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On the Discrimination between the Inverse Gaussian and
Lognormal Distributions

Zakaria Y. AL-Jammal

ABSTRACT

Both inverse Gaussian and lognormal distributions have
been used among many well-known failure time distributions
with positively skewed data. The problem of selecting between
them 1s considered. The logarithm of maximum likelihood ratio
has been used as a test for discriminating between these two
distributions. The test has been carried out on nine different real
data sets and three simulated data sets.

Keywords: Inverse Gaussian distribution, lognormal distribution,
Ratio maximum likelihood, Discrimination.
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1-Introducation

It is well known that the inverse Gaussian distribution (IG)
and lognormal distribution (LOGN) are used to analyze
asymmetric positive data. In reliability and survival analysis we
need these distributions on modeling the failure time data.
Sometimes we see that both distributions fit our data. So, the
question is: Which one will be more preferable than the other?.
To answer this question, we use in this paper the likelihood ratio
test to discriminate between the IG and LOGN distributions.
Nine data sets have been taken to prove our test. Discriminating
between any two general probability distribution function was
studied by Atkinson (1969, 1970), Dumonceaux et al (1973),
Dumonceaux and Antle (1973), and Kundu and Manglick (2004,
2005).

This paper is organized as follows. Section 2 and section 3
show the properties of the IG and LOGN distributions,
respectively. In section 4 the description of the likelihood ratio
test 1s mentioned. Nine data sets are analyzed in section 5.

2-The Inverse Gaussian Distribution

The inverse Gaussian distribution is used to model non-
negative skewed data. This distribution referred to the theory of
Brownian motion because the distribution of the first passage
time of a Brownian motion belongs to the inverse Gaussian
(Cklikara and Floks 1988).

Inverse Gaussian distribution has many applications and uses
especially in reliability (survival analysis), and in the area on
natural and social sciences. Since it is a positively skewed
distribution, it has advantage over some other skewed
distributions like lognormal, gamma, and Weibull.

The p.d.f of an inverse Gaussian r.v X is
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where p>0 andA >0. The parameter pu represents the mean of

the distribution and A represents the scale parameter. There are
three other forms of (2.1) (Tweedie 1957).
The likelihood function of (2.1) is

L(u,1)= (Z"—JM [[x" Exp|:— zﬁ : Z{ (Xi; b’ H ........ 2.2)

i=1 i=1 i

And the natural logarithm of (2.2) is,

n n 3 1 A n. A1
LnL(p,A)=—InA——In(2%n)- =1 ) - 2N (23
nL(u,)="Ink - In2m)— n([ [x) 2u2;X|+ . 2g(xi)( )

From (2.3) one can obtain the m.l.e for pand A (Tweedie 1956)
as in the following:

3- The Lognormal Distribution
The lognormal distribution is considered as one of the

most popular distributions for modeling nonnegative skewed
data. The p.d.f of a lognormal r.v X is

1
xy2no?’

where 0 is the scale parameter, —o0<8<w , and o’ is the shape
parameter, ¢* > 0.

f(x;0,0%)= EXP[—ZLZ(lnx—O)Z} , x>0 ..(3.1)

(o)
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The likelihood function of the lognormal p.d.f is,

L(0,c’ )=f[(%) Q2mn) ™ (o)™ EXP[— 2; - Zn:(lnxi -e)z} (3.2)

The natural logarithm of (3.2) is,

n

LnL(G,cz)zzn:lnxi —gln(Zn)—gln(cz)—zl ~3(Inx, -6)*(3.3)

i=1 i=1

oIn(6,6 %)
00
get the m.l.e for 6 and o * as:

oln(0,0 %)
2

By solving 0 and =0 for (3.3), one can

4- Likelihood Ratio Test

A likelihood ratio test (LRT) is a statistical test relying on
statistics computed by taking the ratio of the maximum value of
the likelihood function.

