افضل تقدير لمعولية توزيع ويبل ذي المعلمتين

صادق مولی جعفر* انتصار عبید حسون***

تاريخ قبول النشر 15 /4/2009

الخلاصة:

يتناول هذا البحث أستخدام المحاكاة في تقدير معلمتين الشكل والقياس ومن ثم دالة المعولية لتوزيع ويبل ذي المعلمتين (α,β) ، وقد أعتمدت طريقة الامكان الاعظم وطريقة وايت، في تقدير المعلمات وبالتالي طبقت المحاكاة في توليد البيانات لحجوم عينات ثلاث هي n=10,70,150 وكررت التجربة (R=500)، وأجريت المقارنه بين المقدرات من خلال المقياس الاحصائي Mean Square Error كما هو موضح في متن المحث

الكلمات مفتاحية: توزيع ويبل, المعولية, طريقة الامكان الاعظم, طريقة وايت, طريقة نيوتن-رافسون, المحاكاة

المقدمة

إن الاهتمام الواسع والمتزايد بدراسة موضوع المعوليه ، يعود الى التطور التكلوجي و التقني السريع وأستخدام الانظمة الالكترونية المعقدة في مختلف المجالات.

وعلى هذا الاساس فان دراسة موضوع المعولية والربط بين الجانبين النظري والتطبيقي أمر له أهمية كبيرة ، لأن يعد المؤشر لبيان مدى كفاءة وقدرة الماكنة والنظام على العمل من دون اعطال لمدة زمنية طويلة ، مما يؤدي الى تقويم عمل المكان والانظمة المختلفة واستغلالها الاستغلال الامثل لغرض زيادة انتاجية هذه الانظمة كما ونوعاً وكذلك يساهم في التطوير الهندسي لهذه الانظمة .

ومن هنا جاء هدف البحث في الوصول الى مقدرات دالة المعولية لتوزيع ويبل ذي المعلمتين من خلال دراسة طريقتين في تقدير دالة معوليه التوزيع المحكور ، وقد تم أستعمال أسلوب المحاكاة (Simulation) وأستخدام المقياس الاحصائي متوسط مربعات الخطأ (MES) للمقارنة بين طريقة ي التقدير وهما طريقة الامكان الاعظم وطريقة وايت .

هدف البحث

يهدف البحث الى تقدير معولية توزيع ويبل ذي المعلمتين والوصول الى افضل مقدر بواسطة المحاكاة ، والمقارنه بين مقدري الامكان الاعظم ومقدر وايت بواسطة متوسط مربعات الخطأ التجريبي وفق برامج خاصة اعدت لهذا الغرض. الجاتب النظري [1, 2, 3, 4, 5, 6, 7]

توزيــــع ويبـــــل ذي المعلمتـــين : Two Parameter Weibull Distribution

يعد توزيع ويبل من أهم التوزيعات المستخدمة بشكل واسع في تطبيقات المعولية واختبارات الحياة

أما دالة الكثافة الاحتمالية لهذا التوزيع فهي:

حيث أن :

Shape Parameter تمثل معلمة الشكل $\alpha > 0$ Scale Parameter تمثل معلمة القباس $\beta > 0$

وتكون دالة التوزيع التجميعية (c. d. f.) كما

$$F(t) = \Pr(T \le t) = \int_{0}^{t} f(u) du$$

$$[t^{\alpha}]$$

$$=1-\exp\left[-\frac{t^{\alpha}}{\beta}\right] \quad \dots \quad (2)$$

وكذلك فأن دالة البقاء

$$R(t) = 1 - F(t) = \exp\left[-\frac{t^{\alpha}}{\beta}\right] \dots (3)$$

أما دالة المخاطرة (Hazard Function) تكون كما يأتي :-

^{*}قسم علوم الحياة /كلية العلوم / جا معة بغداد

^{* *} مركز الحاسبة / كلية الادارة والاقتصاد / جامعة بغداد

^{***} قسم الرياضيات/كلية التربية / جامعة البصرة

طرائق تقدير معلمتي توزيع ويبل ذي المعلمتين

Method)

