Synthesis of Some New Substituted 1,3,4–Oxadiazoles and the study of their Biological Activity

Ahmad Kh.Ahmad and Ali O. Obaid Chemistry Department, College of Education, University of Mosul Mosul-Iraq

(NJC)

(Received on 27/9/2004)

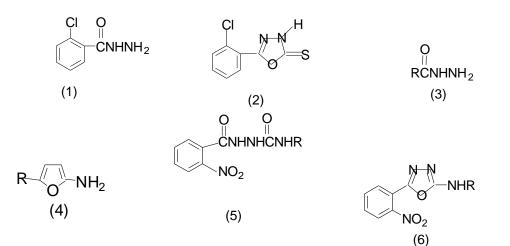
(Accepted for publication on 23/3/2005)

Abstract

Substituted 1,3,4-oxadiazoles are well known as biological active agents. Several compounds of this group were synthesized by using coumarin derivatives as starting material The structures of the new compounds were established on bases of elemental analysis, physical and spectral data.

الخلاصة

عرفت مركبات 1, 4,3- أوكسادايازول المعوضىة بفعاليتها ألبايولوجية. تم في هذا البحث تحضير عدداً من مركبات هذة المجموعة وبأستخدام مشتقات الكومارين كمواد أولية. شخصت تراكيب المركبات الجديدة بالطرق الطيفية والفيزياوية.


Introduction

1,3,4- oxadiazoles derivatives are know to have biological, medical and industrial applications¹.

 $\begin{array}{ccc} \text{Some} & \text{derivatives} & \text{show} \\ \text{antibacterial}^2 & \text{fungicide}^3 & \text{anti-} \\ \text{inflammatory and hypotensive action}^4. \end{array}$

The biological activity of these derivatives has drawn the attention of many workers and researchers who attempted to synthesize substituted oxadiazoles. When a mixture of 2chlorobenzhydrazide (1) and carbon

disulfide in the presence of potassium hydroxid in absolute ethanol was refluxed for 12 hours it offered 3substituted-5-(2-chlorophenyl)-1,3,4oxadiazol-2-thione⁵ (2). Other oxadiazole derivatives (4) were obtained by the reaction of hydrazide (3) with cyanogen bromide⁶ and also reaction of hydrazide with the carboxylic acid in the presence of phosphoric acid⁷ or phosphorous oxychloride⁸.

Similarly oxadiazole (6) was obtained by the treatment of (5) with lead oxide⁹, mercury oxide¹⁰ and Dicyclohexylcarbodiimide $(Dcc)^{11}$. Phosphorous pentaoxide was also used for the synthesis of oxadiazole¹².

In this paper the synthesis of some new 1,3,4-oxadizole is reported.

Experimental

The melting points were Kofler measured on hot stage apparatus and were uncorrected. Elemental analysis measurements of C, H and N were obtained using 1106 CE Carlo-Erba.

The HNMR were recorded on Hitachi Perkin Elemer, R 248, 60 MHz instrument using DMSO-d6, as a solvent with tetramethylsilane as the internal reference. The IR spectra were recorded on a Pye-Unicam SP 1100 Infra red Spectrophotometer and U.V. spectra were carried out on shimadzu U.V.-Visible recording spectrophotometer.

4-Methyl-7-hydroxy coumarin (7):

This was prepared as mentioned in literature¹³ and yielded 98% m.p. 183-185ć (lit. m.p. 185°C).

4-Methyl-7-O- (ethoxy carbonyl methyl) coumarin (8):

This was prepared as mentioned in liteature¹⁴ and yielded 97% m.p. 100-102°C (lit. m.p. 102°C).

Ethyl coumarin-3-carboxylate (9):

This was prepared as mentioned in the litrature¹⁵ and yielded 77% m.p. 92-90°C (lit. m.p. 94°C)

4-Methyl-7-coumarinloxy methyl hydrazide (10) and coumarin-3carboxylic acid hydrazide (11)

Method 1^{16} :

(0.15mol) of ester (8) or (9) and (o.15 mole, 7.26ml) of hydrazine hydrate (99%) in absolute ethanol (100ml) were refluxed for 10 hours. After the reaction mixture was concentrated, when a solid was obtained; it was filtered, washed with cold water and recrystallized from ethanol. The physical and spectral data were given in tables (1 and 2)

Method 2:

(0.05mol.) from ester (8) or(9) with (25ml) hydrazine hydrate (99%) were refluxed for 45min. The product crystallized out on cooling was washed with water, recrystallized from ethanol.See Tables (1 and 2).

1-(4-Methyl-7-coumarinloxymethylcarbonyl)-4-substitutedthio-semicarbazide (12-14):

Method 1^{17} :

An equimolecular quantity of hydrazide (10)(0.002mole, 0.496g) and (0.002mole) substituted isothiocyanate in 40ml absolute ethanol was refluxed for 6 hours. The product was crystallized out on cooling, filtered, recrystallized from ethanol. Tables (3 and 4).

