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Abstract 
The researcher [1-10] proposed a method for computing the numerical solution to 

quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is 

to extend the method to problems with mixed boundary conditions. An error analysis 

for the linear problem is given and a global element Chebyshev method is described. 

A comparison of various chebyshev methods is made by applying them to two-point 

eigenproblems. It is shown by analysis and numerical examples that the approach 

used to derive the generalized Chebyshev method is comparable, in terms of the 

accuracy obtained, with existing Chebyshev methods. 
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1. Introduction 
In [1-10], the authors described an 

algorithm based on chebyshev 

polynomials to compute the numerical 

solution to parabolic p.e.d.s of the type. 
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Subject to 
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And 

u(x,o) = K(x), x[-1,1]…(1.2) 

The purpose of this paper is to 

extend the method and error analysis to 

problems with mixed boundary 

conditions of the type 
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Following the standard Chebyshev 

method, the u (x,t) is approximated by 

a polynomial of degree N written in the 

form 
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Where Ti (x) is the Chebyshev 

polynomial of degree i, and the 

function 
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Is approximated by a polynomial of 

degree N that interpolates Q(x,t) at the 

Chebyshev points 
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We write this polynomial as  
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The coefficients ai (t) are then 

chosen so that the following equations 

are satisfied 
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Where the coefficients Ai,s are defined 

in Dew [1]. 

For sufficiently simple problems it 

is possible to eliminate q0(t) and q1(t). 

When 

D = (-) + (+) 0 

It is then possible to use an obvious 

extension of the method described in 

Dew [1]. 

Alternatively we can consider (1.8) 

as a system of algebraic and ordinary 

differential equations and compute the 

numerical solution directly using an 

o.d.e.solver adapted to solve equations 

of the form  (t,y,y) =0 (in standard 

notation). 

Gear's method, for example, can 

readily be implemented in this form. 

Equations (1.8) can conveniently be 

mapped into the solution values at the 

Chebyshev points by using the 

mapping matrix  whose (i,j)th 

element is defined as  

 
Njjij,i Xx,xT:  …(1.10) 

The inverse of  can be determined 

analytically and is therefore more 

satisfactory than the mapping matrix 

proposed in Dew [1]. Implementing 

(1.8) in this form has the advantage 

that the problem specifications can be 

generalized. 

(For example, the method can be 

extended to boundary conditions of the 

form. 

   
   

0t,
x

t,1u
,

x

t,1u
t,1u,t,1uĝ i 
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Numerical experiments indicate 

however that it is more satisfactory to 

solve, where possible, an explicit 

system of ordinary differential 

equations. In the next section we shall 

consider a new algorithm which 

reduces the differential equations to an 

explicit system of ordinary differential 

equations when there are derivative 

boundary conditions. An error analysis 

for the linear problem shows that the 

new algorithm is likely to lead, for 

sufficiently large N, to a more accurate 

solution than the solution obtained 

using (1.8). 

The algorithm is then extended to a 

global element method which can be 

used when the solution u(x,t) cannot be 

adequately represented by a 

polynomial defined on [-1,1] for each 

t (0.T). 

2. An Improved Algorithm 

Define 

     t,x,uf
t

u
t,x,u:t,x,uR 



 …(2.1) 

Then an improved algorithm can be 

derived by noting that the derivative 

u/x can be estimated from the 

formula [8]. 
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x

u
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Where 

A= 1/2 (u (1,t) –u (-1,t) –(H (1,t) –H(-

1,t)) 

And 
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    

x x

dxdxt,x,uRt,xH …(2.4) 

The integral appearing in the above 

expression are indefinite integrals. The 

solution u(x,t) is again approximated 

by a polynomial for degree N written 

as 
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And 

   t,x,UR:t,xQ T

N …(2.6) 
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T
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Where the coefficients qi are the 

Chebyshev coefficients forQ(x,t) 

interpolated at the Chebyshev points, xi 

 xN , and 
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The parameter Z is defined as 
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Where Z
 
S

(y)
 is given in sections3. 