وهي أحدى اهم طرائق التقدير التي تهدف الي جعل دالة الامكان للمتغيرات العشوائية في نهايتها العظمى . ولايجاد القيم التقديرية لكل منَّ معلمتي الشكل والقياس يتم أخذ المشتقات الجزئية لدالــة الامكان للمعادلة (1) وكما يأتي

$$L(t_1, t_2, \dots, t_n, \alpha, \beta) = \left(\frac{\alpha}{\beta}\right)^n \left(\prod_{i=1}^n t_i^{\alpha-1}\right) \exp \left(-\frac{\sum_{i=1}^n t_i^{\alpha}}{\beta}\right) \dots$$

$$\frac{\partial LnL}{\partial \alpha} = \frac{n}{\hat{\alpha}} - \frac{\sum_{i=1}^{n} t_i^{\alpha} Lnt_i}{\beta} + \sum_{i=1}^{n} Lnt_i = 0 \dots (5)$$

$$\frac{\partial LnL}{\partial \beta} = -\frac{n}{\hat{\beta}} + \frac{\sum_{i=1}^{n} t_i^{\alpha}}{\hat{\beta}^2} = 0$$

$$\dots (6) \hat{\beta} = \frac{\sum_{i=1}^{n} t_i^{\hat{\alpha}}}{n}$$

و لا يمكن حل المعادلة (5) بالطرائق الاعتبادية وذلك بسبب ارتفاع درجة اللاخطية فيها للذلك يمكن حلها باستخدام أحدى الطرائق العددية لحل المعادلات غير الخطية مثل طريقة نيوتن _ ر افسون (Newton-Raphson) وعلى النحو الاتي:-

$$\hat{\alpha}_{j} = \hat{\alpha}_{j-1} - \frac{g(\alpha_{j-1})}{g(\alpha_{j-1})}$$

$$g(\hat{\alpha}) = \frac{\sum_{i=1}^{n} t_{i}^{\hat{\alpha}} Lnt_{i}}{\sum_{i=1}^{n} t_{i}^{\hat{\alpha}}} - \frac{1}{\hat{\alpha}} - \frac{\sum_{i=1}^{n} Lnt_{i}}{n} \dots (7)$$

$$g(\alpha) = \frac{\partial g(\hat{\alpha})}{\partial \hat{\alpha}} = \frac{\sum_{i=1}^{n} t_i^{\hat{\alpha}} \sum_{i=1}^{n} t_i^{\hat{\alpha}} (Lnt_i)^2 - (\sum_{i=1}^{n} t_i^{\hat{\alpha}} (Lnt_i))^2}{\sum_{i=1}^{n} t_i^{\hat{\alpha}}} + \frac{1}{\hat{\alpha}^2}$$

$$\dots(8)$$

وبذلك نحصل على تقديرات α ل ومن ثم α والتي هي تقديرات غالبا متحيزة عندما تكون العينات صغيرة (أقل من 20) وفي حالة العينات كبيرة تكون التقديرات غير متحيزة[8].

وبما أن مقدرات الامكان الاعظم تتصف بخاصية الثبات ، لذلك وباستخدام هذه الخاصية نحصل على مقدر الامكان الاعظم لداله المعولية لتوزيع ويبل ذي المعلمتين كما يأتي :-

$$\hat{R(t)} = \exp\left[-\frac{t^{\hat{\alpha}}}{\hat{\beta}}\right] \dots (9)$$

طریقة وایت White's Method

تعتمد هذه الطريقة في تطبيقها بصورة أساسية على دالة (c . d . f) دالة (c . d . f

$$\therefore Ln[Ln[\frac{1}{R(t)}]] = Ln\frac{1}{\beta} + \alpha Lnt_i \dots (10)$$

أصبح لدينا أنموذج أنحدار خطى:

$$y_i = a + b x_i + r_i$$
 (11)

أذ أن r_i يمثل حد الخطأ i=1,2,....,n

$$y_i = Ln[Ln[\frac{1}{R(t_i)}]], a = Ln(\frac{1}{\beta}).....(12)$$
 وأن

 $b = \alpha$, $x_i = -\ln t_i$ و باستعمال طريقة المربعات الصغرى (OLS) فان

$$\hat{y}_i = \hat{a} + \hat{b} x_i$$

مجلد 6(4) 2009 مجلة بغداد للعلوم

المحاكاة [9]

أن استخدام أسلوب المحاكاة في توليد بيانات ذات توزيع معين من أجل أيجاد افضل تقدير لمعلمات هذا التوزيع ، تعتبر من الاساليب المهمه ، ولو أن البيانات التطبيقية تعتبر ذات مغزى افضل ، لكن عملية توليد البيانات وتكرار التجربة بتغير المدخلات المعطاة في كل مرة يساهم في شرح وفهم طبيعة التجربة المعتمدة ، ولذلك سنطبق أسلوب المحاكاة وفق برامج خاصة اعدت لهذا الغرض ، وقد تم اختيار ثلاث نماذج تتضمن قيم مُخْتَلُفَة لمعلَمتي الشكل و القياس وكذَّلك تم اختيار ثلاث حجوم افتراضية لحجم العينه ، وكررت التجربة R=500 ، واعتمد متوسط مربعات الخطأ في المقارنة بين طريقتي التقدير .

