## Synthesis and Characterization of Some New Phenolic Schiff Bases Derivatives

Iman Mehdi Mohammed Hasan\* Sanaa H. Saleh\*

Received 15, January, 2012 Accepted 26, June , 2012

### Abstract:

Starting from bis (4,4'-diamino phenoxy) ethan(1), a variety of phenolicschiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR Elemental analysis, some derivatives evaluated by thermal analysis (TGA).

### Keywords: phenoxy ethane, phenolic schiff bases.

### Introduction:

The development of simple Synthetic routes to widely used organic compound using readily available reagents is one of the main objectives of organic Synthesis. The use of Schiff bases covered a wide area applications, in industry and biological field[1]. In industry (phenolic, methylolic, epoxy) Schiff bases were used as a rubber accelerators[2], antioxidants[3] and corrosion inhibitors[2]. They have wide industrial applications as photostabilizers polyethylene. for In analytical chemistry Schiff bases were used for uptake of metal ions[4], and the methylolic resins of some phenolic Schiff bases are used in the accurate determination of trace elements in dilute solution, which is often hindered due to the sensitivity limits of the equipment used for the purpose[5], in this study number of methylolic, etheric and epoxy Schiff bases[6] were prepared from condensation reaction of aromatic aldehyde with [bis(4,4- diaminophenoxy) ethane], the methylolic, etheric and epoxy resins were prepared condensation through with formaldehyde, alcohol, eipychlorohydrine and piperdine, respectively.

#### Materiala and Methods: General

Melting points were determined on Gallen kamp, melting point apparatus and were uncorrected. FTIR spectra of the compounds were recorded on a (SHIMADZU) FTIR. 8300 Spectrometer as KBR-disc,  ${}^{1}H - NMR$ ,  ${}^{13}C - NMR$  spectra were recorded at 200.13-50.32  $MH_z$ , respectively using tetra methyl Silane (TMS) as an internal standard, (DMSO as a solvent. Elemental analysis were run using a perkin-Elmer RE 2400 (C.H.N) analyzer, thermal stability TGA.

All analysis were performed in center of consultation/ University of Jordan.

### Materials

All the chemical used were supplied by (Merk, Fluka and BDH) chemicals, the solvents purified by distillation and dried with calcium chloride.

#### Measurement and Techniques

The purity of products were investigated by (T.L.C) technique by using a mixture of benzene – ethanol (5:5 v/v) as elute and iodine chamber for spot location.

#### Thermal graviemetric Analysis (TGA)

Curing of the prepared Schiff bases resins were evaluated by using (thermogravimetric analysis TGA using (NETZSCHESTA/409-PG/PC. Mode/ Type of Meas (DTA-TG).

The programmed heating rate of 200C/ min from (25-1000) oC under inter atmosphere (N2 gas). So that heat lost or absorbed were recorded fig (15-18) and analyzed table (4).

## Synthesis Bis (4,4'- diamino phenoxy) ethane (1) [7] :

Alcoholic sodium hydroxide (0.2mol, 8gm) in 20m/abs. ethanol with (0.02mol, 2.91gm) (p-hydroxy aniline).

To mix admixture until all the solid dissolved, then solve with (0.01mol, 0.64ml) (dibromo ethane). Refluxing 3h, the solute to a pour for groats ice, the solute to come into Being, filtered and recrystallized in ethanol (m.p 238 -240 ° C) solid, violet.

### Synthesis of phenolic Schiff base(2) [6]:

Phenolic Schiff base [2] were prepared by well established procedure in the literature[8], condensing (0.02mol, 4.9gm) compound (1) with (0.04mol, 4.9gm) p-hyroxy benzaldehyde, the purity of the products were investigated by T.L.C (m.p 212 - 214 ° C) solid, red..