Method 2^{17} :

Substituted isothiocyanate (0.01mole) and sodium hydroxide (0.01mol, 0.4g as a 2N solution) were added to the solution of compound (10) 0.01 mole in ethanol 20 ml. The mixture was stirred for 24 hours and filtered. The filtrate was acidified with hydrochloric acid. The precipitate was filtered and recrystallized from ethanol-water(50:50).Tables (3and 4).

5-(4-Methyl-7-coumarinloxy

methyl)-2-substituted amino-1,3,4oxa -dizole¹⁸ (15-16).

Dissolve (0.005mole) from any 1-(4-Methyl-7-coumarinyloxy methyl carbonyl)-4-substituted

thiosemicarbazide (12-14) in methanol (50ml), then add mercury oxide (0.0055mole, 1.2g.). Refluxed the mixture for 4 hours .The precipitate formed after filtration and evaporation of the solvent is washed with water and recrystallized from ethanol, Tables (5, 6).

5-(4-Methyl-7-coumarinloxy

methyl)-2-amino-1, 3, 4-oxadiazole (17) and 5-(3-coumarinloxy)-2-amino-1, 3, 4-oxadizole⁴ (18)

To an ethanloic solution (50ml) of hydrazide (9 or 11)(0.005mole) add cyanogen bromide (0.0055mole, 0.6g). The reaction mixture should be refluxed for 3hours. Cool and neutralize with potassium bicarbonate solution. The solid formed after adding crushed ice is to be filtered and recrystalized from chloroform. Tables (7,8)

5-(4-Methyl-7-coumarinloxy

methyl)-2-substituted-1,3,4,oxadizole (19-27) and 5-(3-Coumarinyl)-2substituted-1,3,4,oxadizol⁷ (28-33)

appropriate aromatic An carboxylic acid (0.01mole) is added gradually, with stirring for 20 minutes, to a mixture of (0.01mole) of hydrazide (10 or 11) and syrupy phosphoric acid (85%) 10ml at 120°C. The mixture is heated with stirring at this temperature for further 1houre then poured into ice water and left overnight. The precipitate is filtered off, wash with water and with 10% sodium carbonate solution ,recrystallized from ethanol .Tables (9,10)

5-(4-Methyl-7-coumarinyloxy methyl)-1,3,4-oxadizole-2-thiol ¹⁹(34)

To a solution containing 100ml of 95% ethanol and 0.01mole of potassium hydroxide, add ((0.01mole, 2.48g.) of hydrazide (10),(0.2 mole, 12ml) of carbon disulfide .Hold the mixture was held at reflux for 4-6 hours(or until most of the hydrogen sulfide evolved) .After is the concentration of the solution to a small volume, the residue is added to icewater (60g). Acidify with hydrochloric acid (pH =5-6), filter and recystallize the solid from ethanol .m.p. 190°C, 60%. The spectral data is on table (24).

Analysis	C.	H.	N.
Calc.	53.79	3.44	9.65
Found	53.54	3.30	9.52

1-Formyl-2-(4-methyl-7-

coumarinloxy methyl carbonyl) hydrazine¹² (35):

A solution of hydrazide (10) (0.025 mole, 6.2 g) in formic acid (98%) (10 ml) is refluxed for 30 minutes. The solvent is evaporated and the residue is cooled with ice water and recrystallized from methanol. m.p. 178-180°C, 78%.

Analysis	C.	H.	N.	
Calc.	56.52	4.34	10.14	
Found	56.28	4.29	10.03	

2- (4-Methyl -7- Coumarinyloxy methyl) -1,3,4- oxadiazle¹² (36):

To a solution of substituted 1formyl hydrazine (35) (0.005 mole, 1.38 g) in xylene 100ml, phosphorous pentoxide (0.005 mole, 0.7 g) is added. The mixture is refluxed for 1 hour. The solvent is then evaporated and the residue is recystallized from methanol. m.p. 98-100°C.,60%

Analysis	C.	H.	Ν
Calc.	60.46	3.87	10.85
Found	60.08	3.69	10.41

2,5 -bis (substituted)-1,3,4oxadiazole (37-39):

Phosphoric acid 85% (10 ml) is added to a mixture of (0.0015 mole) hydrazides (10 or 11) and of the esters (0.0015 mole)(8 or 9). The mixture is heated at 120°C for 1 hour Cool and add to ice water and let for 2 hours. The residue is filtered and washed with water and recrystallized from ethanol, tables (11, 12).


Result and Discussion

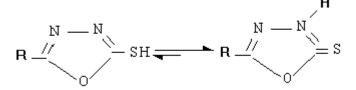
The synthesis of new substituted 1,3,4-oxadiazoles may provide additional biologically active agents.