حيث تم أُختيار ثلاث نماذج

النموذج الأول $I/\alpha = 0.8$ $\beta = 0.9$

 $\beta = 1.5$ النموذج الثاني $\alpha = 1.2$

النموذج الثالث $\alpha = 2.5$

وتم اختيار ثلاث قيم افتراضية لحجم العينه n = 10, 70, 150

وتكرار التجربة R=500 وكانت النتائج موضحة في الجداول التالية والمرقمة من (1) الى (9).

$$\hat{b}_{LS} = \frac{\sum_{i=1}^{n} yixi - \frac{\sum_{i=1}^{n} xi\sum_{i=1}^{n} yi}{n}}{\sum_{i=1}^{n} X_{i}^{2} - \frac{(\sum xi)^{2}}{n}}....(13)$$

$$\hat{a}_{LS} = \overline{y} - \hat{b}_{LS} \overline{x}$$

$$\stackrel{\wedge}{eta}$$
 و $\stackrel{\wedge}{lpha}$ عيث يمكن الحصول على $lpha$ و كما يأتى :

$$\hat{eta}$$
 و \hat{lpha} و حيث يمكن الحصول على \hat{lpha} و كما يأتي : $\hat{lpha}=\hat{b}_{LS}$ $\hat{eta}=e^{-\hat{a}_{LS}}$ $\left. ...(14)
ight.$

$$\hat{R(t)} = \exp \left[-rac{t^{lpha}}{\hat{eta}}
ight]$$
: يكون $\hat{R}(t)$

جدول (1): قيم تقدير معلمة الشكل lpha ومتوسط مربعات الخطأ لمعلمة الشكل لتوزيع ويبل ذي المعلمتين لكلا الطريقتين ولكافة أحجام العينات ولكافة النماذج لتجربة عدد مكرراتها R=500

النماذج	n	MLE	OLS	MSE(ML)	MSE(OLS)
	10	0.80252	0.80000	0.00500	0.00000
I	70	0.78578	0.80000	0.00107	0.00000
	150	0.78266	0.80000	0.00068	0.00000
	10	0.80252	1.19999	0.16298	0.00000
II	70	0.78578	1.19999	0.17245	0.00000
	150	0.78266	1.19999	0.17454	0.00000
	10	0.80252	2.49999	2.88643	0.00000
III	70	0.78578	2.49999	2.93941	0.00000
	150	0.78266	2.49999	2.94961	0.00000

جدول (2): قيم تقدير معلمة القيا س β ومتوسط مربعات الخطأ لمعلمة الشكل لتوزيع ويبل ذي المعلمتين لكلا الطريقتين ولكافة أحجام العينات ولكافة النماذج لتجربة عدد مكرراتها R=500

			11-500	, 4-,,,,,,	ــــــ رـــــ ، ـــــــن
النماذج	n	MLE	OLS	MSE(ML)	MSE(OLS)
	10	0.8298	0.44930	0.02140	0.2031
I	70	0.83783	0.44932	0.00670	0.2031
	150	0.83598	0.44932	0.00536	0.2031
	10	0.7872	0.30119	0.52293	1.43713
II	70	0.79483	0.30119	0.4998	1.43713
	150	0.79308	0.30119	0.50087	1.43713
	10	0.984	0.08208	1.05545	3.67839
III	70	0.99354	0.08208	1.01693	3.67839
	150	0.99135	0.08208	1.01916	3.67839

مجلة بغداد للعلوم مجلد 4)6 مجلة بغداد للعلوم

جدول (3): قيم تقدير دالة المعولية لتوزيع ويبل ذي المعلمتين لكلا الطريقتين ولكافة احجام العينات للانموذج الاول لتجربة عدد مكرراتها 800=R.