# Synthesis of methylolic phenolic Schiff base resin (3) [8] :

A250ml necks round bottomed flask equipped stirrer, condenser and wih mechanical thermometer, the flask was immersed in water bath, then charged with (0.05mol) of phenolic schiff base [2] and (0.05mol, 1.5ml) formaldehyde solution (41-37)%. in 50ml (THF) tetra hydrofuran, the reactants were then mixed gently with ethanolic sodium hydroxide solution (10%) was added portion wise to kept the PH of the reaction mixture (9-10), then heated the mixture in oil bath (50-60) ° C for 3h, the reaction mixture was cooled (5-10) ° C and neutralized with alcoholic phosphoric acid (10%) solution. Organic layer was separated and purified by dissolving in (THF), then filtered to get rid of salt, the product solution was dried using molecular sieves, the solvent was distilled of by rotory evapourator, and the final product was dried in vacuum oven for 24h at 40 ° C.

# Synthesis of etheric methylolic Schiff base (4-6) [9]:

To mix an appropriate alcohol  $(CH_3OH)$ ,  $C_3H_7OH$ ,  $C_4H_9OH$ ) respectively (0.08mol) with (1ml) concentration ( $H_2SO_4$ ) at groats ice (0-2) ° C, an appropriate methylolic Schiff base [3] (0.4mol) which added gently to the mixture about 1h, Refluxing and increased the temperature gradually to the boiling point of alcohol used, the mixture were kept at boiling alcohol for 24h, then neutralized the cooled mixture by using Sodium hydroxide. The resins formed was extracted using chloroform (*CHCl*<sub>3</sub>), dried and evaporated under vacuum, purity by T.L.C.

# Synthesis of epoxy phenolic Schiff base (7-10) [10,11] :

To a mixture of an appropriate (0.01mol) phenolic Schiff bases [4-6] with (0.12mol) (eipychlorohydrine) at ice water (0-5)

 $^{\circ}$  C for (15min), then gently added (0.14mol) alcoholic sodium hydroxide in two portions with kept the temperature below (60-65)  $^{\circ}$  C. The stirring continued for 2h, after first addition the aqueous layer was separated from the organic layer, the second portion of **NaOH** solution and stirred further for 1h, then left the mixture at the same temperature for (50min), and also the aqueous was separated. The organic layer was dried and excess of (eipychlorohydrine) and solvent distilled off under reduced pressure. The formed resins were purification by T.L.C.

# Synthese schiff bases resins with unstitched ring (11-14) [11] :

A mixture of (0.01mol) epoxy [7-10] in (30ml) (1-2) °C Cold methanol with (0.015mol) piperdine. Refluxing in oil bath (80-100) °C for (72h), after cooling the solvent evapourated and purification by T.L.C.

All these synthesis steps were summarized in schemes (1-6), physical properties, FTIR,  $({}^{1}H, {}^{13}C - NMR)$ , elemental analysis, thermal stability (TGA) are listed in tables (1-5), respectively, some compounds evaluated clearly show the temperature rate belong different type dissociation were recorded fig (1-4).

## **Results and Discussion :**

Considerable interests have been expressed in synthesis of schiff bases in recent year due to their industrial and biological importance, starting from [bis (4,4'-diaminophenoxy)



ethane](1)

#### Scheme -1-

The FTIR spectrum [13,14] showed the strong stretching vibration (3420-3375)cm-1 due to  $(NH_2)$  groups, (2930-2860) cm-1 for  $(CH_2)$ , (1260-1045) cm-1 for (c-o-c), (830) cm-1 for (1,4-disubst), (3080) cm-1 for (Ar-H), (1420) cm-1; for (C-N); 1H-NMR (DMSO-d6)  $\delta$ : (7.4-7.6)ppm due to (Ar-H), (8.5-6.2)ppm due to (2H,NH2), (1.42-2.81)ppm for (2H,CH2); 13C-NMR(DMSO-





