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New CG Method for Large-Scale Unconstrained 
Optimization Based on Nazareth theorem 

 
Khalil . K. Abbo* 

Abstract 
     In this paper we present new conjugate gradient method for 
computing the minimum value of differentiable real valued 
function  in  n variables ,this method derived from Nazareth 
theorem , which uses the equivalence of CG and Qusi–Newton 
methods on quadratic function also the descent property and 
Conjucy conditions are proved and compared with some well 
know CG method showing considerable improvement .  
          
طريقة جديدة في خوارزميات المتجهات المترافقة لمسائل الامثلية غير 

 مقيدة ذات القياس العالي اعتماداُ على نظرية نزرتال
 الملخص

تѧѧم فѧѧي هѧѧذا البحѧѧث اقتѧѧراح خوارزميѧѧة جديѧѧدة مѧѧن المتجهѧѧات المترافقѧѧة لحسѧѧاب           
هذه الطريقة استنادا الى نظرية نزرت      تم اشتقاق   وقد  ، النهاية الصغرى لدالة الهدف     

 لطريقѧѧة ةق الشѧѧبيهائѧѧطرالوذلѧѧك بالاسѧѧتفادة مѧѧن تكѧѧافؤ طريقѧѧة المتجهѧѧات المترافقѧѧة و
 ، والترافѧق لهѧذه الطريقѧة      الانحѧدار  تѧم برهѧان خاصѧية        آمѧا    في الدالة التربيعية     نيوتن

 .ل  المجااق المعروفة في هذائ مقارنة النتائج العددية مع بعض الطرتوآذلك تم
 
1-Introduction        
         A large scale unconstrained optimization problem can be 
formulated 
 as the problem of finding a local minimizer of a real  valued 
function  
   RRf n →:  over the space nR  , namely to solve the problem  

)1......(;)(min nRxxf ∈  
where the dimension  n is large . 
       The main difficulty in dealing with large scale problems is 
the fact that effective algorithms for small scale problems do not 
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necessarily  translate  into efficient algorithms when applied to 
solve large problems. Therefore in most cases it is improper to 
tackle a problem with a large number of variables by using one 
of the many existing algorithms for small scale case relying on 
the power growing of  the modern computers ( see [1] or [2] for a 
review on the existing methods for small scale unconstrained 
optimization ). A basic feature of an algorithm for  large scale 
problems is a low storage over head needed to make practical its 
implementation . 
        Methods for unconstrained optimization differ according to 
how much information on the function  f  is available. In the 
framework of large scale unconstrained optimization it is usually 
required that the user provides at least subroutines which 
evaluate the objective function )(xf  and its gradient for any x . 
Throughout, we assume that the function f  is twice continuously 
differentiable  i.e   the gradient )()( xfxg ∇=  and Hessian matrix 

)()( 2 xfxG ∇= of the function f  exist and are continuous  
 Moreover we denote by 2. the Euclidean norm . 
      Most of the large scale unconstrained algorithms ( see [3] ) 
are iterative methods which generate a sequence of points 
according to the scheme  

)2(......1 kkkk dxx α+=+  
where n

k Rd ∈  is search direction and Rk ∈α  is a step length 
obtained by means of a one dimensional search. A basic method 
for solving (1) can be considered the steepest descent method is 
obtained by setting in (2) 

)3......(kk gd −=  
      This method is based on the linear approximation of the 
objective function f  and hence only first order information is 
needed. Due to its very limited storage required by a standard 
implementation, steepest descent method could be considered 
very attractive in the large scale setting ; moreover the global 
convergence can also be ensured . However, its convergence rate 
is only linear and therefore it is too slow to be used . 
       In 1988 Barzilai and Borwein [4] proposed two point step 
size gradient (BB) method by regarding  
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)4......(IH kk γ=  
As an approximation to the Hessian of  f  at kx  and imposing 
some quasi – Newton property on  H , Denote 11 −− −= kkk xxv  and 