		. K-3	11 ACC.	اهون سبربه ح
n	ti	Real	MLE	OLS
	0.1	0.8385	0.8209	0.7028
	0.2	0.7359	0.7114	0.5411
	0.3	0.6544	0.6256	0.4277
	0.4	0.5864	0.5550	0.3433
10	0.5	0.5283	0.4953	0.2785
	0.6	0.4779	0.4441	0.2279
	0.7	0.4337	0.3997	0.1877
	0.8	0.3948	0.3608	0.1554
	0.9	0.3601	0.3266	0.1293
	0.1	0.83853	0.82141	0.70277
	0.2	0.73594	0.71280	0.54111
	0.3	0.65436	0.62803	0.42765
	0.4	0.58635	0.55832	0.34326
70	0.5	0.52826	0.49945	0.27852
	0.6	0.47788	0.44891	0.22787
	0.7	0.43374	0.40501	0.18767
	0.8	0.39476	0.36655	0.15540
	0.9	0.36012	0.33263	0.12929
	0.1	0.83853	0.82048	0.70277
	0.2	0.73594	0.71168	0.54111
	0.3	0.65436	0.62690	0.42765
	0.4	0.58635	0.55724	0.34326
150	0.5	0.52826	0.49847	0.27852
	0.6	0.47788	0.44803	0.27852
	0.7	0.43374	0.40424	0.22787
	0.8	0.39476	0.36589	0.15540
	0.9	0.36012	0.33206	0.12929

جدول (4): قيم تقدير دالة المعولية لتوزيع ويبل ذي المعلمتين لكلا الطريقتين ولكافة احجام العينات للانموذج الثاني لتجربة عدد مكرراتها R=500.

n ti Real MLE OLS 0.1 0.95880 0.81224 0.81100 0.2 0.90788 0.69852 0.61799 0.3 0.85453 0.61010 0.45708 0.4 0.80090 0.53777 0.33098 10 0.5 0.74812 0.47706 0.23570 0.6 0.69687 0.42526 0.16553 0.7 0.64756 0.38059 0.11485 0.8 0.60046 0.34173 0.07885 0.9 0.55572 0.30770 0.05362 0.1 0.95880 0.81273 0.81100 0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8			. K-30	10 41 /1/14 11	اسي سبرب
0.2 0.90788 0.69852 0.61799 0.3 0.85453 0.61010 0.45708 0.4 0.80090 0.53777 0.33098 0.5 0.74812 0.47706 0.23570 0.6 0.69687 0.42526 0.16553 0.7 0.64756 0.38059 0.11485 0.8 0.60046 0.34173 0.07885 0.9 0.55572 0.30770 0.05362 0.1 0.95880 0.81273 0.81100 0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.	n	ti	Real	MLE	OLS
0.3 0.85453 0.61010 0.45708 0.4 0.80090 0.53777 0.33098 0.5 0.74812 0.47706 0.23570 0.6 0.69687 0.42526 0.16553 0.7 0.64756 0.38059 0.11485 0.8 0.60046 0.34173 0.07885 0.9 0.55572 0.30770 0.05362 0.1 0.95880 0.81273 0.81100 0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.		0.1	0.95880	0.81224	0.81100
10 0.4 0.80090 0.53777 0.33098 0.5 0.74812 0.47706 0.23570 0.6 0.69687 0.42526 0.16553 0.7 0.64756 0.38059 0.11485 0.8 0.60046 0.34173 0.07885 0.9 0.55572 0.30770 0.05362 0.1 0.95880 0.81273 0.81100 0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453		0.2	0.90788	0.69852	0.61799
10 0.5 0.74812 0.47706 0.23570 0.6 0.69687 0.42526 0.16553 0.7 0.64756 0.38059 0.11485 0.8 0.60046 0.34173 0.07885 0.9 0.55572 0.30770 0.05362 0.1 0.95880 0.81273 0.81100 0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090		0.3	0.85453	0.61010	0.45708
0.6 0.69687 0.42526 0.16553 0.7 0.64756 0.38059 0.11485 0.8 0.60046 0.34173 0.07885 0.9 0.55572 0.30770 0.05362 0.1 0.95880 0.81273 0.81100 0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.74812 0.		0.4	0.80090	0.53777	0.33098
0.7 0.64756 0.38059 0.11485 0.8 0.60046 0.34173 0.07885 0.9 0.55572 0.30770 0.05362 0.1 0.95880 0.81273 0.81100 0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.6968	10	0.5	0.74812	0.47706	0.23570
0.8 0.60046 0.34173 0.07885 0.9 0.55572 0.30770 0.05362 0.1 0.95880 0.81273 0.81100 0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.6475		0.6	0.69687	0.42526	0.16553
0.9 0.55572 0.30770 0.05362 0.1 0.95880 0.81273 0.81100 0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.6004		0.7	0.64756	0.38059	0.11485
0.1 0.95880 0.81273 0.81100 0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.8	0.60046	0.34173	0.07885
0.2 0.90788 0.69989 0.61799 0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.9	0.55572	0.30770	0.05362
0.3 0.85453 0.61245 0.45708 0.4 0.80090 0.54102 0.33098 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.1	0.95880	0.81273	0.81100
0.4 0.80090 0.54102 0.33098 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.2	0.90788	0.69989	0.61799
70 0.5 0.74812 0.48107 0.23570 0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.3	0.85453	0.61245	0.45708
0.6 0.69687 0.42991 0.16553 0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.4	0.80090	0.54102	0.33098
0.7 0.64856 0.38572 0.11485 0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885	70	0.5	0.74812	0.48107	0.23570
0.8 0.60046 0.34723 0.07885 0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.6	0.69687	0.42991	0.16553
0.9 0.55572 0.31345 0.05362 0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.7	0.64856	0.38572	0.11485
0.1 0.95880 0.81175 0.81100 0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.8	0.60046	0.34723	0.07885
0.2 0.90788 0.69872 0.61799 0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.9	0.55572	0.31345	0.05362
0.3 0.85453 0.61127 0.45708 0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.1	0.95880	0.81175	0.81100
0.4 0.80090 0.53991 0.33098 150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.2	0.90788	0.69872	0.61799
150 0.5 0.74812 0.48006 0.23570 0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.3	0.85453	0.61127	0.45708
0.6 0.69687 0.42900 0.16553 0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885		0.4	0.80090	0.53991	0.33098
0.7 0.64756 0.38493 0.11485 0.8 0.60046 0.34654 0.07885	150	0.5	0.74812	0.48006	0.23570
0.8 0.60046 0.34654 0.07885		0.6	0.69687	0.42900	0.16553
		0.7	0.64756	0.38493	0.11485
0.9 0.55572 0.31286 0.05362		0.8	0.60046	0.34654	0.07885
		0.9	0.55572	0.31286	0.05362