The ester (8) was synthesized by reaction of 4-methyl 7-hydroxy coumarin (7) with ethyl bromo acetate in the presence of anhydrous potassium carbonate, while ethyl cumarin-3carboxylate (9) was prepared through the reaction of salicylaldehyde with diethyl malonate in the presence of 4methyl pipyridine. These compounds were identified as mentioned in literatures ^{14.15}

Hydrazide (10 or 11) was obtained by refluxing the esters (8 or 9)

with 99% hydrazine hydrate in absolute ethanol. These hydrazides were identified by the appearance of the bands in the infra red spectrum in the following range: bands at 3500-3550 cm⁻¹ for (N-H) stretching and also bands for carbonyl groups at (1600-1680 cm⁻¹) which is lower than the carbonyl group of ester due to the presence of resonances effect²⁰.

The ¹HNMR shows that the triplet and quartets bands for ester disappeared and instead of them new bands for (NNH2) appeared at (3.9 - 4.2) ppm and a broad band at (8.9 - 9.0) ppm for CONH which identified the hydrazide.

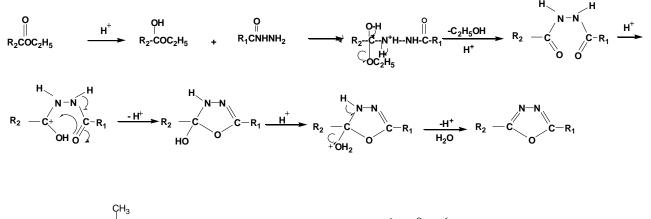

Condensation of the hydrazide (10) with suitable alkyl or aryl isothiocyante provided substituted thiosemicarbazide (12-14) which were identified by IR spectrum as following stretching bending at $(1725-1760 \text{ cm}^{-1})$ for carbonyl group and bands at $(3200-3350 \text{ cm}^{-1})$ for N-H stretching as well as bands at $(1270-1300 \text{ cm}^{-1})$ for thione groups (C=S). Bands for thiol disappeared and this explains the presence of these compounds in thione form in a solid state ⁽²¹⁾. The spectrum of ¹HNMR gave a band between 2-4-2.5 ppm for CSNH and NHCS, also a singlet band appeared at 7.8-8.6 ppm.

for the CONH proton. Cyclization of compound (12-14) in the presence of mercury oxide in methanol offered the corresponding 5-(3-Methyl -7coumarinloxy methyl) -2- substituted amino 1,3,4-oxadiazole (15-16). These compounds were identified by spectral data; the spectrum of IR shows the following absorbing bands, at (3150-3380 cm⁻¹) for N-H stretching banding, symmetrical stretching bands at (1230-1260 cm⁻¹) for C-O-C groups and absorption bands at $(1610-1640 \text{ cm}^{-1})$ for C=N stretching band.

Also the spectrum of ¹HNMR gave results conforming to expectation, as in table (6). Refluxing hydrazide (10-11) with cyanogen bromide in ethanolic solution gives 5-(4-Methyl-7coumarinyloxy methyl)-2-amino-1, 3, 4-oxadiazole (17)and 5-(3coumarinyl)-2-amino- 1,3,4-oxadiazole (18) which were identified by I.R. spectrum through the disappearance of carbonyl band (C=O) for hydrazide and the appearance of band at (1100 cm⁻ ¹)for symmetrical group C-O-C. Aband at (1650 cm⁻¹) for (C=N) stretching group, and bands at $(3450-3500 \text{ cm}^{-1})$ were noticed for streching banding of N-H group. The ¹HNMR spectrum showed bands at (3.0-3.2 ppm) for the absorption of proton NH₂ groups substituted at oxadiazole ring and other bands appeared at the expected positions as shown in table (8)

Reaction of hydrazide (10 or 11) with different carboxylic acid in the presence of phosphoric acid (85%) at 120C°;offered 5-(4-Methyl -7coumaringloxy methyl) -2- substituted -1,3,4- oxadiazole (19-27)and 5-(3coumarinyl)-2-substituted-1,3,4 oxadiazoles(28-33)which were identified by I.R. spectrum which showed bands at $(1090-1180 \text{ cm}^{-1})$ for streching band of (C-O-C) group. Other bands between $(1600-1650 \text{ cm}^{-1})$ for streching (C=N)group were also noticed. ¹HNMR spectrum showed results as expected. See table (9)

addition refluxing In the hydrazide (10) with carbon disulfide in alcoholic potassium hydroxide gave 5-(4-Methyl 7- coumarinloxy methyl)-1,3,4-oxadiazole -2 thiol (34). This compound was identified by the appearance of streching band at(1060 cm⁻¹) for (C-O-C) group and the disappearance of streching band for carbonyl hydrazide. group of Absorption ban at((1640-1650 cm⁻ ¹)for(C=N) and absorption band for (C=S) group appeared at (1200 cm^{-1}) and this confirms the presence of resonance form ²⁰