11 −− −= kkk ggy    
By minimizing 

211 −− − kkk yHv  they obtained  

)5......(
11

11

−−

−−=
k

T
k

k
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k vv
yvγ  

With this the BB method is given by the following iteration 
scheme 

)6......(1
1 k

k
kk gxx

γ
−=+  

    The (BB) method received a great deal of attention for its 
simplicity and numerical efficiency for well-conditioned 
problems , the most important features of this method is that only 
gradient directions are used, that the memory requirements are 
minimal and that they do not involve a decrease in the objective 
function, which allows fast local convergence . 
They have been applied successfully to find local minimizers of 
large scale real problems (see [5]). Raydon in [6] proved that for 
strictly convex function with any variable the (BB) method is 
globally convergence , despite of these advances of (BB) method 
on quadratic functions , Fletcher in [7] shows that the method 
may be very slow on solving some problems .  
     There are different methods for solving the problem defined 
in equation (1) corresponding to different ways of choosing kd  in 
equation (3) , one of the well known effective methods is the 
Quasi – Newton method in which kd  is defined by  

kkk gHd −=  
where kH  is the approximation to the inverse Hessian matrix of 
the function f at the k-th iteration . There are different ways to 
update kH  at each  iteration (see [8] or [9] ), one of the well- 
known quasi -Newton methods is the DFP method in which is 
updated by the formula  
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)7......(1
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It 's shown that DFP algorithm has quadratic convergence 
property and 1+kH  is symmetric , positive definite and hence 
descent property this leads to global convergence with exact line 
search with super linear order of convergence, also ( see [9] ) 

1+kH  satisfies quasi – Newton condition  
)8......(1 kkk vyH =+  

     The main disadvantage of the quasi-Newton methods is 
storing matrix . 
 
 
2- Non-linear Conjugate Gradient methods (CG). 
      CG uses the analytic derivative of  f , defined by kg .  A step 
along the current negative gradient vector is taken in the first 
iteration ; successive directions are constructed so that they form 
a set of mutually conjugate vectors with respect to the Hessian. 
At each step, the new iterate is calculated from eq (2) and the 
search directions are expressed recursively as    

)9......(11 kkkk dgd β+−= ++  
where kβ  is scalar and step length kα  is required to satisfy the 
strong Wolfe conditions 

)10......()()( k
T
kkkkkk dgxfdxf δαα ≤−+  

)11.......()( k
T
kk

T
kkk dgddxg σα −≤+  

where 10 <<< σδ  
       For a general function, however different formula for scalar 

kβ result in distinct non-linear conjugate gradient methods and 
for quadratic function all kβ are equivalent. Several famous 
formulas kβ  are the Fletcher- Reeves )( FRβ , Polak Ribiere )( PRβ  
Hestenes- Stiefel )( HSβ   
And Yu- Hong )( yHβ  and Perry )( prβ (see [9] and [10] ) which 
are given  
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      In practical computation , the HS method resembles the PR 
method (see [11] or [12] ), both methods are generally believed 
to be two of the most efficient conjugate gradient methods . 
       Most of the recent work in nonlinear CG methods has 
focused on global convergence properties and on the design of 
new line search strategies . The analysis for the FRCG method is 
simpler ,it shown in [13] that if the line search satisfies the strong 
Wolfe conditions then the Fletcher-Reeves method is globally 
convergent . The same result is proved in [14] for all CG 
methods with line search satisfying the strong Wolfe  conditions 
and with any kβ  such that FR

kk ββ ≤≤0  . 
     The analysis is taken one step further in [15] ,where it is 
shown that global convergence is obtained for any method with  

)17......(FR
kk ββ ≤  

      A major drawback of non – linear CG methods is that the 
search direction tends to be poorly scaled , and line search 
typically several function evaluations to obtain an acceptable step 
length kα . This is in sharp constant with quasi-Newton method 
which accepts the unit step length most of the time (see [16] ). 
Non-linear CG methods would therefore be greatly improved if 
we could find a means of properly scaling  kd  . Many studies 
have suggested search directions of the form  
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)18......(1−+−= kkkkk dgHd β  
where kH  is simple symmetric and positive definite matrix of 
satisfying eq (8) .However ,if kH  requires several vectors of 
storage , the economy of the non linear CG iteration disappears. 
So far all attempts to derive an efficient method of the form (18) 
have been unsuccessful . 
      Nazareth in [17] has pointed out a close relationship that 
exists between the CG algorithm and Quasi-Newton algorithms , 
in fact he shows that for quadratic function with exact line search 
CG and DFP methods generates the same sequence { }∞=1kkx  and 
same directions kd for all  k  i.e  