جدول (5): قيم تقدير دالة المعولية لتوزيع ويبل ذي المعلمتين لكلا الطريقتين ولكافة احجام العينات للانموذج الثالث لتجربة عدد مكرراتها R=500.

n	ti	Real	MLE	OLS
	0.1	0.99842	0.84652	0.96220
	0.2	0.99109	0.75009	0.80418
	0.3	0.97565	0.67293	0.54851
	0.4	0.95066	0.60813	0.29148
10	0.5	0.9154	0.55237	0.11606
	0.6	0.86985	0.50368	0.03346
	0.7	0.81466	0.46073	0.00677
	0.8	0.75109	0.42253	0.00093
	0.9	0.68098	0.38837	0.00008
	0.1	0.99842	0.84711	0.9622
	0.2	0.99109	0.75160	0.80418
	0.3	0.97565	0.67546	0.54851
	0.4	0.95066	0.61164	0.29148
70	0.5	0.91540	0.55677	0.11606
	0.6	0.86985	0.50884	0.03346
	0.7	0.81466	0.46653	0.00677
	0.8	0.75109	0.42887	0.00093
	0.9	0.68098	0.39513	0.00008
	0.1	0.99842	0.84631	0.96220
	0.2	0.99109	0.75063	0.80418
	0.3	0.99109	0.67447	0.54851
	0.4	0.95066	0.61069	0.29148
150	0.5	0.91540	0.55589	0.11606
	0.6	0.86985	0.50806	0.03346
	0.7	0.81466	0.46585	0.00677
	0.8	0.75109	0.42828	0.00093
	0.9	0.68098	0.39463	0.00008

جدول (6): قيم متوسط مربعات الخطأ (MSE) لتقدير دالة المعولية لتوزيع ويبل ذي المعلمتين لكلا الطريقتين ولكافة احجام العينات للانموذج الاول ولتجربة عدد مكرراتها . R=500