The reaction proceeds by the nucliophilic attach of the nucleophilic nitrogen atom of the amine on the carbonyl group of aldehyde with the loss of water molecular to give a stable compound in good yield, the FTIR spectrum showed the strong bands (1602)cm-1 for (C=N) combined with disappearance of stretching bands (3420-3325) cm-1 of (NH2), strong bands (3400-3240) cm-1 for (OH) and (1150-1160) cm-1 absorption bands for phenolic group (C-O); 1H-NMR (DMSO-d6)  $\delta$ : (7.73-7.85)ppm for (Ar-H), (10.12-10.16)ppm (H,OH); 13C-NMR (DMSO-d6) d6)  $\delta$ : (72.4-72.8)ppm for (C-0-C), (128.2-129.3)ppm due to (aromaticcarbons), (143.1-144.6)ppm for (Ar-NH2). Elemental analysis (C.H.N) for compound (1) were fitted according to the (table 3).

Therefore schiff base (2) prepared by the condensation of the corresponding compound (1) with (p-hydroxybenzaldehyde in refluxing



δ: (128.2-128.9)ppm (caromatic carbons), (115.2-117.2)ppm for (C,=CH), (148.5-152.6)ppm for (C=N), (155.1-156.0)ppm for (Ar-OH).Elemental analysis for compound (2) were fitted according to the (table 3) .Refluxing compound (2) with formaldehyde afforded methylolic resins (3) which consisting of hydroxyl methylene group (-CH2OH) known as a methylol groups which are chemically very reactive functional groups:



Scheme -3-

Compound (3) indicated by (FTIR) spectrum of abroad stretching bands at (3417-3265)cm-1 for methylolic groups combined with strong stretching bands at (2954-2896)cm-1 for aliphatic (CH2) ; 1H-NMR(DMSO-d6)  $\delta$ :(7.20-8.10)ppm due to (Ar-H), (10.62-10.89) ppm for (H,OH), (1.06-2.90)ppm for (t,2H,CH2); 13C-NMR(DMSO)  $\delta$ : (126.5-



R = -CH3 , -C3H7 , - C4H9 Scheme -4-

Compound [4] indicated in FTIR spectrum of stretching vibration is more sharp bands at (2980-2975)cm-1 for (CH2) and strong vibration at (1226-1168) cm-1 for (C-O-C); 1H-NMR( DMSO-d6)  $\delta$ : (7.3-7.6)ppm due to (Ar-H), (2-2.2)ppm for (3H, CH3), (10.01-10.21)ppm for (H,OH); 13C-NMR(DMSO-d6)  $\delta$ : ((11.5-116.4)ppm due to (aromatic



R = -CH3 , -C3H7 , - C4H9 Scheme -5-



126.8)ppm (aromatic carbons), (120-124)ppm for (C,=CH), (154.8-154.9)ppm for (Ar-OH). Emental analysis for compound (3) were fitted according to the (table 3).

Compound (3) similarly reacts with (methanol propanol, Butanol) afforded etheric resins (4-6):



carbons), (149-151)ppm due to (C=N), (154.2-154.9)ppm due to (Ar-OH), 972.1-72.6)ppm for (C-O-C). Elemental analysis for compound [4] were fitted according to the (table 3) .Similarly react compounds (4-6) with eipychlorohydrine afforded (7-9) derivatives respectively.



Compound (7) obtained FTIR spectrum for sharp bands for oxarine absorption at (948-995) cm-1 and strong bands (2931-2873) cm-1 for (CH2), (1130-1090) cm-1 for (C-O-C); 1H-NMR(DMSO-d6)  $\delta$ : (7.2-7.5)ppm for (Ar-H), (1.9-2.1)ppm due to (3H, CH3); 13C-NMR (DMSO-d6)  $\delta$ : (129.3-130.1)ppm (aromatic carbons), (2.1-2.3)ppm for (CH2, oxarine), (72.6-72.9)ppm due to (C-O-C). Elemental analysis for compounds (7) were fitted according to the (table 3) . Finally (7-9) compounds react with piperdine a corresponding (10-12) respectively