The coefficients a
T

i,qi can then 

be mapped into the solution values 

evaluated at the Chebyshev points 

using the mapping matrix  defined by 

Eq. (1.10). Equations (2.7) define a 

system of first order o.d.e.s when  

and/or  0, which can be written (if 

desired) in normal form. 

A feature of Chebyshev method is 

that it is easy to obtain the perturbed 

form of the differential equation that 

UN(x,t) exactly satisfies. A similar 

result can be shown for the improved 

algorithm. Define the perturbation 

function as 
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By choosing Z
(-1)

(t) = β(-1,t) and  

Z
(1)

(t) = (1,t)….(2.11) 

It is easly seen that T

NU (x,t)  UN 

(x,t),[2]. 

3. An Error Analysis For The 

Linear Boundary Value Problem: 

The nature of the approximation can 

most clearly be seen by considering the 

differential equation 
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x[-1,1] for each t (0,T]…(3.1)  

Subject to the boundary conditions 

(1.4). In this case  
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Where the coefficients L1,s and L0,s are 

given by 
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Where the coefficients L1,S and L0,S are 

given by 
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The parameter Zs
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Providing that  and/or  are non 

zero. If = = 0 then it is necessary to 

ensure that the boundary conditions are 

exactly satisfied and hence 

Z
(1)

S = Z
(-1)

S = 0 

The main advantage of introducing 
 1

sZ   is that it simplifies the expression 

for the perturbation term which makes 

it easier to compute error estimates. 

4. Global Element Chebyshev 

Method 

For a number of parabolic p.d.e.s 

arising in practice it is not sufficient to 

approximate the solution by a 

polynomial defined on the interval [-

1,1] for each t. In such cases a global 

element Chebyshev method can be 

used. That is we partition the interval [-

1,1] into elements Im:= [ym, ym+1], m= 

1,2,…,M , y1= -1, ym= 1, ymym+1} and 

write the solution as 
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u(x,t) is the computed solution at the 

point (x,t), where 

u
m

 (x,t):= u(x,t), xIm and zero 

elsewhere. 

Define Wm: Im [-1,1] and 

approximate the solution by 
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At the internal nodes we impose the 

boundary conditions 
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We assume that the function R 

(defined in Eq. (2.1)) is continuous 

function in its arguments u and t for all 

t(0,T] and uF and that it is a 

piecewise continuous function for the x 

variable, x [-1,1]. Any discontinuities 

in R must be at the internal nodes. We 

further assume that 

Q
G
 (x,t)= R ( G

NU , x,t)  

Can be adequately represented by a 

piecewise polynomial 
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elsewhere. 

Where m

NQ (x,t) interpolates G

NQ (x,t) at 

the points 
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The algorithm given in section 2 

can then be extended. That is the 

coefficients am,i are chosen to satisfy 

the equations. 
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Together with the condition for 

continuity of the derivative at the 

internal node. 
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m = 2,3,…,M 

Where 

m= (ym+1-ym)/2 

The coefficients am,i, qm,i can be 

mapped into the solution values at the 

points Xm using the mapping matrix 

 (1.11) defined on each element such 

that the continuity of UN
G
(x,t) and 

Q
G
(x,t) is preserved at the internal 

nodes. 

The algorithm requires a slight 

modification in the case when R is 

only piecewise continuous at the 

internal nodes. 

If  and/or 0 then the above 

equations mapped into the solution 

values defines a system of ordinary 

differential equations which can be 

solved by Gear's method. The Jacobian 

matrix arising in Gear's method is 

banded with a maximum bandwidth of 

maxm (Nm+Nm+1+1). In the case when 

==0 the same equations can be 

reduced to a system of ordinary 

differential equations and two 

algebraic equations. 

It is easily shown that the function 
G

NU (x,t) satisfies a perturbed form of 

the original differential equation. The 

error analysis given in this paper and 

the techniques for estimating the error 

described in [3-6] can be extended to 

the global element method. In 

particular it is possible to estimate the 

error in the solution across each 

element. 

