The Number of Idempotent Elements in Symmetric Semigroup T_n

 T_n عدد العناصر المتساوية القوى في شبه الزمرة التناظرية

Asst.Prof . Mohammed Serdar I. Technology University Dep.of Math. College Of Education for Girls Al-Kufa University

Abstract:

The main purpose of this paper to find the number of the idempotent elements in sym T_n Semigroup.

The problem of finding the number of idempotent elements in the symmetric semigroup is solved by using the partitions of an *N*-set ;we have found that :

$$U_n = \sum_{b_1+2b_2+\ldots+nb_n=n} P(b_1,\ldots,b_n) \prod parts$$

Such that $P(b_1, ..., b_n)$ is the number of partition for a given partition and by *parts* we mean the parts for the given partition .Some other results concerning U_n have been established.

الخلاصة :
الهدف الرئيسي من هذا البحث هو ايجاد عدد العناصر المتساوية القوى في شبه الزمرة التناظرية
$$T_n$$
 .
مشكلة ايجاد عدد العناصر المتساوية القوى في شبه الزمرة التناظرية تم حلها بأستحدام التجزئة على المجموعة التي تحوي n
من العناصر حيث وجدنا ان
 $U_n = \sum_{b_1+2b_2+...+nb_n=n} P(b_1, ..., b_n) \prod parts$

parts حيث ان $P(b_1, \dots, b_n)$ هو العدد الكلي للتجزئة المعطاة للمجموعة N التي تحتوي على n من العناصر ونعني ب $P(b_1, \dots, b_n)$ اجزاء التجزئة المعطاة . ثم برهنا بعض النتائج الأخرى المتعلقة ب U_n . تم بعد ذلك تقديم طرق أخرى لحل المشكلة أعلاه وبأستخدام العلاقة المرتدة ودالة التوليد

1.Introduction :

Let T_n be the semigroup of all mappings of the set $N = \{1, ..., n\}$ into itself under the operation of composition of mappings ,inside this semigroup we have the group S_n of all one to one and onto mappings of the set N onto itself. We have in T_n idempotent elements that is mappings f with the property fof=f, it is our aim in this work is to find the number of idempotent elements in T_n for $n \in N$.

Let U_n be the number of idempotent elements in T_n . It is shown that:

$$U_n = \sum_{b_1+2b_2+\ldots+nb_n=n} P(b_1,\ldots,b_n) \prod parts$$

Then we prove that if *n* is even number then U_n is odd number and if *n* is odd number then U_n is even number.

2.Definitons and Notations:

Definition 2.1 [1],[2] :

Let *X* be a finite set and T_X be a set of all mapping from *X* into *X*, then T_X with binary operation the composition of mapping form a semigroup called the *Symmetric Semigroup* denoted by T_X . If |X| = n, then we can identify *X* with the set $\{1, ..., n\}$ and write T_n .

Journal of KerbalaUniversity, Vol. 11 No.1 Scientific . 2013

Definition2.2 [1],[2],[3] :

Let (S, *) be a semigroup and let $y \in S$, then we say that y is an idempotent element in S if y*y=y. **Definition 2.3 [4],[5],[6]**:

Partition of a set is decomposition of the set into cells such that every element of the set exactly in one of the cells.

The number of Partitions of the integer n into exactly m classes is denoted by P_n^m . Hence the total number of Partitions of *n* into *m* or fewer parts: $P_n^1 + \dots + P_n^m$.

If m=n, this number is denoted by P(n), the number of all Partitions of the integer n.

Example 2.1:

The partition of	are	whence
2	2,11	$P_2^1 = 1 = P_2^2$,

3

Thus, P(2)=2, P(3)=3.

If $\partial = (\partial_1, \ldots, \partial_P)$ is a partition of n, ∂ may also can be written as $1^{r_1} 2^{r_2} \ldots n^{r_n}$.

Where r_i is the number of parts equal to i in ∂ , i varying in $\{1, 2, ...\}$. For example, all the following denote the same partition of 17:

 $P_3^1 = P_3^2 = P_3^3 = 1$,

4+3+3+2+2+2+1, 4332221 (condensed as $43^2 2^3 1$;

3,21,111

in the other relation, it is (12^33^24) , and we say that ∂ is a partition of type $1^{r_1}2^{r_2} \dots n^{r_n}$.