The FTIR spectrum of compound (10) obtained increasing in stretching vibration of (OH) at (3479-3437) cm-1 and (1220-1225) cm-1 for (C-O), (1268-1238) cm-1 due to (C-O-C); 1H-NMR(DMSO-d6)  $\delta$ : (7.8-7.9)ppm due to (Ar-H), (9.7-9.8) due to (H,OH), (1.39-1.41)ppm for (2H,CH2); 13C-NMR(DMSO-d6)  $\delta$ : (72.8-72.9)ppm due (C-O-C), (129.3-130.1)ppm for (aromatic carbons). Elemental analysis for compounds [10] were fitted according to the (table 3) .All these steps were summarized in schemes (1-6) physical properties of all mentioned and other details [FTIR, Elemental analysis, TGA, analysis, 1H-NMR, 13C-NMR,], data are listed in tables (1-5) respectively, curing thermal stability of some compounds were evaluated by using (TGA) table (4) is clearly show the temperature rate belong to different type dissociated for derivatives, fig(15-18).

| Molecular<br>formula | M.P<br>Co                                                                                                                                          | Colour                                                                                                                                                                                                                                                   | Yield<br>%                                                                                                                                                                                                                                                                                                                                                               | Purification<br>solvent                                                                                                                                                   | Comp<br>No                                                                                                                                                                                                              | Molecular<br>formula                                                                                                                                                                                                                     | M-P<br>Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yield<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Purification<br>solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C14H16N2O2           | 238-240                                                                                                                                            | Pale<br>violate                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                       | Ethanol                                                                                                                                                                   | 7                                                                                                                                                                                                                       | C42H42N2O1<br>0                                                                                                                                                                                                                          | Oily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C28H24N2O4           | 212-214                                                                                                                                            | Deep Red                                                                                                                                                                                                                                                 | 87                                                                                                                                                                                                                                                                                                                                                                       | Ethanol                                                                                                                                                                   | 8                                                                                                                                                                                                                       | C42H54N2O1<br>0                                                                                                                                                                                                                          | Oily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C32H32N2O8           | Oily                                                                                                                                               | Brown                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                                                                                                                       | THF                                                                                                                                                                       | 9                                                                                                                                                                                                                       | C54H72N2O1<br>0                                                                                                                                                                                                                          | Oily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C36H40N2O8           | Oily                                                                                                                                               | Brown                                                                                                                                                                                                                                                    | 75                                                                                                                                                                                                                                                                                                                                                                       | THF                                                                                                                                                                       | 10                                                                                                                                                                                                                      | C52H66N4O1<br>0                                                                                                                                                                                                                          | Oily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C44H56N2O8           | Oily                                                                                                                                               | Brown                                                                                                                                                                                                                                                    | 75                                                                                                                                                                                                                                                                                                                                                                       | THF                                                                                                                                                                       | 11                                                                                                                                                                                                                      | C60H86N2O1<br>0                                                                                                                                                                                                                          | Oily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C48H64N2O8           | Oily                                                                                                                                               | Brown                                                                                                                                                                                                                                                    | 65                                                                                                                                                                                                                                                                                                                                                                       | THF                                                                                                                                                                       | 12                                                                                                                                                                                                                      | C64H94N2O1<br>0                                                                                                                                                                                                                          | Oily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | Molecular<br>formula           C14H16N2O2           C28H24N2O4           C32H32N2O8           C36H40N2O8           C44H56N2O8           C48H64N2O8 | Molecular<br>formula         M.P<br>Co           C14H16N2O2         238-240           C28H24N2O4         212-214           C32H32N2O8         Oily           C36H40N2O8         Oily           C44H56N2O8         Oily           C48H64N2O8         Oily | Molecular<br>formula         M.P<br>Co         Colour           C14H16N202         238-240         Pale<br>violate           C28H24N204         212-214         Deep Red           C32H32N208         Oily         Brown           C36H40N208         Oily         Brown           C44H56N208         Oily         Brown           C48H64N208         Oily         Brown | Molecular<br>formulaM.P<br>CoColourYield<br>%C14H16N2O2238-240Pale<br>violate90C28H24N2O4212-214Deep Red87C32H32N2O8OilyBrown80C36H40N2O8OilyBrown75C44H56N2O8OilyBrown65 | Molecular<br>formulaM.P<br>CoColourYield<br>%Purification<br>solventC14H16N2O2238-240Pale<br>violate90EthanolC28H24N2O4212-214Deep Red87EthanolC32H32N2O8OilyBrown80THFC36H40N2O8OilyBrown75THFC44H56N2O8OilyBrown65THF | Molecular<br>formulaM.P<br>CoColourYield<br>%Purification<br>solventComp<br>NoC14H16N2O2238-240Pale<br>violate90Ethanol7C28H24N2O4212-214Deep Red87Ethanol8C32H32N2O8OilyBrown80THF9C36H40N2O8OilyBrown75THF10C44H56N2O8OilyBrown65THF12 | Molecular<br>formula         M.P<br>Co         Colour         Yield<br>%         Purification<br>solvent         Comp<br>No         Molecular<br>formula           C14H16N202         238-240         Pale<br>violate         90         Ethanol         7         C42H42N2O1<br>0           C28H24N204         212-214         Deep Red         87         Ethanol         8         C42H54N2O1<br>0           C32H32N208         Oily         Brown         80         THF         9         C54H72N2O1<br>0           C36H40N208         Oily         Brown         75         THF         10         C52H66N4O1<br>0           C44H56N208         Oily         Brown         75         THF         11         C60H86N2O1<br>0           C48H64N208         Oily         Brown         65         THF         12         C64H94N2O1<br>0 | Molecular<br>formula         M.P<br>Co         Colour<br>Pale<br>violate         Yield<br>%         Purification<br>solvent         Composition<br>No         Molecular<br>formula         M-P<br>Co           C14H16N202         238-240         Pale<br>violate         90         Ethanol         7         C42H42N201<br>0         Oily           C28H24N204         212-214         Deep Red         87         Ethanol         8         C42H54N201<br>0         Oily           C32H32N208         Oily         Brown         80         THF         9         C54H72N201<br>0         Oily           C36H40N208         Oily         Brown         75         THF         10         C52H66N401<br>0         Oily           C44H56N208         Oily         Brown         75         THF         11         C60H86N201<br>0         Oily           C48H64N208         Oily         Brown         65         THF         12         C64H94N201<br>0         Oily | Molecular<br>formula         M.P<br>Co         Colour         Yield<br>%         Purification<br>solvent         Composition         Meter<br>Co         M-P<br>Co         Colour           C14H16N202         238-240         Pale<br>violate         90         Ethanol         7         C42H42N201<br>0         Oily         Brown           C28H24N204         212-214         Deep Red         87         Ethanol         8         C42H54N201<br>0         Oily         Brown           C32H32N208         Oily         Brown         80         THF         9         C54H72N201<br>0         Oily         Brown           C36H40N208         Oily         Brown         75         THF         10         C60H86N201<br>0         Oily         Brown           C44H56N208         Oily         Brown         75         THF         11         C60H86N201<br>0         Oily         Brown           C48H64N208         Oily         Brown         65         THF         12         C64H94N201<br>0         Oily         Brown | Molecular<br>formula         M.P<br>Co         Colour         Yield<br>%         Purptication<br>solvent         Comp<br>No         Molecular<br>formula         M-P<br>Co         Colour         Yield<br>%           C14H16N202         238-240         Pale<br>violate         90         Ethanol         7         C42H42N2O1<br>0         Oily         Brown         60           C28H24N204         212-214         Deep Red         87         Ethanol         8         C42H54N2O1<br>0         Oily         Brown         65           C32H32N208         Oily         Brown         80         THF         9         C54H72N2O1<br>0         Oily         Brown         60           C36H40N208         Oily         Brown         75         THF         10         C52H66N4O1<br>0         Oily         Brown         70           C44H56N208         Oily         Brown         75         THF         11         C60H86N2O1<br>0         Oily         Brown         72           C48H64N208         Oily         Brown         65         THF         12         C64H94N2O1<br>0         Oily         Brown         65 |