5. Comparison with Existing 

Chebyshev Methods 

In this section we compare the 

approach used to derive the 

generalized Chebyshev Method with 

existing Chebyshev methods. 

For the non-polar problem, m=0, 

with =1 we compare the method with 

the Berzins and Dew (1980) method. 

The main difference is that the Berzins 

and Dew method we apply prior 

integration twice (see Fox and Parker 

(1968)) to obtain an extension of the 

Knibb and Scraton (1971) method. 

Whereas in the present algorithm 

we apply prior integration once and 

obtain the derivative of the solution 

directly from the Chebyshev series 

expansion of the solution. 
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We can easily modify the 

generalized Chebyshev method so that 

if is equivalent to the Berzins and Dew 

(1980) method by perturbing the 

relationship between the Chebyshev 

coefficients of u and u/x. That is we 

replace in equation: the coefficients aj,i 

and aj,i
(1)

  , aj
(1)

,Nj  = 0, aj
(1)

,Nj-1  = 2Ni aj, 

N/Mj. 
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…(5.1) 

The simple Eigenvalue Problem 

To illustrate the effect of applying 

prior integration once or twice we 

consider the simple eigenvalue 

problem 
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v2d
2

…(5.2) 

We approximate v(x) by a polynomial 

of degree N, written as: 

   1,0x,1x2Ta)x(V i

N

0i

iN 


, 

…(5.3) 

And obtain an estimate of the 

eigenvalues of (5.2) from the 

eigenvalues of the generalized matrix 

eigenvalue problem 

Aa+λBa= 0… (5.4) 

Where 

A = a0, a1,…, an]
T
 

The (N+1) × (N+1) matrices A and 

B are formed using prior integration 

either once or twice and by adding two 

extra equations which arise from the 

boundary conditions. 

We have two alternatives, either 

a) We make VN exactly satiety the 

boundary conditions, e.g. 

    0a1i1a i
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As suggested in Kinbb and Scraton 

(1971) or 

b) We can use an approximate formula 

for the derivative of VN. So that VN 

satisfies a perturbed form of the 

boundary conditions, as suggested 

in Berzins and Dew and used in this 

paper. 

6. Numerical Example 

To compare the relative accuracy of 

the solution UN(x,t) and T

NU (x,t) 

whose coeff-icients ai satisfy Eqs. 

(1.8) and (2.7) respectively we have 

considered the parabolic p.d.e. 

     8,0x1,0t,x,ex
x

u2

t

u u2

2









   

Subject to 

 
 

  














1.0x
2

1
log0,xu

,8,0t,0
x

t,0u

2

e

 

And either 

Problem A-mixed boundary conditions 

   
 

 

 8,0t

16.0tlog
x

t,1u
t6.0t,1u e









Or 
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Problem B-Neumann boundary 

conditions  

 
 

 8,0t,
t6.0

1

x

t,1u







  

The exact solution is u(x,t) 

u(x,t) = loge (1/2x
2
 + t+ 0.1) 

It was not practical to compute a 

numerical solution directly from Eq. 

(1.8) because the iterative procedure in 

Gear's method failed to converge. 

Hence to compare the relative accuracy 

of the two solution we used Eq. (2.7). 

z
(1)

 as given in Eq. (2.11) 

(coefficients define UN(x,t)) 

and 

z
(1) 

= 0 (coefficients define T

NU (x,t)) 

Graphs of error norms 

   
xN t,ut,U   and 

   
x

T

N t,ut,U   against t for N = 5, 7 

and 9 and for problem A and B are 

given in table 1. The numerical 

solution of Eq. (2.7) was computed 

using Gear's methods with a local error 

tolerance 0.510-8. The improvement in 

accuracy obtained using the new 

algorithm can be seen for N  5. 

