Baghdad Science Journal Vol.6(3)2009

Extension of the Chebyshev Method of Quassi-
Linear Parabolic P.D.E.S With Mixed
Boundary Conditions

Shawki A. M. Abbas*

Date of acceptance 3/3/2009

Abstract

The researcher [1-10] proposed a method for computing the numerical solution to
quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is
to extend the method to problems with mixed boundary conditions. An error analysis
for the linear problem is given and a global element Chebyshev method is described.
A comparison of various chebyshev methods is made by applying them to two-point
eigenproblems. It is shown by analysis and numerical examples that the approach
used to derive the generalized Chebyshev method is comparable, in terms of the
accuracy obtained, with existing Chebyshev methods.
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1. Introduction Following the standard Chebyshev

In [1-10], the authors described an
algorithm  based on  chebyshev
polynomials to compute the numerical
solution to parabolic p.e.d.s of the type.

O = olux )3+ fuxt)(ut) < Fil<OT)

..(1.1)

Subject to
u(-Lt)=g,(t)u@t)=g,(t)te(0,T)
And

u(x,0) = K(x), xe[-1,1]...(1.2)

The purpose of this paper is to
extend the method and error analysis to

problems with mixed boundary
conditions of the type
au(_l,t)+saixu( 1t)=g,(t)...(1.3)

And

yu(l, t)+8§u(1 t)=g,(t)...(1.4)

method, the u (x,t) is approximated by
a polynomial of degree N written in the
form

N
v t)=>"a,(t)T,(x)...(1.5)
t=0
Where T; (x) is the Chebyshev
polynomial of degree i, and the
function
Q(x,t)::G(UN,x,t)aaUTN (Uyx.t)

...(1.6)

Is approximated by a polynomial of
degree N that interpolates Q(x,t) at the
Chebyshev points

We write this polynomial as

t)=>"a;(t)T(x)...(L.7)

i=0

z
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The coefficients a; (t) are then
chosen so that the following equations
are satisfied

N

> (1) (a-i"B)a(t) = g, (1

=0

And ZN:(y+6i2)ai(t) =g,(t) ...(1.8)

i=0

ai(t):ZN:Ai'sqs(t), i=23,...,N

Where the coefficients A;s are defined
in Dew [1].

For sufficiently simple problems it
is possible to eliminate go(t) and ga(t).

When
D = a(a-B) + a(y+d) =0

It is then possible to use an obvious
extension of the method described in
Dew [1].

Alternatively we can consider (1.8)
as a system of algebraic and ordinary
differential equations and compute the
numerical solution directly using an
o.d.e.solver adapted to solve equations
of the form ¢ (ty,y’) =0 (in standard
notation).

Gear's method, for example, can
readily be implemented in this form.
Equations (1.8) can conveniently be
mapped into the solution values at the
Chebyshev  points by wusing the
mapping matrix Q whose (i,j)th
element is defined as

Q. =T,(x;)x; € Xy ...(1.10)

The inverse of Q can be determined
analytically and is therefore more
satisfactory than the mapping matrix
proposed in Dew [1]. Implementing
(1.8) in this form has the advantage
that the problem specifications can be
generalized.

604

(For example, the method can be
extended to boundary conditions of the
form.

6, (u(—l,t),u(l,t)au(a_xl’t), 8u(1,t)’tj: 0

OX
i=12
Numerical experiments indicate
however that it is more satisfactory to
solve, where possible, an explicit
system of ordinary differential

equations. In the next section we shall
consider a new algorithm which
reduces the differential equations to an
explicit system of ordinary differential
equations when there are derivative
boundary conditions. An error analysis
for the linear problem shows that the
new algorithm is likely to lead, for
sufficiently large N, to a more accurate
solution than the solution obtained
using (1.8).

The algorithm is then extended to a
global element method which can be
used when the solution u(x,t) cannot be
adequately  represented by a
polynomial defined on [-1,1] for each
te (0.7).