			. K-300
n	ti	MLE	OLS
	0.1	0.0022	0.0184
	0.2	0.0035	0.0380
	0.3	0.0043	0.0514
	0.4	0.0047	0.0591
10	0.5	0.0049	0.0624
	0.6	0.0049	0.0625
	0.7	0.0048	0.0606
	0.8	0.0047	0.0573
	0.9	0.0044	0.0533
	0.1	0.00058	0.01843
	0.2	0.00099	0.03795
	0.3	0.00124	0.05139
	0.4	0.00138	0.05909
70	0.5	0.00144	0.06236
	0.6	0.00145	0.06250
	0.7	0.00142	0.06055
	0.8	0.00137	0.05729
	0.9	0.00130	0.05328
	0.1	0.00045	0.01843
	0.2	0.00078	0.03795
	0.3	0.00099	0.05139
	0.4	0.00111	0.05909
150	0.5	0.00115	0.06236
	0.6	0.00116	0.06250
	0.7	0.00113	0.06055
	0.8	0.00109	0.05729
	0.9	0.00103	0.05328

مجلة بغداد للعلوم مجلد 4)6 مجلة بغداد للعلوم

جدول (7): قيم متوسط مربعات الخطأ (MSE) لتقدير دالة المعولية لتوزيع ويبل ذي المعلمتين لكلا الطريقتين ولكافة احجام العينات للانموذج الثاني ولتجربة عدد مكرراتها R=500

		. 14-500
ti	MLE	OLS
0.1	0.02348	0.02184
0.2	0.04694	0.08403
0.3	0.06339	0.15796
0.4	0.07311	0.22081
0.5	0.07738	0.26257
0.6	0.07758	0.28232
0.7	0.07493	0.28377
0.8	0.07040	0.27207
0.9	0.06476	0.25210
0.1	0.02164	0.02184
0.2	0.04375	0.08403
0.3	0.05918	0.15796
0.4	0.06816	0.22081
0.5	0.07194	0.26257
0.6	0.07189	0.28232
0.7	0.06916	28377
0.8	0.06470	0.27207
0.9	0.05923	0.25210
0.1	0.02175	0.02184
0.2	0.04396	0.08403
0.3	0.05943	0.15796
0.4	0.06839	0.22081
0.5	0.07213	0.26257
0.6	0.07202	0.28232
0.7	0.06924	0.28377
0.8	0.06473	0.27207
0.9	0.05922	0.25210
	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.02348 0.2 0.04694 0.3 0.06339 0.4 0.07311 0.5 0.07738 0.6 0.07758 0.7 0.07493 0.8 0.07040 0.9 0.06476 0.1 0.02164 0.2 0.04375 0.3 0.05918 0.4 0.06816 0.5 0.07194 0.6 0.07189 0.7 0.06916 0.8 0.06470 0.9 0.05923 0.1 0.02175 0.2 0.04396 0.3 0.05943 0.4 0.06839 0.5 0.07213 0.6 0.07202 0.7 0.06924 0.8 0.06473

جدول (8): قيم متوسط مربعات الخطأ (MSE) لتقدير دالة المعولية لتوزيع ويبل ذي المعلمتين لكلا الطريقتين ولكافة احجام العينات للانموذج الثالث ولتجربة عدد مكرراتها

n	ti	MLE	OLS
	0.1	0.02448	0.00131
	0.2	0.06041	0.03493
	0.3	0.09454	0.18244
	0.4	0.12056	0.43452
10	0.5	0.13521	0.63984
	0.6	0.13759	0.69954
	0.7	0.12879	0.65268
	0.8	0.11144	0.56274
	0.9	0.8903	0.46362
	0.1	0.02311	0.00131
	0.2	0.05772	0.03493
	0.3	0.09056	0.18244
	0.4	0.11544	0.43452
70	0.5	0.12916	0.63894
	0.6	0.13088	0.69954
	0.7	0.12175	0.65268
	0.8	0.10439	0.56274
	0.9	0.08226	0.46362
	0.1	0.02322	0.00131
	0.2	0.05798	0.03493
	0.3	0.09090	0.18244
	0.4	0.11580	0.43452
150	0.5	0.12948	0.63894
	0.6	0.13114	0.69954
	0.7	0.12194	0.65268
	0.8	0.10446	0.56274
	0.9	0.08224	0.46362

