
decision rule will choose a wrong model does not go to zero 
even when the number of observations tends to infinity. Also, 
Pena (2001) displays the problem with AIC=1-2(Log maximum 
likelihood)+2(number of parameters) is that tends to overestimate 
the number of parameters, even asymptotically, where in the 
BIC=-2(Log maximum likelihood)+(Log n)(number of 
parameters)   criterion, the penalty for introducing new 
parameters is greater than AIC, so the BIC tends to select simpler 
models than those chosen by AIC. The difference between both 
criterion can be very large if n is large. 
 
Chatfield and Faraway (1998) recommended to use bias-
corrected version of the AIC (AICc), as recommended by 
Brockwell and Davis (1993), which is obtained by adding 
2(p+1)(p+2)/(n-p-2) to the AIC .This makes little difference for 
small values of p but, for larger values of p , penalizes extra 
parameters (much) more severely than the AIC.     
used only BIC and (AICc) criterions for selecting best model in 
this paper.  
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4. Forecasting Performance 

To evaluate the forecast performance of model (see 
Liu,2006) ,it is common to reserve a small portion of the data at 
the end of a time series solely for forecast comparison. The data 
used for such a purpose are referred to as hold out sample or 
post-sample , and in principle are not used in model identification 
or estimation when evaluating forecast performance. A number 
of criteria are available for the computation of forecast 
performance, including Root Mean Squared error (RMSE) , 
Mean Absolute Percent Error(MAPE), and Mean Absolute Error( 
MAE or (MAD) as defined below. 
Root Mean Squared Error  
 

...(6) )x̂x(
m
1RMSE

m

1t

2
tt∑

=
−=

Mean Absolute Percent Error 
 

...(7)%100
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x̂x
m
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Mean Absolute Error ( also known as mean absolute deviation) 
 

...(8)x̂x
m
1MAE

m

1t
tt ⎥
⎦

⎤
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⎣

⎡
−= ∑

=

 
Where xt  is the actual observation at time t , tx̂   is the forecast 
value of  xt  based on a particular model or method , and m is the 
total number of observations in the post-sample period. Typically 
m is small in comparison to the total length of a time series. 

 
The definition of RMSE is similar to that of the residual 

standard error aσ̂ of the estimated model. Assuming that the 
estimated model is representative of the forecasting period, the 
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post-sample RMSE should be consonant with the residual 
standard error. When the post-sample RMSE is much larger than 

aσ̂ , it signifies that the model may not be appropriate for 
forecasting. The RMSE statistic is a measure expressed in the 
same scale as xt   making it directly comparable to xt . Because of 
this property, care should be taken when trying to compare the 
post-sample RMSE of different time series. 

 
The MAPE criterion is easy to understand and convenient 

for communication. It has the nice property of being scale 
independent. Therefore, MAPE is often used when there is a 
need to compare forecast across different time series. Even 
though it is frequently used, it has a number of pitfalls. Since the 
forecast error is divided by the actual observation xt  in the 
computation of MAPE, a larger xt will automatically decrease 
MAPE suggesting better forecast performance and a smaller xt  
will automatically increase MAPE suggesting poorer forecast 
performance , regardless of the model . this implies that MAPE is 
not a good criterion to use for time series such as the S& P500 
daily return( due to the fact that some sx ,

t  are small and some 
are zero or negative), the monthly mortgage rate ( due to 
downward drift of the series),and the monthly airline passenger 
series( due to high variability in different months of a year). It 
may make sense if it is used to evaluate the forecast performance 
of the U.S. population series or time series with similar nature. In 
this case , however , we would expect that the accuracy of a 
forecasting model or method would improve over the year simply 
due to the increase of xt . Close attention must be paid when 
MAPE is used as a criterion for forecasting comparison. 
To avoid the pitfalls of MAPE, the simpler MAE criterion shown 
above may be considered . Brown (1962) shows that the MAE is 
approximately 1.25 RMSE. Therefore, MAE and RMSE are 
related measures. The MAE criterion is useful whenever the loss 
associated with an error increases linearly. The RMSE criterion, 
on the other hand, is appropriate when the loss associated with an 
error increases at a quadratic rate or proportionately 
to 2

tt )x̂x( − .  
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It is obvious that any  researcher does not depend  
completely upon any criterion from criterions above ,so we 
present in the next section mathematical manner depend on 
employ the results of three  criterions to determine the model 
which has best forecast performance, and here we monition this 
model will not necessary it is the same model to representation 
the model.. 
 