2. An Improved Algorithm
Define

R(u,x,t)::cs(u,x,t)%u+f(u,x,t)...(2.1)

Then an improved algorithm can be
derived by noting that the derivative
ou/ox can be estimated from the
formula [8].

ou 7
8_X:J'R(u,x,t)dx+A...(2.2)

Where

A=1/2 (u (@) —u (-1,t) —(H (1,t) —H(-
1,1))

And
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H(x,t):ﬁR(u,x,t)dxdx .(2.4)

The integral appearing in the above
expression are indefinite integrals. The
solution u(x,t) is again approximated
by a polynomial for degree N written
as

ZN:a ...(2.5)

And
Q(x,t):=R(UT, x,t)...(2.6)

The coefficients {a'; (t)} are chosen
so that they satisfy the equations

T t):iAi,Sq_s,i:Z,&...,N
)a t)+

y a+lpl-(-

Z 2

e ( -E )q- t =
(-

Vo4 5(1 1))a,T() o -E)
2 _

- Qi(t)zz(l)

..(2.7)

Where the coefficients {q;} are the
Chebyshev  coefficients  for Q(x,t)

interpolated at the Chebyshev points, X;
€ XN, and

= ﬁ T, (x)dx} :
E, =%(1— —1)‘)ﬁjﬂ(x)dx}
The parameter Z is defined as

N J—
= ZAS+2,S qs (t)Z

S=N-1

(28
Where Z s¥ is given in sections3.

x=1

Vg, (t)y=21

The coefficients {a";, gi} can then
be mapped into the solution values

605

evaluated at the Chebyshev points
using the mapping matrix Q defined by
Eqg. (1.10). Equations (2.7) define a
system of first order o.d.e.s when
and/or & #0, which can be written (if
desired) in normal form.

A feature of Chebyshev method is
that it is easy to obtain the perturbed
form of the differential equation that
Un(x,t) exactly satisfies. A similar
result can be shown for the improved
algorithm. Define the perturbation
function as

N-+2

zqsz ssz

S=N+1
By choosing Z(t) = Bo(-1,t) and
ZO() = 8o(1.1).....(2.11)
It is easly seen that U, (x,t) = Uy
(x,10,[2].

5(t)...(2.10)

3. An Error Analysis For The
Linear Boundary Value Problem:
The nature of the approximation can

most clearly be seen by considering the

differential equation

82u_f( X, 1)

xe[-1,1] for each te (0,T]...(3.1)

Subject to the boundary conditions
(1.4). In this case

Q(x,)=Q (x,t) =F(x, t =Z::fi(t)T (x)

And
Qx,1)=, (6 )=F, (x ) = > T, (x)
Define

N+2

Pq (X’ t) = ZAS,S—Z Us {Ts (X)_ Ll,s X— Lo,s}

S=N+1

.. (32)

Where the coefficients L; s and Lo are
given by
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: el

And

N+2

5‘1 (X' t): ZAs,sfz Qs {TS(X)_ Ll,s X— Lo,s}
S=N+1

.(33)

Where the coefficients L;sand Lo s are
given by

= beee]
—a(-1°+ B - (-1

1— (-1
2

The parameter Zs“® can be chosen as

+2z0Y

-y + 90 +ZY

1—(-1)
2

Providing that  and/or & are non
zero. If B= 6= 0 then it is necessary to
ensure that the boundary conditions are
exactly satisfied and hence
Z(l)S — Z(-l)S =0

The main advantage of introducing
Zgﬂ) is that it simplifies the expression
for the perturbation term which makes
it easier to compute error estimates.

Z(S’l) =y—0

4. Global
Method
For a number of parabolic p.d.e.s

arising in practice it is not sufficient to

approximate the solution by a

polynomial defined on the interval [-

1,1] for each t. In such cases a global

element Chebyshev method can be

used. That is we partition the interval [-

1,1] into elements {Im:= [Ym, Ym+1], M=

Element  Chebyshev

606

1,2,...,M s y1: '1, ym: 1, ym<ym+1} and
write the solution as

u(x,t)zLMJum(x,t)...(4.l)

u(x,t) is the computed solution at the
point (x,t), where

u™  (xt):= u(xt), xeln and zero
elsewhere.
Define Wp: In —[-1,1] and
approximate the solution by
M
us(xt)={Jx.1)...(4.2)
m=1

Where

N,

Ut(xt)=>a

i=0

T

m,i i

(W, (x)), xel,,=0

elsewhere.

At the internal nodes we impose the
boundary conditions

us(x,,,t)=Ut*(x,,t) }m=2,3,..,M

And
ouy _GU:}H B
™ (X,,t)= . (X,,t) } m=2,3,...

We assume that the function R
(defined in Eg. (2.1)) is continuous
function in its arguments u and t for all
te(0,T] and ueF and that it is a
piecewise continuous function for the x
variable, xe [-1,1]. Any discontinuities
in R must be at the internal nodes. We
further assume that

Q% (x,)=R (U§, x.1)

Can be adequately represented by a
piecewise polynomial

Qn(et)-Uantey)

Where
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Qu(x.t)= qu (W, ()<l =0

elsewhere.