)19......(DFP
k

CG
k dd =  

We can use this equivalence of CG and DFP methods to deduce 
new CG method. 
      In this paper we attempt to combine QN and CG methods (in 
different way from (18) ) to deduce new CG methods which use 
Quasi-Newton method implicitly . 
 
3- New proposed CG Algorithms  
From Nazareth theorem we have  CGDFP dd = then 
           )20......(          1−+−=− kkkk

DFP
k dggH βθ    

Where θ  is scalar )10( ≤< kθ .  Multiply eq (20) by 1−ky  we get  

 )21......(              1111 −−−− +−=− k
T
kkk

T
kkk

T
kk dygygyH βθ  

use quasi-Newton condition defined in equation (8) then we can 
write (21) as  
           1111 −−−− +−=− k

T
kkk

T
kkk

T
k dygygv βθ  
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Where 1=kθ  or  
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where kθ  )k0( k ∀>θ  in (22) due to Abbo (see [18] ), therefore 
the search direction for new 1 can be written as  
 
                  

New
k 1 k 1 k 1 k kd g d ......(9)+ + += −θ + β  
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    It's clear that if exact line search used 1=kθ , then kβ  in (22) 
reduced to HS

kβ , on the other hand if 1−kd  is replaced by the 
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 in the denominator and again with 1=kθ we get Perry 

CG method ( see [19]). 
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Out  Line  of the Algorithem(New)

step(1): k 0 ; choose x R ; 0; d g
step(2): if g  stop,  else goto step(3)
step(3): Compute by (inexact line search procedure) with Wolfe
             conditions

= ∈ ε> =−

<ε

α

k 1 k k k

k 1 k k

step(4): x x d
step(5): Compute g ,  y ,  v
step(6): Compute search direction from eq(24) with 1 or  as definde in (23)
step(7): k k 1 goto step 2

+

+

= +α

θ= θ
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  To prove the descent property of the New algorithm we have 
two cases 
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(1): if exact line search is used then we see from (24) that for 
each 1≥k  , the directional derivative of f  at kx  along direction 

kd  is given by  
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      then we have for any 1≥k  
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(2) if inexact line search is used then 
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It is well known that  011 >−− k
T
k yv  for CG and QN methods see[9] 

therefore the search direction defined in (24) is descent (one can 
use 011 >−− k

T
k yv   as restart to forcing descent property to avoid 

effect round of error, if inexact line search employed . 
 
 
     The conjucy condition is hereditary from HSCG if exact line 
search is used and from Perry CG method if inexact line search is 
used, therefore the global convergence is a consequence of 
descent, conjucy and Wolfe conditions if further we assume that 
the level set  
  )}()(:{ oxfxfxL ≤=  is bounded. 
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Numerical Results  
   We present the numerical results for HSCG, Perry CG and 
New1(with θ=1 and θ as defined in (23)) methods for some well 
known test functions taken from [20], these algorithms are coded 
in double precision FORTRAN language. The criteria for 
stopping the iteration is 
             610−<kg  
    The line search procedure used in this work is the Birgin and 
Mortaniz [21] method with initial step size equal one in all 
methods. Also Wolfe conditions are used for accepting step size 
the complete set of results are given in table (a) with 

50001000 ≤≤ n  and table (b) with 100006000 ≤≤ n . In tables 
(a)and (b) we present the comparison results of HSCG, Perry CG 
and New1methods for different dimensions consisting number of 
iteration NOI , number of functions evolutions NOF are 
compared it's shown that considerable improvement over the 
other methods  
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Table(a) comparison CG methods for  1000<n<5000 
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Test  Functions N 