Let X,,X, e ,X, be 1.1.d random variables from a known

distribution
(with p.d.f). Recall that the likelihood functions and their
logarithm are given, then the LRT (let us denote it here by L) is
defined as:

_L,(8,,6,)

L,(A,,4,)
where L,(6,,0,) and L,(&,,4,) are the likelihood function of a
known different p.d.f, and#,,0,, A, and A, are the m.l.e of@,,0,,
A, and i, , respectively.

L



Iraqi Journal of Statistical Sciences (13) 2008 [31]

Now, from our problem, we rewrite (4.1) as:

Lo Lie(@d)
LLOGN(O’C}Z)
By taking the natural logarithm of (4.2) and from (2.3), (2.4),
(2.5),(3.3), (3.4), and (3.5), one gets

1

n A — ~ .1 2 < 1
InL=—<In(AM)-3InG +A (= ——)== Y In(—)+1In(6 *)+1
n JM) n (X}[ngmx)mG)}

whereX, Gand H are the arithmetic, geometric, and harmonic
mean, respectively.

The hypothesis test will be:

H,= The data belong to IG distribution.
H,= The data belong to LOGN distribution.

Our decision to choose whether the data belong to the IG
or to the LOGN distribution is based on the value of (4.3). If
InL> 0 we choose IG distribution as fitted to the data, elsewhere

( InL<0) we prefer LOGN distribution as fitted to the data.

5- Analysis of Data

In this section we have taken nine data sets and three
simulated data in order to apply the formula (3.4) to discriminate
between the two mentioned distributions.
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5-1 Real Data Analysis

5.1.1 Data set (1)

This data set refers to (Von Alven, 1964). It represents the
active repair times (in hours) for an airborne communication
transceiver, the data are:
2,.3,.5,.5,.5,.5,.6,.6,.7,.7,.7,.8,.8,1,1,1,1,1.1,1.3,1.5,1.5,1.5,1.5,2,2
,2.2,2.5,2.7,3,3,3.3,3.3,4,4,4.5,4.7,5,5.4,5.4,7,7.5,8.8,9,10.3,22,24
5.

Table (1): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

IG LOGN
1=3.6065 6=0.6588
A=1.658 6=1.1018
K-S =0.0578 K-S =0.0866

Both K-S values are significant (i.e. the data belong to both
distributions). But the value of InL is 0.957 > 0, therefore the 1G
distribution is more suitable than LOGN distribution. Also, the
K-S distance of IG is less than the K-S of LOGN.
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Figure 1: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (1).
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Figure 2: The p.d.f for both distributions for data set (1).

5.1.2 Data set (2)

This data represent the test on endurance of deep groove
ball bearings (Lawless, 2003)
17.88,28.92,33,41.52,42.12,45.60,48.48,51.84,51.96,54.12,55.56,
67.80,68.64,68.64,68.88,84.12,93.12,98.64,105.12,105.84,127.92
,128.04,173.40

Table (2): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

1G LOGN
(=72.2243 6= 4.1505
A =231.6741 &5=0.52168

K-S =0.088 K-S =0.089
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The value of InL is — 0.0764 < 0, that is, the LOGN is best fitted

to these data than 1G. Despite that the K-S test values assumed
that these data belong to both distributions.
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Figure 3: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (2)
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Figure 4: The p.d.f for both distributions for data set (2)
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5.1.3 Data set (3)

The third data set (Linhart and Zucchini, 1956) represents
the failure times of the air conditioning system of an airplane.
The data are:
1,3,5,7,11,11,11,12,14,14,14,16,16,20,21,23,42,47,52,62,71,71,8
7,90,95,120,120,225,246,261

Table (3): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

1G LOGN
1=59.6 6= 3.3581
A=13.7613 6=1.3192
K-S =0.1944 K-S=0.127

Here both K-S tests assumed that these data are distributed 1G
and LOGN. The InL value 1s -2.7336 < 0, so we choose LOGN
distribution as the preferred distribution. Based on the K-S values
also we prefer to choose the LOGN distribution over IG
distribution.
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Figure 5: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (3)
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Figure 6: The p.d.f for both distributions for data set (3)