جدول (9): قيم متوسط مربعات الخطأ التكاملي (IMSE) لتقدير دالة المعولية لتوزيع ويبل ذي المعلمتين لكلا الطريقتين ولكافة أحجام العينات عندها لتجربة عدد مكرراتها

			11-0
النماذج	n	MLE	OLS
I	10	0.00430	0.05140
	70	0.00124	0.05142
	150	0.00098	0.05142
П	10	0.06355	0.20416
	70	0.05885	0.20416
	150	0.05898	0.20416
III	10	0.10022	0.40785
	70	0.09502	0.40785
	150	0.09523	0.40785

الاستنتاجات والتوصيات

الاستنتاجات

1- لوحظ أنه جميع مقدر ات الامكان الاعظم أعطت أقل MSE ولجميع قيم $_{i}$ ، وحجوم العينات المختلفة وهذا واضح في الجداول 1 الى 9 مقارنه بمقدار وايت بواسطة OLS .

2- اعتمدت طريقة وايت ، لصعوبة مقدرات الامكان الاعظم لان المشتقات الناتجة منها دوال غير خطية.

التوصيات

1- يوصى الباحثون باعتماد طريقة ML للعينات المتوسطة والكبيرة ، في حين يمكن أعتماد طرق أخرى مثل وايت ، ووايت المطورة وطريقة Mix في حالة العينات الصغيرة .

2- نوصي باعتماد مقدرات ML في الحصول على افضل تقدير لدالة المعولية بسبب خاصية الثابت التي تتملكها طريقة الامكان الاعظم ، وكذلك للنتائج الصغيرة لقيم MSE التي تم الحصول عليها .

المصادر:

- 1. الدراجي ، الحان نهاد جمعه 2004 " استخدام المحاكاة للمقارنه بين بعض مقدرات معلمة القياس ودالة المعولية للنظام المتسلسل لتوزيع ويبل ، رسالة ماجستير – كلية العلوم الجامعه المستنصرية .
- 2. الناصر . عبد المجيد حمزة واخرون 2001 "مقارنه طرائق تقدير المعولية للبيانات الكاملة باستخدام المحاكاة مع تطبيقا عملياً "مجلد وقائع المؤتمر القطري الثاني للعلوم الاقتصادية جامعة الموصل كلية علوم الحاسبات والرياضيات .
- 3. صالح مكي اكر 2006 " محاكاة طرائق تقدير معلمة القياس ودالة المعولية لتوزيع ويبل ذي معلمتين " اطروحة دكتوراه مقدمة الى كلية التربية الجامعة المستنصرية.

مجلة بغداد للعلوم مجلد 6(4) 2009

- Censord Samples." J. Statist. Comput. Simulation, 73 (2): 145-153. Parameters:
- 7. Singh,H.P. and Shukla,S.K. 2000 "Estimation the two parameter Weibull Distribution with Prior Information "IAPQR, Transaction, 25 (2) ,107-118.
- 8. Lawless, J.F.and Jerald,F. 1982. Statistical Model and Methods for Lifetime Data. Wiley, NewYork, PP 141-180.
- 9. Morgan ,B 1984 " Element Of Simulation " . Chapman And Hall , London , PP 12-84.

- **4.** Sinha , S.K, 1985 " Bayes Estimation Of Reliability Function Of Normal Distribution " IEEE Trans . 34 (2): 360 -364
- 5. Hon, K. T. and Zhu, W. 2009 " Statistical Estimation for the Weibull parameters of Distribution based on **Progressivly** Type-1 Interval censored Sample Journal of Statistical Computation and Simulation. 79 ,ISSUE 2, 145-159
- **6.** Hossain, A.M., Zimmer, W. J., 2003." Comparison of Estimation methods for Weibull Complete and

Best estimation for the Reliability of 2-parameter Weibull Distribution

Sadeq M. Jaafar*

Baydaa I. Abdulwahhab**

Intasar A. Hasson***

Key words: Weibull distribution, Reliability, Maximum Likelihood Method, White's Method, Newton-Raphson, Simulation.

Abstract:

This Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (α =0.8 , β =0.9) , (α =1.2 , β =1.5) and (α =2.5 , β =2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.

^{*}Department of Biology / College of Science/ University of Baghdad

^{**}Computer Center/ College of Administration&Economics/ University of Baghdad

^{***}Department of Mathematics/College of Education/University of Basrah