NoI    Nof NoI    Nof NoI    Nof  NoI    Nof 

Extended Trigonometric  1000 52      101 24      52 19       41   16       34 

Extended Rosenbrock  = 21      63 31      91 27       82   30      78 

Extended Beal  = 19      66 16      35 17       36   13       32 

Perturbed Quadratic  = 200    375 230    451 187     375   221     431 

Diagonal 2 2000 244    479 214    439 226     450   260     513 

Generalized Tridiagonal  = 30      101 47      118 25       91   28       93 

Extended Tridiagonal 1 = 14      30 16      29 13       27   15       32 

Extended 3 Exponential Terms = 16      46 14      47 8         18   16       30 

Generalized Tridiagonal 2 3000 41      158 40      73 115     348   45       81 

Generalized Rosenbrock = 27      58 18      34 21       75   15       27 

Generalized PSCI = 84      261 90      244 81       199   98     208 

Extended PSCI = 26      53 22      40 39       69  28       49 

Extended Powell 4000 24      78 29      97 15       54   23       79 

Full Hessian FH2 = 259    619 337    640 259     519   242     644 

Extended Block Diagonal BDI = 164    559 56      133 90       267  41       107 

Extended Maratos = 89      507 71      462 67       322 64       274 

Extended Cliff 5000 426    853 430    849 426     853 430     749 

Quadratic Diagonal Perturbed 5000 14       81 14      76 11       33 16       69 

Extended Wood 5000 62      192 48      173 51       209 48       169 

Extended Quadratic Penalty 5000 56      112 66      229 47       162 48       330 

  1868  4792 1815  4312 1744  4230 1697   4029 

 
 
 

Table (a1) Percentage of improving the New 1 within 1000 n 5000≤ ≤  
Tools HSCG Perry CG New  

1=θ  
New  

vyvv
vv

TT

T

+
=θ

 

NOI 100% 97% 93% 90% 
NOF 100% 89% 88% 84% 
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Table(b) comparison CG methods for  6000<n<10000 
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Test  Functions N 

NoI    Nof NoI    Nof NoI    Nof  NoI    Nof 

Extended Trigonometric  6000 71      139 53     118 46       109   42         103 

Extended Rosenbrock  = 27        72 29      96 28       87   27           81 

Extended Beal  = 16        33 14      33 17       35   13          32 

Perturbed Quadratic  = 230    467 241    492 227     452   223       432 

Diagonal 2 7000 297     576 248    541 237     512   221       520 

Generalized Tridiagonal  = 24      61 35      82 22       58   21          52 

Extended Tridiagonal 1 = 18      37 15      27 15       26   16          34 

Extended 3 Exponential Terms = 21      58 14      47 11         28   9            21 

Generalized Tridiagonal 2 8000 52      149 45      128 97      192   41         123 

Generalized Rosenbrock = 41        101 37        92 26       70   18          41 

Generalized PSCI = 90      222 85      190 65       162   68        167 

Extended PSCI = 39        70 31       65 39         79  30          57 

Extended Powell 9000 24        78 19        71 16        64   21          66 

Full Hessian FH2 = 398    797 380    769 291     686   252       671 

Extended Block Diagonal BDI = 202    421 181      397 164       368 150         342 

Extended Maratos = 91      509 77      462 72       453 67          441 

Extended Cliff 10000 482    897 501    920 490     911 482        900 

Quadratic Diagonal Perturbed 10000 28       110 20      59 18       48 21           52 

Extended Wood 10000 63      195 56      182 51       209 62          195 

Extended Quadratic Penalty 10000 87      213 68      146 63       131 58           132 

  2301  5205 2149   4917 1995  4680 1832     4462 

 
 
 
 
 

Table (a1) Percentage of improving the New 1 within 10000n6000 ≤≤  
Tools HSCG Perry CG New  

1=θ  
New  

vyvv
vv

TT

T

+
=θ

 

NOI 100% 94% 87% 80% 
NOF 100% 94.5% 90% 85% 
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