1-Formyl -2- (4-methyl -7coumarinyloxy methyl carbonyl) hydrazide (35) was obtained by refluxing the hydrazide (10) with formic acid. This compound was identified by IR spectrum which showed a band at (1685 cm⁻¹)for stretching banding of carbonyl group

(C=O) for aldehyde and a band at(1730 cm⁻¹) for carbonyl group of hydrazide. Another band appeared at (3400 cm⁻¹) for N-H streching band. Cyclization of compound (35) with phosphorous pentoxide in xylene liquid led to the formation 2-(4-Methyl -7-coumarinloxy methyl)-1,3,4- oxdiazole (36) which was identified by IR Spectrum by the disappearance of the streching band for carbonyl group of aldehyde and carbonyl group of hydrazide as well as (N-H) group. On the other hand a new band for streching banding for C=N group appeared at (1100 cm⁻¹) for (C-O-C) group streching banding.

Reaction of hydrazide (10 or 11) with ester (8 or 9)in the presence of phosphoric acid (85%) at 120°c gave 2,5-disubsituted -1,3,4-oxadiazole (37-

39) and the suggested mechanism for these reaction is as follows;

These compounds were identified by spectrum methods: the IR spectrum showed the disappearance of the following stretching bands for carbonyl ester hydrazide as well as the stretching banding of (C=N) group of hydrazide Bands at (1640-1650 cm⁻¹) for the stretching (C=N) group and bands at (1050-1130 cm⁻¹) for symmetrical stretching band of (C-O-C) group also appeared.

R₁=

Table (1): physical data for substituted hydrazide

 $\mathop{\rm R-C}\limits^{\rm O}_{\rm NH~NH_2}$

Compd. No.	R	M.p. C°	Yield %	Color	Analysis Calc./ Found C. H. N.
10	R ₁ = 0 0 CH ₂ .	204-206	94	White	58.064.8311.2957.884.7811.13
11		205-206	85	Yellow	58.82 3.92 13.72 58.46 4.01 13.58

Table (2): spectral data for substituted hydrazide

 $\mathop{\rm R-C}\limits^{\rm O}_{\rm NH}\mathop{\rm NH}_2$

		U.V	I.R V	/ cm ⁻¹	¹ HNMR ς(ppm)
Compd. No.	R	λmax nm EtoH	N-H	C=O	Solv. DMSO-d6
10	OCH3 OCH2-	248	3500	1680	2.2(s,3H) CH3 4.2(b,2H)NH3 5.1(s,2H)OCH2 6.12-7.5(m,4H)CH,
11	C + C + C	310	3550	1660	Ar-H 9.0(b,1H)CONH 4.0(b,2H)NNH2 7.2-7.63(m,4H)Ar-H 8.9(b,1H)CONH 8.72(s,1H)CH

Table (3): Physical data for 1-(4-methyl-7-coumarinloxy methyl carbonyl)-4-substituted thiosemicarbazide

		0141		H (2		
Compd No.	R1	R2	М.Р ំ С	Yield %	color	Analysis Calc./ Found C. H. N.
12	OCH3 OCH2.		178-0	78	White	59.53 4.43 10.96 59.28 4.38 10.79
13	O O CH ₂ .	CH3CH2	224-5	60	White	53.73 5.07 12.53 53.28 4.97 12.42
14	OCH3 OCH2.	CH3	170-2	75	White	52.23 4.67 13.08 51.98 4.73 12.96

$\begin{array}{c} O \\ H \\ R_1 - C \\ NH \\ NH \\ C \\ NHR_2 \end{array}$

	I	$\mathbf{R}_{1-\mathbf{C}} \mathbf{N}$	S IH NH C NHI	R_2	
Compd . No.	R1	R2	U.V λMax nm EtOH	I.R Vcm ⁻¹ N-H C=O C=S	¹ HNMR ς(ppm) Solv. DMSO-d6
12	CH ₃ OCH ₂ . CH ₃		324	3350 1725 1280	2.4(s,3H) CH3 3.0(s,1H) CSNH 3.9(s,1H)NHCS 4.7(s,2H)OCH2 6.0(s,1H)C-H 6.7(m,8H)Ar-H 8.7(b,1H)CONH
13	O CH ₂ .	C2H5	330	3200 1730 1270	1.2(t,3m)CH3 2.3(s,3H)CH3 2.5(s,1H)CSNH 2.8(s,1H)NHCS 3.0(q,2H)CH2 5.0(s,2H)OCH2 6.7-7.5(m,4H)CH,Ar-H
14	OCH3 OCH2.	CH3	333	3300 1760 1300	8.7 (b,1H)CONH 2.4(s,3H)CH3 2.6(s,3H)CH3 2.7(s,1H)CSNH 2.9(s,1H)NHCS 4.9(s,2H)OCH2 6.1(s,1H)CH 6.7-7.8(m,3H)Ar-H 8.8 (b,1H)CONH

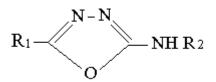
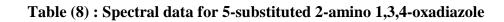
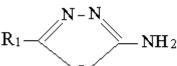

Table (4) : Spectral data for 1-(4-methyl-7-coumarinloxy methyl carbonyl)-4-substituted thiosemicarbazide.