Where Q (x,t) interpolates Qf, (x,t) at
the points

;m = {Wm (Xi)’xi € XNm}

The algorithm given in section 2
can then be extended. That is the
coefficients {an,} are chosen to satisfy
the equations.

Nm
am,i :“i ZAi,sqm,s’ m

=12,....M
5-0
1:2,...,Nm
1 i -
N, oc+§[3(1—(_1) )al,i +M1B(ei( = Ei)quij
I=0:gfl(t)

%":(Y +%Y(1_(_1)i )aM,i + uMy(efl) - )q M,ij

“=g,(t)

Together with the condition for
continuity of the derivative at the
internal node.

i%(l— (1) Jan, +1n €™ ~E )y,

i=0

Nt .
Zo:; (l_ (_ 1)I )am+1,i + lvlm+1(e§1) -k hmﬂ =0

m=23,... M
Where

Hm= (Ym+1-Ym)/2

The coefficients {am;i, qmi} can be
mapped into the solution values at the
points Xy using the mapping matrix
Q (1.11) defined on each element such
that the continuity of Un®(x,t) and
QC(x,t) is preserved at the internal
nodes.

607

The algorithm requires a slight
modification in the case when R is
only piecewise continuous at the
internal nodes.

If B and/or &+0 then the above
equations mapped into the solution
values defines a system of ordinary
differential equations which can be
solved by Gear's method. The Jacobian
matrix arising in Gear's method is
banded with a maximum bandwidth of
maXm (Nm+Nm+1+1). In the case when
B=6=0 the same equations can be
reduced to a system of ordinary
differential  equations and two
algebraic equations.

It is easily shown that the function
US (x.t) satisfies a perturbed form of

the original differential equation. The
error analysis given in this paper and
the techniques for estimating the error
described in [3-6] can be extended to
the global element method. In
particular it is possible to estimate the
error in the solution across each
element.

5. Comparison with
Chebyshev Methods
In this section we compare the
approach used to derive the
generalized Chebyshev Method with
existing Chebyshev methods.

Existing

For the non-polar problem, m=0,
with ¢=1 we compare the method with
the Berzins and Dew (1980) method.
The main difference is that the Berzins
and Dew method we apply prior
integration twice (see Fox and Parker
(1968)) to obtain an extension of the
Knibb and Scraton (1971) method.

Whereas in the present algorithm
we apply prior integration once and
obtain the derivative of the solution
directly from the Chebyshev series
expansion of the solution.
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We can easily modify the
generalized Chebyshev method so that
if is equivalent to the Berzins and Dew
(1980) method by perturbing the
relationship between the Chebyshev
coefficients of u and ou/ox. That is we
replace in equation: the coefficients a;;
and a,-,i(l) , a,-(l),N,- =0, a,-(l),N,-.l = 2N; aj,
N/Mj-

I = Nj2, Njs,...,0

a;,N;bya;,N;-q;, N/4(N;;) N;]
And

aj,Nj-1 byaj’Nj-l-qj!Nj—1/[4Nj (Nj-l)]
...(5.1)

The simple Eigenvalue Problem

To illustrate the effect of applying
prior integration once or twice we
consider the simple eigenvalue
problem
di‘z’+ A =0,xe[0]1]
dx
Subject to
ocv+[3d—v:0atx:0

dx
And ...(5.2)

YV +0 at x=1

Where
a(y+8)-y(B-a) =0}

We approximate v(x) by a polynomial
of degree N, written as:

V, (X) =iai T.(2x-1).x €[01],

...(5.3)
And obtain an estimate of the
eigenvalues of (5.2) from the

eigenvalues of the generalized matrix
eigenvalue problem

608

Aa+ixB,=0... (5.4)
Where
A= [ao, ai,..., an]T

The (N+1) x (N+1) matrices A and
B are formed using prior integration
either once or twice and by adding two
extra equations which arise from the
boundary conditions.

We have two alternatives, either

a) We make V\ exactly satiety the
boundary conditions, e.g.

aizilai(—1)‘ —Biz::iz(—l)iai =0

As suggested in Kinbb and Scraton
(1971) or

b) We can use an approximate formula
for the derivative of V. So that Vy
satisfies a perturbed form of the
boundary conditions, as suggested
in Berzins and Dew and used in this

paper.