Table (1) Dapcited physical properties for (1-12) compounds

#### Table (2) FTIR spectral data of (1-12)

| No | VOH          | VCH2         | VC-O-<br>C   | VC-O         | Others                            | No | VOH          | VCH2         | VC-O-<br>C   | VC-O         | Others                         |
|----|--------------|--------------|--------------|--------------|-----------------------------------|----|--------------|--------------|--------------|--------------|--------------------------------|
| 1  | -            | 2930<br>2860 | 1260<br>1045 | -            | VNH2(3420-<br>3325)<br>VC-N(1420) | 7  | 3257<br>3225 | 2931<br>2873 | 1201<br>1205 | 1110<br>1045 | \nabla^{(948-995)}             |
| 2  | 3400<br>3240 | 2910<br>2850 | 1200<br>1212 | 1228<br>1200 | VC=N(1602)<br>VC=C(1597)          | 8  | 3290<br>3155 | 2910<br>2875 | 1240<br>1210 | 1202<br>1120 | ∀ <sup>(917-892)</sup>         |
| 3  | 3417<br>3265 | 2954<br>2896 | 1192<br>1100 | 1245<br>1227 | VC=N(1612)<br>V=CH(3080)          | 9  | 3100<br>3280 | 2935<br>2870 | 1235<br>1228 | 1213<br>1108 | $\bigtriangledown^{(914-910)}$ |
| 4  | 3200<br>3245 | 2980<br>2975 | 1226<br>1168 | 1197<br>1160 | VC=N(1608)<br>V=CH(3100)          | 10 | 3479<br>3437 | 2900<br>2865 | 1268<br>1238 | 1220<br>1225 | VC-N(1220)                     |
| 5  | 3285<br>3260 | 2985<br>2980 | 1218<br>1210 | 1100<br>1097 | VC=N(1615)<br>V=CH(3009)          | 11 | 3310<br>3260 | 2910<br>2845 | 1250<br>1255 | 1200<br>1195 | VC-N(1238)                     |
| 6  | 3290<br>3270 | 2972<br>2968 | 1220<br>1214 | 1113<br>1085 | VC=N(1612)<br>V=CH(3116)          | 12 | 3316<br>3280 | 2900<br>2886 | 1260<br>1265 | 1196<br>1190 | VC-N(1244)                     |

Table (3) Depacited Elemental analysis (C.H.N) for some compounds.

| No   | (C.H.N  | N) analysis | Comp    | (C.H.N) analysis calculated |         |        |        |  |  |
|------|---------|-------------|---------|-----------------------------|---------|--------|--------|--|--|
| 190. |         | (found)     | 1       | No.                         | (found) |        |        |  |  |
| 1    | 68.89   | 6.56        | 11.48   | 4                           | 72.48   | 6.71   | 4.70   |  |  |
| 1    | (69.20) | (7.53)      | (12.68) | 4                           | (73.39) | (7.90) | (5.69) |  |  |
| 2    | 74.34   | 5.31        | 6.20    | 7                           | 68.67   | 5.72   | 3.82   |  |  |
| 2    | (75.41) | (6.30)      | (6.98)  | /                           | (69.93) | (6.91) | (4.91) |  |  |
| 2    | 67.13   | 5.59        | 4.90    | 10                          | 68.87   | 7.29   | 6.18   |  |  |
| 3    | (68.20) | (6.60)      | (5.95)  | 10                          | (69.86) | (8.28) | (7.18) |  |  |