Problem C. To illustrate the 

numerical performance of the global 

element method we have considered 

the following problem taken from 

Bakker (1977): 

u22 e1000
x

u
x

x
x5

t

u





















  ,…(6.3) 











2

1
,0x  

























 1,
2

1
x,e

x

u
x

x
x u22  

Subject to the boundary conditions 

for t 1,  t)u(1, 0, at x ,0
x

u





 

And initial condition 

u(x,0) = 0 

We assume the internal boundary 

condition 

2

1
x

2

1
x

x

u
lim

x

u
lim5













 

There is a discontinuity between the 

boundary condition and the initial 

condition at x = 1. 

We have compared the numerical 

solution obtained by the  

a) Finite difference code given in 

Sincovec and Madson (1975). 

b) Finite element code written by 

Bakker using linear basis functions. 

In each case the time integration is 

performed using Gear's method with 

local error tolerance equal to 10
-7

 using 

mixed error test. 

To measure the error we first 

compute the solution using a high 

precision run. The error can then be 

measured using the norm 

       dxt,xut,xUxtE
2

1

0

2    

for  3.0,0t  

Where U(x,t) is the computed solution 

at the point (x,t) and the integral was 

evaluated using the trapezium rule with 

100 points. 

Figure 1 shows how E(t) varies with 

t. We have chosen 41 and 81 equally 

spaced mesh points for the finite 

difference and finite element codes. 

For the generalized Chebyshev method 

we have used two elements [0,1/2] and 

[1/2,1] with N1= N2= 7 (15mesh 

points) and four equally spaced 

elements with Nj= 9 on each element 

(37 mesh point). We can see from the 

graphs given in Fig. 1 that very 

satisfactory results are obtained using 

the Chebyshec method. As we expect 
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the discontinuity in the boundary and 

initial condition causes a large error 

initially which rapidly dies away. 

Problem-A-Mixed Boundary Conditions 

Problem-B-Neuman Boundary Conditions 

Fig (1): Graph of E(t) for the test problem 

(6.3) (a finite differences (N = 41); (b) 

finite elements (N = 41); (c) finite 

differences (N = 81); (d) finite elements (N 

= 81); (e) chebyshev method (N = 15, 2 

elements); (f) chebyshev method (N = 37, 

4 elements), N denotes the number of mesh 

points (i.e, number of ODEs to solve). 

The solid line __ denotes the error ||uN(.,t) 

– u(.,t)||x. 

The dotted line …. Denotes the error ||
T

Nu

(.,t) – u(.,t)||x.  

7. Conclusion 

We have shown in this paper that 

the Chebyshev methods can be 

extended to handle general parabolic 

equations and that the generalized 

Chebyshev method [8-14], compares 

very favorably with the finite element 

(linear basis function) method and the 

finite difference method. An advantage 

of the Chebyshev approach is that it is 

easy to vary the size of an element and 

the degree of the polynomial used on 

each element. It remains an interesting 

problem to see if the perturbation term 

can be used to select the size of each 

element and the degree of the 

polynomial automatically in some 

optimum manner. 
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توسيع طريقة تشبيشف لتشمل المعادلات التفاضلية الجزئية التكافؤية الشبه خطية 

 رات شروط حذودية مختلطة
 

 شوقي عبذ المطلب عباس*

 

 *قسن السياضياث/كليت العلىم/ جاهعت بغداد
 

 الخلاصة:
الباحثيي طسيقت لحساب الحلىل العدديةت لوعةاد ث حضاضةليت جة يةت حيا شيةت طةب  اسيةت با ةخ دام  اقخسح بعض

 طسيقت حشبيشف.

ه خلست. ححليل الأاساء للوسألت  تحدوديالغسض هي هرا البحث هى حى يع السسيقت لخشول هسا ل ذاث طسوط 

خيي. ووضحٌا با خ دام الخحليل وأهثلةت ال سيت هعسى وطسق طاهلت وضعج با خ داهها إلى هسا ل ذاحيت ذاث ًقس

عدديةةت إى الوةةدال الوسةةخ دم  طةةخقاق طسيقةةت حشبيشةةف العاهةةت ييةةىى قابةةل للوقازًةةت بد لةةت الدقةةت الوسخح ةةلت هةةع 

 طسا ق حشبيشف الوىجىدة حالياً.

 