6. Numerical Example
To compare the relative accuracy of

the solution Un(x,t) and U] (x,t)

whose coeff-icients {a;} satisfy Egs.
(1.8) and (2.7) respectively we have
considered the parabolic p.d.e.

ou _o2u
ot ox®
Subject to
au(o,t)

A ~0,te(038]
. <(08]

u(x,O):Ioge(%x2 +0.1j

And either
Problem A-mixed boundary conditions

u(l,t)+<o.e+t)%zuoge(t+o.6)+1

+x%™,(x,1)e[01]x(0,8]

te(08]
Or
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Problem B-Neumann boundary
conditions
aupt) 1 te(08]

ox  (0.6+t)
The exact solution is u(x,t)
u(x,t) = loge (1/2x* + t+ 0.1)

It was not practical to compute a
numerical solution directly from Eq.
(1.8) because the iterative procedure in
Gear's method failed to converge.
Hence to compare the relative accuracy
of the two solution we used Eq. (2.7).

z®D as given in Eg. (2.11)
(coefficients define Un(X,t))

and
2% = 0 (coefficients define UT, (x,t))

Graphs of error norms
|Un(t)—u( ), and
HUL(-,t)—u(-,t)ﬂX against t for N =5, 7
and 9 and for problem A and B are
given in table 1. The numerical
solution of Eqg. (2.7) was computed
using Gear's methods with a local error
tolerance 0.510-8. The improvement in
accuracy obtained using the new
algorithm can be seen for N > 5.

Problem C. To illustrate the
numerical performance of the global
element method we have considered
the following problem taken from
Bakker (1977):

ot
X E|:0,1j
2
X2 i{xz au —e' xe [ll
OX oX 2

Subject to the boundary conditions

N 0 at x=0, u(L,t)=1,fort
OX

] =5x? i{xz a—u}—loooeu ,...(6.3)
OX OX

And initial condition
u(x,0)=0

We assume the internal boundary
condition

.. ou .. ou
5lim — =lim—
OX OX

1 1"

X—>— X—>—

2 2

There is a discontinuity between the
boundary condition and the initial
condition at x = 1.

We have compared the numerical
solution obtained by the

a) Finite difference code given in
Sincovec and Madson (1975).

b) Finite element code written by
Bakker using linear basis functions.
In each case the time integration is

performed using Gear's method with

local error tolerance equal to 107 using

mixed error test.

To measure the error we first
compute the solution using a high
precision run. The error can then be
measured using the norm

E(t)= J]XZ[u(x,t)_ u(x,t)f dx

for t (0,0.3]

Where U(x,t) is the computed solution
at the point (x,t) and the integral was
evaluated using the trapezium rule with
100 points.

Figure 1 shows how E(t) varies with
t. We have chosen 41 and 81 equally
spaced mesh points for the finite
difference and finite element codes.
For the generalized Chebyshev method
we have used two elements [0,1/2] and
[1/2,1] with N;= N;= 7 (15mesh
points) and four equally spaced
elements with N;= 9 on each element
(37 mesh point). We can see from the
graphs given in Fig. 1 that very
satisfactory results are obtained using
the Chebyshec method. As we expect
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the discontinuity in the boundary and
initial condition causes a large error
initially which rapidly dies away.

10 3

E 10";—\\\\
R 1073 ] A
R ) \\ =
0 1077 4N
R e
e — T -
10-8 | ‘\-} N
\
10~ \
9 % N=9
ot s
-1 e R ®
I T T | T

Problem-A-Mixed Boundary Conditions

10~ 3
10_4]
10754
10-6 |
10_7._
10784
w94
10'10_ s —_—
101

VDO DDOM

E (1)

Fig (1): Graph of E(t) for the test problem
(6.3) (a finite differences (N = 41); (b)
finite elements (N = 41); (c) finite
differences (N = 81); (d) finite elements (N
= 81); (e) chebyshev method (N = 15, 2
elements); (f) chebyshev method (N = 37,
4 elements), N denotes the number of mesh
points (i.e, number of ODEs to solve).

The solid line __ denotes the error |Juy(.,t)

—u(,BIx.
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The dotted line .... Denotes the error || UL

() —u(.D|Ix.

7. Conclusion

We have shown in this paper that
the Chebyshev methods can be
extended to handle general parabolic
equations and that the generalized
Chebyshev method [8-14], compares
very favorably with the finite element
(linear basis function) method and the
finite difference method. An advantage
of the Chebyshev approach is that it is
easy to vary the size of an element and
the degree of the polynomial used on
each element. It remains an interesting
problem to see if the perturbation term
can be used to select the size of each
element and the degree of the
polynomial automatically in some
optimum manner.
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