5.1.4 Data Set (4)

Gacula and Kubala (1975) give the following data on
shelf life (days) of a food product:
24,24,26,26,32,32,33,33,33,35,41,42,43,47,48,48,48,50,52,54,55,
57,57,57,57,61

Table (4): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

1G LOGN
[=42.88 6=3.718
A=484.2519 &=0.2924
K-S=0.1378 K-S =0.1359

Again, these data belong to the both distributions, but InL =
0.072 > 0. That 1s, the IG distribution is reasonable for them.
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Figure 7: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (4)
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Figure 8: The p.d.f for both distributions for data set (4).
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5.1.5 Data Set (5)

Ang and Tang (1975) use fracture toughnesses of MIG
welds
54.4,62.6,63.2,67,70.2,70.5,70.6,71.4,71.8,74.1,74.1,74.3,78.8,81
.8,83,84.4,85.3,86.9,87.3

Table (5): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

IG LOGN
[=743 6=4.3008
A=4924.07 &=0.1224
K-S=0.133 K-S=0.132

The value of InL is -0.0012 < 0. It suggest that the LOGN

distribution to be preferred over the IG distribution. According to
the K-S test these data belong to both distributions.
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Figure 9: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (5).
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Figure 10: The p.d.f for both distributions for data set (5).

5.1.6 Data Set (6)

The sixth set gives data of precipitation (inches) from Jug
Bridge, Maryland (Chhikara and Folks, 1978).
1.01,1.11,1.13,1.15,1.16,1.17,1.17,1.2,1.52,1.54,1.54,1.57,1.64,1.
73,1.79,2.09,2.09,2.57,2.75,2.93,3.19,3.54,3.57,5.11,5.62

Table (6): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

IG LOGN
n=2.1556 6=0.6375
A= 8.082 &= 0.4893

K-S =0.15 K-S =0.145

Because of the value of InL = 0.2815 > 0, we conclude that the
data well-fitted by the IG distribution.
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Figure 11: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (6).
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Figure 12: The p.d.f for both distributions for data set (6).
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5.1.7 Data set (7)

Here runoff amounts at Jug Bridge, Maryland are given
(Chhikara and Folks, 1978).
0.17,0.19,0.23,0.33,0.39,0.39,0.4,0.45,0.52,0.56,0.59,0.64,0.66,0.
7,0.76,0.77,0.78,0.95,0.97,1.02,1.12,1.24,1.59,1.74,2.92

Table (7): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

1G LOGN
1=0.8032 6= —0.4407
A=1.4397 &5=0.6682
K-S =0.07 K-S =0.0668

According to the values of K-S test of the two distributions, we
conclude that the data are very well described by these two
distributions. But InL = -0.0153 < 0, we prefer that the LOGN

distribution will be more reasonable.
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Figure 13: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (7).
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Figure 14: The p.d.f for both distributions for data set (7).

5.1.8 Data set (8)

Kumagai et al (1989) presented the following time series
data for toluene exposure concentrations (8 hr TWAs) for a
worker doing stain removing.
09,1.1,1.9,2.1,2.6,2.9,3.1,3.2,4.9,4.9,5.2,5.8,6.2,6.9,7.8,8.3,8.7,1
0.5,11.1,13.6,16.6,17.4,20.4,21.9,22.4,50.9,57.4,58.3,58.6,66.9

Table (8): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

IG LOGN
n=16.75 6=12.1643
A= 6.4641 &=1.1765
K-S =0.0952 K-S =0.099

According to the values of K-S test of the two distributions, we
conclude that the data are very well described by these two
distributions. But InL = 0.406 > 0, we prefer that the IG

distribution will be more reasonable.
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Figure 15: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (8).
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Figure 16: The p.d.f for both distributions for data set (8).
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5.1.9 Data Set (9)