5. Proposal Manner 
            As we mentioned in the pervious section, the criterions of 
evaluation the forecast performance (RMSE,MAPE and MAE) 
suffer problems and constraints at uses. The decision making to 
select best forecast performance upon one criterion may not lead 
to this target since every  criterion indicates the selection 
different model, so we present proposal statistical manner  which 
depends on the employ of  the results of RMSE,MAPE and MAE 
criterions in weighted mean calculate to each model in candidate 
models. The idea of  a weighted mean was inspired from 
Program Evaluation and Review Technique (PERT) which deals 
with optimistic, most likely and pessimistic time in network 
analysis/operation research(Hillier and Lieberman(2001)). This 
technique gives only four weights to most likely time ,here we 
give four weights in combination form to each criterion to arrive 
at a model which present best forecast performance that has 
minimum weighted mean , as follows: 
 
weighted mean =(RMSE +4 MAPE+MAP)/6                                 …(9) 
 
                        =(4RMSE + MAPE+MAP)/6                                 …(10) 
 
                        =(RMSE + MAPE+4MAP)/6                                 …(11) 
 
This form of  weighted mean will be expected achieve the same 
result . Vandaele (1983) indicates that the best model for 
representing the data may give poor forecasting, the same remark 
is given by Chatfield and Faraway(1998) about models in neural 
networks, therefore, the best model in performance forecasting 
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upon weighted mean is not necessarily the same to represent the 
data .  
 
 6. Application 
 

The time series used in this paper is the monthly totals 
flow of Tigris River which  entered  Mosul City for the period 
1963-1995(Suleiman (2008)). We used the data from the period 
1963-1994 to estimate the model and the months of 1995, Table 
1 below gives the monthly mean and standard deviation of  Tigris 
River where it enter Mosul City for the  period 1963-1994. 
 
 
Table 1. Results for monthly mean and standard deviation of 
Tigris River  where it enter Mosul City for the  period 1963-1994  
 

month Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. 
Mean 

(M-cu-m) 1541 1875 3217 4784 4182 1690 723.2 421.9 357.2 503.4 873 1403 

S.D. 966 868 1531 1882 2162 733 272.9 140.5 106.5 151.5 439.4 1014 

 
Fig.1 shows that the data have a downward trend together 

with seasonal behavior which gives the so-called multiplicative 
seasonality and this will reflex  the complex nature of the 
hydrological series, the behavior of this series will generally be 
like this series that analyses of air line passengers by Chatfield 
and Faraway(1998), the standard Box-Jenkins analysis  that 
satisfactory transformation to this type of seasonality takes  
natural logarithms to transform the behavior of seasonality from 
multiplicative to additive, also we take the sequentially and  
seasonality difference of order one to make the series stationary . 
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Fig.1.Flow Tigris River when it enter to Mosul City  from January 

1963 to December 1995 :(a) raw data ;(b)Trend analysis ;(c) 
natural logarithms ;(d)stationary. 
Through Fig.2. that shows sample autocorrelation function 

and sample partial autocorrelation function of stationary series 
we expect the seasonal autoregressive integrated moving average 
(SARIMA) model, of order 12(5,1,1)(3,1,2)× to be fitted as 
initially chosen. 
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Fig .2. Stationary time series of Tigris River Flow: (a) ACF of 
the series ; (b) PACF of the series 
 

The model diagnostic check includes checking the model 
sensitivity to the characteristics of the input data, for this Box 
and Jenkins proposed the overfitting procedure , which in starting 
with a high order model, if the previous model is already 
overfitted, order models, the dimensions of which are reduced 
and repeatedly checked against overfitting (Ajoy & 
Dobrivoje,2005). Following this manner to checking overfitting, 
Table 2. shows eleven candidate models of the seasonal 
autoregressive integrated moving average with Schwarz 
Bayesian criterion (SBC), also bias corrected version of the 
Akaike information criterion which denotes (AICc)  
 
 
 
 
 
 
 
 
 

Lag

A
ut

oc
or

re
la

ti
on

60544842363024181261

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

ACF of Residuals for 1963-1994
(with 5% significance limits for the autocorrelations)

 
(a) 