Table (4) Show the Curing temperature of some Compounds

| r    |             |             | <u> </u>    |             | <b>•</b>    |         |
|------|-------------|-------------|-------------|-------------|-------------|---------|
| Comp | Primary     | Finally     | 50%         | Maximum     | Average     | % Char  |
| No   | dissociated | dissociated | dissociated | dissociated | dissociated | content |
| 3    | 220         | 380         | 350         | 310         | 0.25        | 93.77   |
| 4    | 225         | 400         | 300         | 280         | 0.128       | 92.73   |
| 7    | 180         | 750         | 612         | 325         | 0.069       | 61.63   |
| 10   | 165<br>260  | 700         | 660         | 360         | 0.053       | 58.70   |

| Table (5) 1H-NMR and | 13C-NMR | spectral data | a for some | compounds. |
|----------------------|---------|---------------|------------|------------|
|                      |         | 1             |            | 1          |

| No | <b>Compound Structure</b>                                           | 1H-NMR/ data                                                                 | 13C-NMR/ data                                                                                               | No | Compound Structure                                                                                                                                                                                                     | 1H-NMR/ data                                                     | 13C-NMR/ data                                                                                                                        |
|----|---------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1  | $ \begin{array}{c} 0 \\ 0 \\ C_2H_4 \\ 0 \\ 0 \\ NH_2 \end{array} $ | δ: 74-7.6 (Ar-H)<br>δ: 8.5-6.2(2H, NH2)<br>δ: 1.42-2.81(2H,<br>CH2)          | δ: 72.4-72.8(C-O-C)<br>δ: 128.2-129.3(aromatic<br>carbons).<br>δ: 143.1-144.6(Ar-NH2)                       | 4  | $O \longrightarrow N=CH$ $C_2H_4 \qquad CH_3OCH_2 \qquad CH_2OCH_3$ $O \longrightarrow N=CH$ $CH_3OCH_2 \qquad CH_3OCH_2$ $O \longrightarrow OH$                                                                       | δ: 7.3-7.6(Ar-H)<br>δ: 2-2.1(3H,CH3)<br>δ: 10.01-<br>10.21(H,OH) | δ: 115.2-         116.2(aromatic         carbons).         δ: 149-151(C=N)         δ: 154.2-154.9(Ar-OH)         δ: 72.1-72.6(C-O-C) |
| 2  | $ \begin{array}{c}                                     $            | δ: 7.73-7.85(Ar-H)<br>δ: 10.12-<br>10.16(H,OH)                               | δ: 128.2-128.9(aromatic<br>carbons).<br>δ: 115.2-117.2(C,=CH)<br>δ: 148.5-152.6(C=N)<br>δ: 155.1-156(Ar-OH) | 7  | $O \longrightarrow N=CH$ $C_{2}H_{4} \qquad CH_{3}OCH_{3} \qquad CH_{3}OCH_{3}$ $O \longrightarrow N=CH$ $O \longrightarrow N=CH$ $CH_{3}OCH_{3} \qquad CH_{2}OCH_{3}$ $O \longrightarrow CH_{2} \qquad CH_{3}OCH_{3}$ | δ: 7.2-7.5(Ar-H)<br>δ: 1.9-<br>2.1(3H,CH3)                       | δ: 129.3-<br>130.1(aromatic<br>carbons).<br>δ: 2.1-<br>2.3(CH2,oxarine)<br>δ: 72.6-72.9(C-O-C)                                       |
| 3  | O $N=CHC_2H_4 HOCH_2 CH_2OHO$ $N=CHHOCH_2 CH_2OH$                   | δ: 7.20-8.10(Ar-H)<br>δ: 10.62-<br>10.89(H,OH)<br>δ: 1.06-<br>2.90(t,2H,CH2) | δ: 126.5-126.3(aromatic<br>carbons).<br>δ: 120-124(C,=CH)<br>δ: 154.8-154.9(Ar-OH)                          | 10 | $O \longrightarrow N=CH$ $C_2H_4 \xrightarrow{CH_3OCH_2} OCH_2CHCH_3 \xrightarrow{OH} OH$ $O \longrightarrow N=CH$ $CH_3OCH_2 \xrightarrow{CH_2OCH_3} OH$ $O \longrightarrow OH$                                       | δ: 7.8-7.9(Ar-H)<br>δ: 9.7-9.8(H,OH)<br>δ: 1.39-<br>1.41(2H,CH2) | δ: 72.8-72.9(C-O-C)<br>δ: 129.3-<br>130.1(aromatic<br>carbons).                                                                      |