Kumagai and Matsunaga (1995) give these data
1.5,1.7,2.1,2.2,2.4,2.5,2.6,3.8,3.8,4.2,4.3,5.6,6,7,7.5,9.3,9.9,10.2,
10.6,12.3,12.9,13.7,14.1,17.8,27.6,31,42,45.6,51.9,91.3,131.8

Table (9): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

IG LOGN
i = 19.0065 6=2.20393
A=17.2326 6=1.1733
K-S =0.088 K-S =0.095

The value of InL is 1.4611 > 0. It suggest that the IG distribution

to be preferred over the LOGN distribution. According to the K-
S test these data belong to both distributions.
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Figure 17: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (9).
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Figure 18: The p.d.f for both distributions for data set (9).

5-2 Simulated Data Analysis
5.2.1 Data Set (10)

This data set represents the LOGN with f=0.5and 6=1.5,

the data are:

0.2963,0.4447,0.483,0.5819,0.8603,0.9078,0.9095,1.0099,1.1677

,1.4404,1.4976,1.5451,1.6825,1.7319,2.0701,2.4695,2.6095,3.29

94,3.3531,3.498.

Table (10): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

1G LOGN
[1=1.59 0=0.252
1=27 &=0.6903

K-S = 0.0833 K-S = 0.07489

According to the values of K-S test of the two distributions, we
conclude that the data are very well described by these two
distributions. But InL = -0.00236 < 0, we prefer that the LOGN

distribution will be more reasonable.
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Figure 19: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (10).
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Figure 20: The p.d.f for both distributions for data set (10).
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5.2.2 Data Set (11)
This data set represents the IG with 4=75and 1=290, the

data are:
26.6183,27.635,29.9275,31.609,34.8973,41.1112,44.2393,46.692
7,50.645,51.5158,57.5755,59.1067,60.3766,62.2319,65.4591,67.
3522,67.754,69.5194,73.7422,74.0017,75.2821,85.4949,90.9635,
92.0092,92.1252,92.6779,97.1245,99.2954,110.7208,118.0211,1
18.1289,122.0813,124.4119,148.0396,198.2293.

Table (11): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

1G LOGN
f1=77.33 O=4.2352
A=295.406 6=0.4845

K-S = 0.0625 K-S = 0.06347

Both K-S values are significant, but the value of InL is 0.07 > 0,

therefore the IG distribution 1s more suitable than LOGN
distribution.
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Figure 21: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (11).
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Figure 22: The p.d.f for both distributions for data set (11).
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5.2.3 Data Set (12)
This data set represents the LOGN with @=3.5and
o=1.5 the data are:

1.2763,2.9858,5.4538,6.7889,7.2721,7.2887,8.3074,9.8983,12.61
15,26.1781,30.3021,30.8047,32.1469,32.1603,46.0156,48.7135,5
8.5866,70.9242,73.1941,80.3927,83.2372,90.2786,197.6024,276.
6387,419.3244.

Table (12): The m.l.e for both distribution parameters and
Kolmogrove- Smirnove (K-S) statistic

IG LOGN
[1=66.33 0=3.3403
1=12.839 6=1.4008

K-S=0.1379 K-S =0.09281

Both K-S values are significant, but the value of InL is -1.4218 >
0, therefore the LOGN distribution is more suitable than IG
distribution.
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Figure 23: The CDF for both distributions and the ECDF
(Kolmogrove- Smirnove CDF) for data set (12).
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Figure 24: The p.d.f for both distributions for data set (12).

6- Conclusions

1- Through tables (1), (4), (6), (8),(9), and (11) we see that these
data have the same distributions according to the value of K-S
test but the value of InL suggests that these data to have the

IG distribution rather than the LOGN distribution.

2- From tables (2), (3), (5),(7),(10), and (12) the data have both
distributions, but according to the value of InL the LOGN

distribution 1s more suitable than IG distribution.
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