Lag

Pa
rt

ia
l A

ut
oc

or
re

la
ti

on

60544842363024181261

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

PACF of Residuals for 1963-1994
(with 5% significance limits for the partial autocorrelations)

 
(b) 



   A proposed Technique for the Problem… ______________ ]14[

Table 2. Results for various SARIMA models 
 model SBC AICc 

1 12(5,1,1)(3,1,2)× 277.06636 231.09154 
2 12(5,1,1)(2,1,2)× 271.17036 228.96365 
3 12(5,1,1)(1,1,2)× 265.77808 227.35144 
4 12(5,1,1)(0,1,2)× 282.20356 247.56886 
5 12(4,1,1)(1,1,2)× 261.16785 226.53341 
6 12(3,1,1)(1,1,2)× 288.61568 257.78467 
7 12(2,1,1)(1,1,2)× 251.68925 224.67363 
8 12(1,1,1)(1,1,2)× 245.89864 222.70997 
9 12(1,1,1)(0,1,2)× 263.19018 243.83994 
10 12(0,1,1)(0,1,2)× 258.13623 242.6358 
11 12(0,1,1)(1,1,2)× 240.30127* 220.95103* 

(*)minimum value 
 
From the above table we choose model SARIMA 

12(0,1,1)(1,1,2)× to represent the data of series depending on 
SBC, AICc criterions and access the diagnostic checking (ACF 
and PACF of the residuals and Box-peries test)  as shown below  
 

 
Final Estimates of Parameters 
Type   Coef      SE Coef   t-value  P-value 
AR 1  0.6337     0.0530  11.95  0.000 
MA1  0.8364     0.0563  14.85  0.000 
MA 2  0.1134     0.0484  2.34  0.020 
SMA 12 0.9114     0.0307  29.69  0.000 
Constant 0.00007   0.0002376 0.31  0.759 
Modified Box-Pierce (Ljung-Box) Chi-Square statistic 
Lag   12  24  36  48 
Chi-Square  8.1  11.9  20.4  40.7 
DF   7   19   31  43 
P-Value  0.327  0.890  0.926  0.573 

we show that term constant is insignificant and can be 
removed from the model. 
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Fig .3.Diagnostic checking of the SARIMA 

12(0,1,1)(1,1,2)× model: (a) ACF of the model residual ; 
(b) PACF of the model residual. 

 
To choose best model for forecasting, Table 3 shows the result of 
performance criterions RMSE,MAPE and MAP by using out of 
sample months of 1995 year to eleven candidate models ,it is 
obviously the model selection upon any criterion is different 
from criterion to another. Upon  RMSE  criterion the best model 
performance to forecast is SARIMA 12(3,1,1)(1,1,2)× , while 
MAPE criterion gives SARIMA 12(5,1,1)(0,1,2)×  and last, 
MAP gives SARIMA 12(0,1,1)(0,1,2)× , although these three 
models do not accesse the  diagnostic checking, this result agrees 
with  Mujumdar and Nagesh Kumar (1990) that best model for 
representating the data and best model for forecasting are often 
not the same. Also we show that SARIMA 12(3,1,1)(1,1,2)×  
model presents best coefficient of determination .  
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Table 3. Results for  performance forecast to eleven candidate models  
 model RMSE MAPE MAP R2 

1 12(5,1,1)(3,1,2) ×  370.777 32.7033 281.108 0.943 

2 12(5,1,1)(2,1,2) ×  371.331 32.707 281.014 0.943 

3 12(5,1,1)(1,1,2) ×  370.257 32.4936 278.373 0.943 

4 12(5,1,1)(0,1,2) ×  328.019 20.1644* 206.173 0.951 

5 12(4,1,1)(1,1,2) ×  340.293 29.6569 253.635 0.949 

6 12(3,1,1)(1,1,2) ×  259.114* 22.9657 194.163     0.968** 

7 12(2,1,1)(1,1,2) ×  342.744 32.2316 259.713 0.951 

8 12(1,1,1)(1,1,2) ×  347.207 32.435 261.585 0.949 

9 12(1,1,1)(0,1,2) ×  347.69 21.6013 192.728 0.953 

10 12(0,1,1)(0,1,2) ×  352.695 20.811 188.594* 0.955 

11 12(0,1,1)(1,1,2) ×  321.784 28.1287 231.846 0.955 

 (*)minimum values to criterion : (**) maximum value of  R2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. performance of forecasting comparable with monthly data 
of 1995     year : (a)SARIMA 12(3,1,1)(1,1,2)× ; (b) 
SARIMA 12(5,1,1)(0,1,2)× ; (c) SARIMA 12(0,1,1)(0,1,2)× . 
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From table 3. and Fig.4. the researcher found there is 
problem to select best performance of forecasting through three 
models, although fig.4. shows that performance of the model  