Theorem 2.1 [7] :

The number of mapping $f: N \rightarrow R$ is :

 $|Map(N,R)| = r^n$, such that |N| = n, $|\mathbf{R}| = r$.

Proposition 2.1 [3] :

Denote $Per(b_1, ..., b_n)$ the number of permutation of an *n*-set *N* of type $1^{b_1} ... n^{b_n}$ and by $P(b_1, ..., b_n)$ the number of Partitions of *N* of type $1^{b_1} ... n^{b_n}$. Then

i)
$$Per(b_1, ..., b_n) = \begin{cases} \frac{n!}{b_1! \dots b_n! 2^{b_2} \dots n^{b_n}} & \text{if } n = \sum_{i=1}^n ib_i \\ 0 & \text{otherwis} \end{cases}$$

$$ii) P(b_1, ..., b_n) = \begin{cases} \frac{n!}{b_1! \dots b_n! (2!)^{b_2} \dots (n!)^{b_n}} & \text{if } n = \sum_{i=1}^n ib_i \\ 0 & \text{otherwise} \end{cases}$$

3.The Main result

The subset S_n of T_n consisting of all one to one and onto mappings form a subsemigroup and infact it is a group of all permutations of *n* letters laying inside T_n which is called *Symmetric group*. Now inside T_n we have idempotent elements for example T_3 : The set of all mapping is $\{f_1, f_2, \dots, f_{27}\}$ where:

$$\begin{split} f_{1} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \ f_{2} &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}, \ f_{3} &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix}, \ f_{4} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix}, \ f_{5} &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}, \\ f_{6} &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix}, \ f_{7} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix}, \ f_{8} &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix}, \ f_{9} &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1 \end{pmatrix}, \ f_{10} &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}, \\ f_{11} &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}, \ f_{12} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}, \ f_{13} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 1 \end{pmatrix}, \ f_{14} &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}, \ f_{15} &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix}, \\ f_{16} &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix}, \ f_{17} &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 3 \end{pmatrix}, \ f_{18} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}, \ f_{19} &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \end{pmatrix}, \ f_{20} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \end{pmatrix}, \\ f_{21} &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \end{pmatrix}, \ f_{22} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \ f_{23} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \ f_{24} &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \ f_{25} &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \\ f_{26} &= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \ f_{27} &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}. \end{split}$$

The idempotent elements for T_3 are :

$$\begin{split} f_{22} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}, f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix}, f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}, \\ f_{12} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}, f_{16} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix}, f_{18} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}, f_{20} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \end{pmatrix}, f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix}$$

In this section we are interested finding the number of the idempotent elements in the T_n semigroup ,a few example show that :

Ν	Number of idempotent
1	1
2	3
3	10
4	41
5	196
6	1057
•	
•	
•	

For example let us take T_4 we can make partition for it as follows :

1111,211,22,13,4;

211 connecting two elements {1,2,3,4}=partitioning the set {1,2,3,4} into cell contining two elements and two cells each containg one element= number of partition of 4 of type $1^2 2^1$.

Remark: Let $f \in T_n$, now to be f an idempotent element in T_n we have either f(i)=i for some $i \in N$ or if f(i)=j, then we must have f(j)=j, since otherwise if f(j)=k, where $k \neq j$ then $(fof)(i)=f(f(i))=k \neq f(i)$ whence $f^2 \neq f$, so the set N can be partitioned into subsets either singleton subsets {i} if f(i)=i or to subsets S_k consisting k elements in the other cases.