Table (5): Physical data for 5-(4-methyl-7-coumarinloxy methyl) 2-subistituted amino-1,3,4-oxadiazole

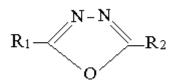
R1-N-N-NH R2

Compd. No.	R1	R2	M.p C°	Yield %	Color	Analysis Calc./ Found C. H. N.
15			188-0	57	Yellow	65.32 4.29 12.03 64.9 7 4.19 11.94
16		CH3 CH2	231-3	63	white	59.80 4.98 13.95 59.55 5.03 13.82

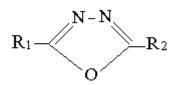

Table (6) : Spectral data for 5(methyl-7-coumarinyloxy methyl)2-substituted amino 1,3,4 oxadiazole


Compd. No.	R1	R2	U.V λmax nm EOH	IR Vcm ⁻¹ N-H C=N C-O-C	¹ HNMR ς(ppm) solv. DMSO-d6
15	OCH3 OCH2.		302	3380 1640 1230	2.3(S,3H)CH3 2.5(b,1H)NH 4.8(S,2H)OCH2 6.4-8.1(m,9H)Ar-H,CH
16	OCH2.	CH3CH2	348	3150 1610 1260	1.2(t,3H)CH3 2.4(s,3H)CH3 3.3(q,2H)CH2 4.1(b,1H)NH 4.9(s,2H)OCH2 6.6-9.1(m,4H)Ar-H,CH

$R_1 \longrightarrow NH_2$								
Compd. No.	R1	M.P C்	Yield%	Color	Analysis Calc./Found C. H. N.			
17	O O CH ₂ .	220-2	73	Pale yellow	57.14 4.02 15.38 56.89 3.98 15.22			
18		178-0	50	Brown	57.64 3.05 18.34 57.41 3.00 18.24			

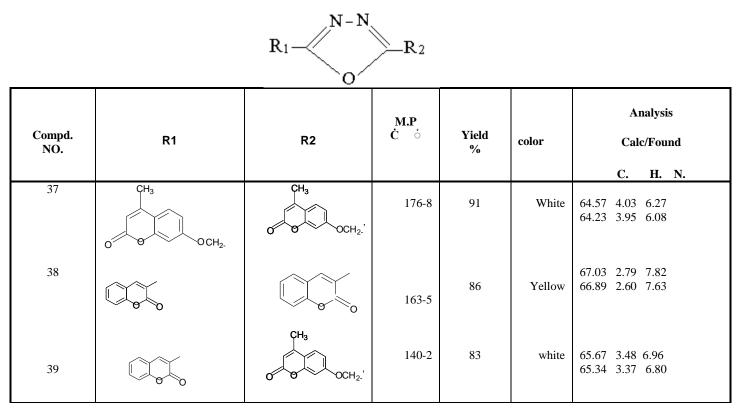

Table (7): Physical data for 5-substituted 2-amino -1,3,4- oxadiazole

	$R_1 \longrightarrow NH_2$								
Compd. No.	R	U.V λMax nm EtOH	I.R Vcm ⁻¹ N-H,C=H C-O-C	'HNMR S(ppm) Solv. DMSO-d6					
17	0 CH ₃ 0 O CH ₂ .	259	3500 1650 1100	2.3(s,3H)CH3 3.0(b,2H)NH2 4.8(s,2H)OCH2 6.1(s,1H)CH 6.7-8.0(m,3H)Ar-H					
18		305	3450 1650 1100						