12(3,1,1)(1,1,2)× will seem better. To solve this problem we try 
to use proposal statistical manner by calculating weighted mean 
to results of three  criterions to any model as demonstrated in 
section 5. Table 4. shows that minimum weighted mean is with 
model 12(3,1,1)(1,1,2)× in all three forms of weighted mean, this 
is result consistent with the result in fig.4.,  
 

Table 4. shows the weighted mean of three criterions of 
performance  forecast of  eleven candidate models. 

(*)minimum values to weighted mean.  
 

Finally,  we note from fig.4 that there is a exist difference 
between three values (Jan.,Nov.and Dec.)of year 1995 and 
forecasting values, we can understand this difference if we look 
at table 5. below 
Table 5. the difference between values of  Jan.,Nov.and Dec. 
months of year 1995 and mean, standard deviation of the period 
1963-1994 for these months. 

month Mean period1963-1994 Std. period1963-1994 values1995 
Jan.  1541.0 966.0 884.0 
Nov. 873.0 439.4 381.0 
Dec. 1403.0 1014.0 522.0 

 model weighted mean 
from eq.(9) 

weighted mean 
from eq.(10) 

weighted mean 
from eq.(11) 

1 12(5,1,1)(3,1,2) ×  130.45 299.487 254.652 
2 12(5,1,1)(2,1,2) ×  130.529 299.841 254.682 
3 12(5,1,1)(1,1,2) ×  129.767 298.649 252.707 
4 12(5,1,1)(0,1,2) ×  102.475 256.402 195.479 
5 12(4,1,1)(1,1,2) ×  118.759 274.077 230.748 
6 12(3,1,1)(1,1,2) ×  90.857* 208.931* 176.455* 
7 12(2,1,1)(1,1,2) ×  121.897 277.154 235.638 
8 12(1,1,1)(1,1,2) ×  123.089 280.475 237.663 
9 12(1,1,1)(0,1,2) ×  104.471 267.515 190.034 
10 12(0,1,1)(0,1,2) ×  104.089 270.031 187.98 
11 12(0,1,1)(1,1,2) ×  111.024 257.852 212.883 
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It is obvious exist decrease of water enter mosul city in  
Jan.,Nov.and Dec.,1995 
CONCLUSIONS  
 

1- The suggested statistical manner proved its competence in 
limiting the best model according to forecasting 
performance that coincide with the determinant of 
coefficient criterion. There hence getting rid off the 
difference criterion problem for RMSE, MAPE, and MAE 
that limits the best model.  

2- Changing the given weights for each criterion of the three 
criterions within the weighted mean in the suggested 
manner did not serve the change for reaching the best 
model from the side of forecasting performance, which 
leads to the flexibility and qualified suggested manner. 

3-  Box-Jenkins model is considered the best for representing 
the data not always is the best for providing a better 
forecasting, the application side approves it in the  analysis 
the Tigris River water flow it appeared that the best model 
for representing the data is SARIMA (1,1,2) * (0,1,1) 12  
while the best forecasting offered model is SARIMA 
(1,1,2) * (3,1,1) 12  

4- The capability of Box-Jenkins model to deal with the 
hydrology data from the point that has the ability to 
provide very promising forecasting in spite of  the unsure 
information effecting the time series of the river water 
flow. 

5- The employment of long range in time hydrology data 
provides a larger opportunity for limiting Box-Jenkins 
model that can provide new forecasting. 

6- Box -Jenkins manner can provide an opportunity to skip 
the overfitting problem through information criterions in a 
better way than other manners like neural networks.  

7- Box-Jenkins manner skips the problem of falling for 
forecasting that are not acceptable like the manner used in 
neural networks that results from over training. 
           Lastly, we recommended  using the suggested 
weighted mean for reaching  the model that provides best 
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forecasting in other forecasting manners like neural 
networks and fuzzy models .                
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