J. Baghdad for Sci.

## Vol.10(2)2013



Fig. (1) FT-IR for compound (1)



Fig. (3) FT-IR for compound (3)



Fig. (5) FT-IR for compound (7)

Fig. (2) FT-IR for compound (2)



Fig. (4) FT-IR for compound (4)



Fig. (6) FT-IR for compound (10)





Fig. (11) <sup>13</sup>CNMR Spectrum of Compound (1)

Fig. (12) <sup>13</sup>CNMR Spectrum of Compound (4)



### **References** :

- 1. Lee. H.W., 1993, "Biochemistry",32,2<sup>nd</sup> Ed., Wiley, New York.
- 2.Al-Soud. Y.A., Al-Masoudi. N.A., 2003. "Bioorganic & Medicinal Chemistry", J. Braz., Chem. Soc, 14(5): 790.
- 3.Verandas. L.S. and Fraga. C.A.M., 2005. "Letter in drug Design & Discovery", J. Braz,. (2): 62-67.
- 4.Samal. S.; Dey. R.K., Acharya S. and Mohapatra N.K. 2000."Metal Ion Adsorption Studies of Chelating resins Derived from Formaldehyde- condensed Schiff Base of 2,6. Diaminopyridine and Salicyldehyde Immobilized on Silica Gel International Sumposium on polymers beyond", 12-15 Jan, 235-238, proceedings, Indian of Institute of Technology, Delhi.
- 5.Riego. E., Albercio. F. 2005. "Message in a Bottle : Chemical Biology of Induced Disease Resistance inplants". J. Synt, 12: 1907-1922.

- 6.Wadher. S.J.; Puranik. M. P.; Karande. N. A. and Yeole. P.G., 2009. "Synthesis and Biological evaluation of Schiff base of Dapsone and their derivative as Antimicrobial agents", J. Pharm. Tech., 1 (1): 22-33.
- 7.Curha. S., Kascheres. A., 2001 ,"Synthesis and characterization of poly Etheramide containing Bisphthalazinone and ether linkage", J. Braz. Chem. Soc. 11(5), 525-529.
- 8.Adam. G.A. 2001. "Chemistry and Technology of Methylolic Resins; their Derivative and IPNs.", National Journal of Chemistry, 1, 131-157.
- 9.Zamani. K.; Faghihi. K. , 2003 , " Synthesis and characterization of new Aromatic poly imide derived from Bis (3-trimellitimido phenyl) and various Aromatic Diamines" , J. Pol. Pharma , 55 :1111 – 1117 .
- 10.Martin. R.W. , 1956. "The Chemistry of Phenolic Resins"; Wiley, New York .

## تحضير وتشخيص بعض مشتقات قواعد شيف الفينولية

ايمان مهدي محمد حسن \* سناء هاشم صالح \*

\*كلية العلوم للبنات / جامعة بغداد/ قسم الكيمياء

الخلاصة:

ابتداءا من المركب (4 و4<sup>/</sup> ثنائي امين فينوكسي) ايثان(1)، حضرت عدد من مشتقات قواعد شيف الفينولية (الميثيلولية، الايثرية, الايبوكسية )....... (الميثيلولية، الايثرية, الايبوكسية )....... لقد تم تشخيص المركبات الجديدة بمطيافية الاشعة تحت الحمراء وطيف الرنين المغناطيسي -1H.13C)

لفد ثم تشخيص المركبات الجديدة بمطيافيه الأشعه نحت الحمراء وطيف الرئين المغناطيسي --IH,13C) (NMR والتحليل الكمي الدقيق للعناصر (C.H.N) مع قياس آلية الثبات الحراري باستعمال تقنية التحليل الحراري الوزني TGA .