Table (9) : Physical data for 2,5 disubstituted 1,3,4- oxadiazole

						Analysis
Compd.			M.P	Yield	color	Calc./ Found
No.	R1	R2	் C	%		C. H. N.
110.						
	<u></u>		188-0	70	White	68.26 4.19 8.38
19	CH3					67.26 4.23 8.24
	O OCH2-					
	CH3		173-5	2	White	61.87 3.52 7.59
20			1/5-5	Z	white	61.59 3.60 7.43
_	OCH2-					01.57 5.00 7.45
						65.32 4.29 12.03
21					Pale	64.99 4.32 11.88
21	O OCH2-		180-2	01	yellow	
				91		
22	СН3	0 ₂ N	170-1	85	Pale	53.77 2.83 13.20
	OCH2.				yellow	53.28 2.95 13.08
	0 0 00112	02 ^N				
			219.0	02	W/h:4a	60 15 2 42 11 00
23	CH ₃		218-0	83 [White	60.15 3.43 11.08 59.79 3.35 10.96
	OCH2-	0 ₂ N		L		57.17 5.55 10.90
	CH	NO ₂	193-5	60	White	60.15 3.43 11.08
24						59.88 3.38 10.08
	OCH2-					
	ÇН₃		225-7	53	Yellow	54.81 3.58 9.13
25		CLCH2				54.33 3.65 9.08
23	♂~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ÇH ₃				
	CH₃		177-9		White	64.58 4.03 6.27
26	O PL OCH2-	0 0 OCH ₂ .	111-7	94	vv mte	64.21 3.98 6.18
	OF CH ₃ → OCH ₂ .				White	
27	O OCH2-		140-2			65.67 3.48 6.96
				85	N7 11	65.34 3.41 6.79
	\sim		198-0		Yellow	70.34 3.44 9.65
28			170-0			69.98 3.35 9.49
	Ŭ			62	Pale brown	
						62.86 2.77 8.26

	~ ~ /		190-2	59		62.55 2.70 8.59
29		CL				66.88 3.60 13.77
			207-9	87	Brown	66.64 3.55 13.70
30		H ₂ N				43.43 1.50 8.44
			210-2		Brown	43.21 1.42 8.33
31		CL ₃ C		62		54.85 2.66 10.66
					Pale Yellow	54.54 2.71 10.51
32		CLCH2	218-0	75		59.25 3.70 17.28 58.89 3.64 17.17
32			217-9	80	Pale yellow	
33		H ₂ N-CH ₂ -		20		


Table (10) : Spectral data for 2,5-disubstituted oxadiazole

Compd No.	R1	R2	U.V λmax nm EtoH	IR Vcm⁻¹ N-H C=N C=S C-O-C	¹ HNMR ς(ppm) Solv.DMSO-d6
19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		350	,1650 ,1100	2.2(s,3H)CH3 4.4(s,2H)OCH2 6.0(s,1H)CH 6.0-7.6(m,8H)Ar-H
20	OTOCH2.	cl	348	,1640 ,1090	2.4(s,3H)CH3 5.1(s,2H)OCH2 6.1(s,1H)CH 6.6-7.8(m,7H) Ar-H
21	CH ₃ OCH ₂ .	H ₂ N-	254	3350,1660 1095	4.1(b,2H)NH2 2.2(s,3H)CH3 4.7(s,2H)OCH2 6.2(s,1H)CH 6.5-7.6(m,7H)Ar-H
22	O OCH2.	O ₂ N O ₂ N O ₂ N	261	,1640 ,1105	2.2(s,3H)CH3 4.6(s,2H)OCH2 5.9(s,1H)CH 6.6-8.5(m,6H)Ar-H
23	O O CH ₂ .	O ₂ N	349	,1620 ,1120	2.2(s,3H)CH3 4.6(s,2H)OCH2 6.0(s,1H)CH 6.6-8.4(m,7H)Ar-H
24	OF OCH ₂ .		346	,1620 ,1120	2.2(s,3H)CH3 4.6(s,2H)OCH2 6.0(s,1H)CH 6.6-8.4(m,7H)Ar-H

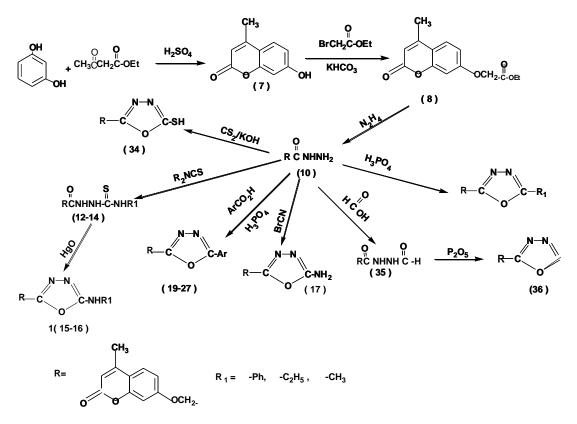

			l		
25	OF OCH2.	CL CH2-	327	_ ,1650 ,1110	
26	CH3 CH3 CH3 CH2-	R ₁	329	,1630 ,1120	
27	G G G CH ₂ .		265 245	,1640 ,1120	
28	CT of to		273	,1640 ,1110	
29		CL	248		
30	CT CT	H ₂ N	296	,1640 ,1100 3300,1620	
		CL ₃ C	310	,1090	
31			510	,1600	
32		CLCH2	346	,1150	
33		H2N+CH2-	309	,1610 ,1180	
				3250,1635 ,1110	