For example in T₃

$$\begin{array}{l} f_{22} = \{ \{1\}, \{2\}, \{3\}\}, \ f_1 = \{1, 2, 3\}, \ f_2 = \{1, 2, 3\}, \ f_4 = \{1, 2, 3\}, \ f_5 = \{\{1, 2\}, \{3\}\}, \\ f_{12} = \{\{1, 3\}, \{2\}\}, \ f_{16} = \{\{1, 3\}, \{2\}\}, \ f_{18} = \{2, 3\}, \{1\}\}, \ f_{20} = \{\{2, 3\}, \{1\}\}, \ f_4 = \{\{1, 2\}, \{3\}\} \end{array}$$

Journal of KerbalaUniversity, Vol. 11 No.1 Scientific . 2013

consider the three partitions of 3 which are: $1+1+1=1^3$

1+1+1=11+2=123=3

So we have the number of idempotent elements in T_3 equal to

$$\frac{3!}{3!} \times 1 + \frac{3!}{1!2!} \times 1 \times 2 + \frac{3!}{3!} \times 3$$

= 1 + 6 + 3 = 10

Theorem 3.1: The number of idempotent elements in T_n semigroup is

$$U_n = \sum_{b_1+2b_2+\ldots+nb_n=n} P(b_1,\ldots,b_n) \prod parts$$

Proof: The idempotent elements in T_n are mappings sending the elements of the partitioned subsets S_1, S_2, \ldots, S_k into one of the elements in the subset S_i such that S_k is a subset of the partition contains k elements ,so we have for each partition of n of type $1^{b_1} \ldots n^{b_n}$ idempotent elements as many as the number of $|S_1| \ldots |S_k|$ which implies that as many as the product of the parts of the partition and since by proposition 2.1. the number of partition of type $1^{b_1} \ldots n^{b_n}$ is $p(b_1, \ldots, b_n)$, therefore :

$$U_n = \sum_{b_1+2b_2+\ldots+nb_n=n} P(b_1,\ldots,b_n) \prod parts$$

4. Another Way to Find The Number of Idempotent Elements of Symmetric Semigroup. Definition **4.1** [8] :

For a sequence of number (a_0, \dots, a_n, \dots) an equation relating a number a_n to some of its predecessors in the sequence, for any *n*, is called a recurrence relation.

Example 4.1:

The sequence $\{a_n\}=\{1,2,3,5,8,\dots\}$ which is called Fibonacci sequence given by the boundary conditions $a_1=1$, $a_2=2$

and the recurrence relation $a_n=a_{n-1}+a_{n-2}$, $n \ge 3$.

Solving this recurrence relation means obtaining a formula for the *n*th term a_n as a function of n. By using recurrence relation we have the number of idempotent elements [8], given by :

$$U_{m+1} = \sum_{j=0}^{m} {m \choose j} (j+1) U_{m-j}$$
 with boundary condition $: U_0 = I, U_1 = I.$

For example:

$$U_{3+1} = U_4 = \sum_{j=0}^3 \binom{3}{j} (j+1) U_{3,j} = \binom{3}{0} \cdot 1 \cdot U_3 + \binom{3}{1} \cdot 2 \cdot U_2 + \binom{3}{2} \cdot 3 \cdot U_1 + \binom{3}{3} \cdot 4 \cdot U_0$$

= 10 + 3.2.3 + 3.3.1 + 1.4.1
= 41

Definition 4.2 [8] :

Let $(a_0, \ldots, a_r, \ldots)$ be a sequence of numbers,

the function $F(x)=a_0M_0(x) + \ldots + a_rM_r(x) + \ldots$; is called the ordinary generating function of the sequence $(a_0, \ldots, a_r, \ldots)$, where $a_0M_0(x), \ldots, a_rM_r(x) \ldots$ is a sequence of function of x that are used as indicators. If $M_x = x^r$, in this case for the sequence $(a_0, \ldots, a_r, \ldots)$, we have

 $F(x)=a_0+a_1x+\ldots+a_rx^r+\ldots$

By using generating functions we have the number of idempotent elements in[8]given by :

$$\sum_{n=0}^{\infty} U_n \frac{Z^n}{n!} = \exp(Ze^Z)$$

$$\sum_{n=0}^{\infty} U_n \frac{Z^n}{n!} = U_0 + U_1 \frac{Z_1}{1!} + U_2 \frac{Z^2}{2!} + U_3 \frac{Z^3}{3!} + \dots$$
$$\exp(Ze^Z) = (1 + Z + \frac{Z^2}{2!} + \frac{Z^3}{3!} + \dots)(1 + Z^2 + \frac{Z^4}{2!} + \frac{Z^6}{3!} + \dots)(1 + \frac{Z^3}{2!} + \frac{Z^6}{(2!)^2 3!} + \dots)$$