Table (11) :physical data for 2,5-bis(substituted)-1,3,4-oxadiazole

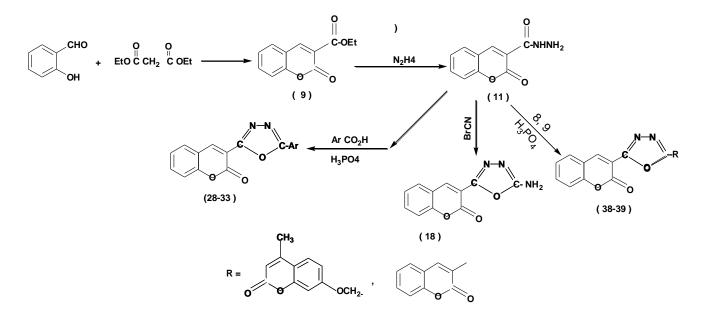


Table (12) :Spectral data for 2,5-bis(substituted)-1,3,4-oxadiazole

	R 1<	N-N R2		
Compd.No.	R1	R2	U.V λmax nm EtoH	I.R V CM ⁻¹ C=N C-OC
37	CH3 OCH2-	CH3 OCH2-	330	1650 1050
38	CT of o	CT of o	307	1640 1130
39		CH3 OCH2-	304	1640 1120

Schem (1); Synthesis of oxadiazol derivatives drive from 4-methyl 7-hydroxy coumarine

Schem (2); Synthesis oxadiazol derivatives derive from Coumarin-2-Carboxylate

The biological Methods: 1-Bacteria;

The bacteria species used were Gram positive and Gram negative bacteria as listed in Table (13). All strains were obtained from the Department of Biology, College of Science, Mosul University. They were grown up to the stationary phase in a nutrient bath at 37 $\dot{\mathbf{c}}$ and a sample of 0.5 ml of each bacteria was spread over a surface of a nutrient agar plate²².

Sensitivity Test; (Disc Diffusion Method):

Discs of filter paper (6mm diameter)were sterilized at 140¢ for 1 hour, impregnated with one of different prepared solution compounds, and then dried-DMSO(dimethylsulfoxide) was used as a solvent for compounds (22, 23, 26, 35). The same solvent was used for antibiotics cephalexine (keflex) for pseudomonas treating aeruginosa salmonella typhimurium. Cefotaxime for Escherichia (claforan) Coli, staphylococcus aureus and chloramphenicol for Bacillus subtilis were used for comparison .

We also used paper disk of DMSO as control²³. The inculcated plates were incubated at 37° for 14-16 hours, and the inhibition zones (mm) were measured prescott²⁴. In all experiment ,the mean of each triplicate was measured²⁵.

Results and Discussion

The antibacterial activities of compounds (22, 23, 31, 34) were evaluated using various species of bacteria:

<u>Staphylococcus aureus, Bacillus</u> <u>subtilis</u>,<u>Pseudomonas aeruginosa</u>, <u>salmonella typhimurium</u> and <u>Escherichia coli</u>. The results showed that these compounds were active in inhibiting the growth of nearly all micro-organisms and showed that the antibacterial effect on <u>staphylococcus</u> <u>aureus</u>, Bacillus <u>subtiles</u>, <u>Pseudomonas</u> <u>aeruginosa</u> and <u>salmonella</u> <u>typhimurium</u> was higher than that on <u>Escherichia coli</u> as indicated from the diameter of inhibition zone. Table(13).

Blank discs DMSO did not show any activity .The activities of the tested compounds against the studied bacteria were compared with the standard antibiotics. The results showed that some of the compounds had an inhibition zone more than the studied antibiotics, whereas the others showed less effect. It was observed that the compounds (22, 23, 34)had more inhibition zones for Staphylococcus Bacillus aureus, subtilis and Salmonella typhimurium than the antibiotics cefotaxim, Chloroamph enicol and Cephalexine respectively. while compound (31)showed less antimicrobial effect against these microorganism bacteria Table (13).

According to the data (Table 31, 32, 33, 36) it was evident that the activity of tested compounds decreased considerably at lower concentration (0.62 mg /disk). On increasing the Concentration up to (10 mg /disk) a large inhibition zone was observed for these compounds against <u>Pseudomonas</u> aeruginosa.

			Test Organisms				
Compound	Sta	ph.aures	Bacillis sub	Psedo.ueru	Sal.typh	E.coli	
22		S	S+2	MS	S	MS	
23		S	S	MS	S	MS	
31	control	MS	S+1	MS	MS	MS	
34	rol	S	S	MS	S	MS	
Cefotaxime		9				17	
Cephalexine				16	10		
Chloramphenicol			8				

Table (13): The activities of compounds against bacteria.