So

U₁Z=Z then U₁=1;
U₂
$$\frac{Z^2}{2} = (1 + \frac{1}{2!})Z^2$$
 then U₂=3;
 $\frac{1}{3!}U_3Z^3 = (\frac{1}{2!} + 1 + \frac{1}{3!})Z^3 = \frac{10}{6}Z^3$ then U₃=10

We will use the formula of U_n that is given by using recurrence relation to determined that U_n is even or odd .

Proposition 4.1:

If n is even in T_n then the number of idempotent is odd and if n is odd then the number of idempotent is even.

Proof: since
$$U_n = U_{m+1} = \sum_{j=0}^{m} {m \choose j} (j+1) U_{m-j}$$
 [8], (1)

if m+1=2 then $U_2 = 3$ note that it is odd, if m+1=3 then $U_3 = 10$ is even , suppose that the statement of Proposition true for each positive integer less than m+1, we want to prove that it is true for m+1, note that in (1)each term contains one of U_{m-1} which is less than U_{m+1} and so the statement is true.

Now, let m+1 is even, if j is even then m-j is odd contrary, therfore if $\binom{m}{i}$ is even so

 $\binom{m}{i}(j+1) U_{m-j} \text{ is even and if it is odd then since} \binom{m}{r} = \binom{m}{m-r}, 1 \le r \le m, [5]$ (2)we have $\binom{m}{j}$ twice, first product by $U_{m-j}(j+1)$ and second by $U_j(m-j+1)$ which are both even except $\binom{m}{m-j}$ m U_1 which is always odd, the sum of terms above is odd, add the terms contain $\binom{m}{j}$

even .Hence, U_{m+1} is odd.

Let m+1 is odd, if j is even(odd)then m-j is even (odd) therefore if $\binom{m}{i}$ is even so $\binom{m}{i}(j+1)U_{m-j}$ is even and if it is odd then by(2) we have $\binom{m}{i}$ twice, first product by $U_{m-j}(j+1)$ and second by $U_{j}(m - j + 1)$ which are both odd(even), the number of this terms is even by(2), so the sum of it will be even , add the terms $\binom{m}{m/2}(m/2 + 1) U_{m/2}$ which is even where it is clear that $\binom{m}{m/2}$ always even when m even and m/2 positive integer .Hence, U_{m+1} is even.

Journal of KerbalaUniversity, Vol. 11 No.1 Scientific . 2013

References:

[1]Burton, D.M., "Abstract Algebra", WM.C.Brown Publisher, U.S.A., 1988.

- [2]Dubin ,J.R.," Modren Algebra", Wiely, New York, 2000.
- [3]Lallement, G., "Semigroup And Combintorial Applications", John Wiley And Sons, New York, 1968.
- [4] Aigner , M., "Combinatorial Theory ", Springer-Verlag, New York, 1979.
- [5]Petrich, M., "Lectures in Semigroups", John Wiley and Sons, New york, 1977.
- [6]Shoup,V.,"A Computational Introduction to Number Theory and Algebra ", Cambridge University Press, internet address www. Cambridge. org.sa/9780521851541, 2005.
- [7] Anderson, I., "A First Course in Combinatorial Mathematics", Oxford University press, Britian, 1974.
- [8]Harris ,B. ,Schoenfeld L., "The Number of Idempotent Elements in Symmetric Semigroups", Journal of Comnbinatorial Theory 3,P.122-135, 1967.
- [9]Burton, D. M ,"Elementary Number Theory", WM.C.Brown Publishers Dubque, Iowa.
- [10]Baker,A. ,"Algebra and Number Theory ",University of Glasgow, internet address <u>http//www.maths.gla.ac.uk/~ajb,2003</u>.