٢٠–المجلد السابع عشر	القطرية للكيمياء-٠٠	المجلة
----------------------	---------------------	--------

Staph.arues BacillsSub. Psed.acru. Sal.typh. E.coil		Test Bacteria
R MS	0.62	and a
R MS MS	1.25	Conc.
SW SW SW	2.5	Conc. Of 22 mg / disk
SW SW SW SW	5.0	g / disk
S S S S MS MS	10.0	
R MS MS	0.62	
R MS MS	1.25	Conc.
SW SSW SSW	2.5	Conc. Of 23 mg / disk
SW SW SW	5.0	g / disk
SW SW SW	10.0	
R MS R MS	0.62	
R MS MS	1.25	Conc.
SW W SW SW	2.5	Cone, Of 31 mg/disk
SW SW SW	5.0	g /disk
SW SW SW SW SW SW	10.0	
MS MS MS S MS MS R MS MS MS MS MS R R MS MS	0.62 1.25 2.5 5.0	Conc. Of 34 mg/disk
S W S S W S	1 1	4 mg/di
SW SW SW	10.0	sk

S: Sensitive (Diameter of inhibition zone 6mm less than control sample) *: Micro organism under test. R: Resistance (Diameter of inhibition zone 12mm larger than control sample) MS: Middle sensitive (Diameter of inhibition zone between 6-12 mm less than control sample) The number of microbial cell in $1 \text{mm} = 1.0 \times 10^8 \text{/ml}$.

References

1. A.R. Katritzzky and C.W Reez; comprephensive heterocyclie chemistry, pergamon press Ltd., England : 6, 427 (1984).

2. M.A. salama; F.M.A. Moti ; A.A.G. Ghattas and A.abdullah;

Egypt.J.Chem., 1981, **24**(**1**),47.

3. V.K. Mishra and S.C. Bahel; J.

Indian Chem. Soc., 1983, LX, 867.

4. T. Ramalingam ;A.A.

Deshmukh;P.B. sattur ; V.K. sheth and S.R. Naik ; *J.indian Chem. Soc.*,

1981, **LVIII** ,269.

5. J.Hazarika and J.C.S. Kataky; *Indian Journal of Heterocyclic*

Chemistry, 1998, **7**,197.

6. K.larc; P.patel; P.vpadhyay and H.Parekh; *Indian Journal of*

Chemistry, 1996, **35B**, 1062

7. Shakir M.Said; Ph.D.Thesis, Mosul university, mosul Iraq (2000)

8. E.H. El-Tam aty; M.E Abdel-Fattah and I.M. El-Deen; *Indian Journal of chemistry*, 1996, **35B**,1067.

9. J.D. Brooks ; P.T. charltion ; P.E. Macey; D.A. Peak and W.F. short; *J. Chem*. *Soc.*, 1950, **Part I**, 452.

10. U. Srivastava; R.B. pathak and S.C. Bahel; *J. Indian Chem. Soc* . 1982, LVIII, 822.

11. S. Sunder; N.p. Peet and R.J. Barbuch ; *J. Heterocyclic Chem.*, 1981, **18**, 1601.

12. A. Shafiee; E. Naimi; P.Mansobi ; F.P. Foroumadi and M. Shekari ; *J. Heterocyclic Chem.*, 1995, **32**, 1235.

13. A.O.Fitton and R.K. Samally; "Practical heterocyclic chemistry", Academic press, London and new York P. 97 (1968)

14. M.I. Husain ; M.K. Shukla and S.K. Agrawal ; *J. Indian Chem. Soc.*, 1979, LVI, 306.

15. H.A. Shah and R.C. Shah; J.

Chem. Soc., 1939, Part I ,132.

16. M,I. Husain ; M.K. Shukla and

S.K. Agrawal ; *J. Indian Chem Soc.*, 1979, **LVI**,306.

17. B.N. Goswami ; J.C.S. kataky and J.N. Baruah; *J. Heterocyclie Chem.*, 1984, **21**,1225.

18. M.I. Husain and M.R. Jamali; *Indian Journal of Chemistry*, 1987, **27B**, 43.

19. R.W. Young and K.H. wood;

J.Am. Chem.Soc., 1955, 77, 400.

20. R.M. Silverstein ; G.C. Bassler and T.C. Morrill, "Spectrometric identification of organic compounds", 3rd Edn., *John wiley & Sons, Inc.*, New York, 1974, **106**, 100.

21. J.P. Henchart; R. Houssain and B. Lablanche; *J. Hetencyclic Chem.*, 1977, **14**, 615.

22. D.A. Shiley; Preparation of Organic Intermediate , *John wiley and Son Inc.,New York*, 1951, 243

23. J. Vandepitte ; K.Engbac; P.Pito and G.Heuk; "Basic Laboratory procedure in clinical bacteriology", world Health organization", Geneva, 78, (1991)

24. L.M. Prescott; J.P Harley and D.A. Klein ; "Microbiology" 3rd. E.d.

Wm.c. Brown Publisher, London, Chicago (1996)

25. L.P. Garrod, H.P. Lambert, D. Grady and P. water worth, Antibiotic and chemotherapy, 5th . ed., Churchill living stone, (1981)