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Abstract

The Randomness is one of the basic criterions to measure stream cipher efficiency. The
stream cipher generator depends basically on Linear FeedBack Shift Register (LFSR) which is
considered as one of the basic units of Stream Cipher Systems (SCS).

The basic idea of this paper is attacking and analysis of cryptosystems. So any developing in
some kinds of stream cipher generators without taking in considers the basic criteria of
efficiency may give no security to the generator, so this paper consists of two parts

First, the design part, this paper introduces developing of Geffe generator by increasing the
LFSR's from (three) to (five) with new combining nonlinear function which has good statistical
properties. The new generator called Modified Geffe generator.

Second, the attacking part, the frequency postulate of randomness criteria is calculated
theoretically, this mean the generated sequence product by the new generator can estimated and
this mean clear weakness in the suggested generator.
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1. Introduction

Linear Feedback Shift Register (LFSR) and Combining Function (CF) are considered as basic
units to construct Stream Cipher Generator (SCG) that used in stream cipher systems [14]. Any
weakness in any one of these units means clear weakness in SCG sequence, so there are some
conditions must be available in SCG before it is constructed; therefore the SCG efficiency is
concluded.

In 1967 [8] Golomb deduced three theorems about the maximal sequence generated from
LFSR. One of the three Golomb’s theorems deduced from the frequency postulate.

Although now dated, Rueppel in 1986 [10] provides a solid introduction to the analysis and
design of stream ciphers. The results on the expected linear complexity and linear complexity
profile of random sequences are from Chapter 4 of Rueppel.

In 1989, Staffelbach and Meier [13] presented two new so-called fast correlation attacks which
are more efficient than Siegenthaler’s attack in the case where the component LFSRs have sparse
feedback polynomials, or if they have low-weight polynomial multiples (e.g., each having fewer
than 10 non-zero terms) of not too large a degree.
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A comprehensive survey of correlation attacks on LFSR-based stream ciphers is the paper by
Goli¢ in 1994 [7]; the cases where the combining function is memoryless or with memory, as well
as when the LFSRs are clocked regularly or irregularly, are all considered.

A PH. D. thesis which introduced by Al-Ageelee [2] in 1998, this work used Genetic Algorithm
in cryptanalysis of class of stream cipher system depending on finding correlation between
ciphertext and the output of some of LFSR.

In 2005, Ahmed [1] introduces a paper which contained the design of artificial neural networks
for decryption i.e. getting distinguished polynomial for binary sequence with linear equivalence
which is equal to 8 as well as getting the binary sequence that is related to the distinguished
polynomial. And it was proved by the results that by using the ANN were very appropriate for the
decryption of the stream cipher systems.

In 2009 [3] Al-Shammari, A. G., introduces the estimation of the four basic criterions which
are: Periodicity, Linear Complexity, Randomness and Correlation Immunity used as basic criterions
to measure Key Generator Efficiency. He can calculated these basic criterions theoretically for any
key generator before it be implemented or constructed (software or hardware). This work introduces
the mathematical proof of the good efficiency of the linear key generator deterministically.

In this paper, some studies are applied on the SCG sequences to determine the sequence
frequency. The Basic efficiency for SCG can be defined as the ability of SCG and its sequence to
withstand the mathematical analytic which the cryptanalyst applied on them, this ability measured
by some basic criterions, the most important one of the randomness postulates is the frequency
postulate.

In the next part of this paper, the frequency postulate of randomness criterion will be discussed
in details and introduce the basic conditions to obtain efficient SCG especially those related to
frequency. It’s important to mention that the zero input sequences must be avoided, this done when
the non-all zeros initial values for LFSR’s are chosen.

Let SCG consists of n-LFSR’s with lengths ry,r»,..,r, respectively with CF=F,(X1,X,...,Xn), S.t.
xie{0,1} 1<i<n, represents the output of LFSR;, let S={So,51,...} be the sequence product from SCG
and s;j, j=0,1,... represents elements of S. let S; be the sequence i product from LFSR; with aj
elements i=1,...,n, j=0,1,...,.

2. Conditions of the Theoretical Estimation
In the next definition we want to generalize the using of gcd function.

1

Definition (2.1) [3]: Let GCDZ:gcd(l_[mi ,m,.GCD;)=gcd(my,my), for convenient let GCD;=1 and
i=1

so on the general form of the recursion equation will be:

n-1

GCDn:ng(HmI ,mn.GCDn-l) ...(1)
i=1

where n>2 s.t mi are positive integers, V1<i<n.

Theorem (2.2) [3]: Let mjeZ+, V1<i<n then:

[Im,

i=1
GCD, (m))
where GCD,(m;) defined in (1).
Let the sequence S has period P(S), the period of LFSR; denotes by P(S;), P(S) and P(S;) are least

possible positive integers, so:

Icm(mg,m,,...,mp)=

o)
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st Gcon(P(si»:gcd{ﬁwsi), P(S,)-GCD, ,(P(S ))} [8]

i=1

If P(S;) are relatively prime with each other this mean GCD,(P(Si))=1 this implies:
PEO)=TP(s) ..(5)
i=1
It’s known earlier that P(S;) <2 —1, and if the LFSR; has maximum period then P(S;)= 2" -1 [5].

Theorem (2.3) [3]
P(S):H(Z” —1) if and only if the following conditions are holds:

i=1
1. GCDW(P(Si))=1.
2. the period of each LFSR has maximum period (P(Sj)=2" —1).

3. Randomness

The sequence that is satisfied the 3-randomness properties called Pseudo Random Sequence
(PRS) [8]. The randomness criterion depends on LFSR’s and CF units, therefore from the important
conditions to get PRS is that the sequence must be maximal and CF must be balance [5].

For our purposes, a sequence generator is pseudo-random if it has this property: It looks
random. This means that it passes all the statistical tests of randomness that we can find [8].

Definition (3.1) [14]: A random bit generator is a device or algorithm which outputs a sequence of
statistically independent and unbiased binary digits.
To guarantee the SCG to produces PRS, the sequence must passes randomness tests with complete
period, these tests applied into two ways, on: [6]
1. Global sequence for complete period and that is the right way (but it’s hard to applied for high
periods).
2. Local sequence for many times for various lengths less than the origin length.

In this part, the 1% way will be applied theoretically for any period.
If GCDn(P(Si))=1 then,

P(S):ZiZﬂ:ri (1) (2 e 2 (D) (20 4 20) + (D) ...(6)
Let R; denotes the combination to sum m of numbers r; from n of the numbers r;, Ry, denotes the
set of all possibilities of R}, s.t.

(A P

Rl = Zm:r 0<m<n, 1<i<n, te{1,2,...,Cn"}
=

define Ro={Ro'}, Ro'=0.
For instance m=1 then R, ={R} R?,...RE},Ri=r,..,R! =t

n

If m=n then Ry={Ry'}, R\'=> r,

i=1
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So equation (6) can be written in compact formula:

PES) =Y (- > 2% )

In the next sections we will introduce new theorems, as Golomb do on LFSR, to show the
frequency distribution for the new proposed generator.

1st Golomb’s theorem says that if LESR with length r has maximal sequence then N,(0)=2"-1 and
N:(1)=2"*, where Ny(a) denotes the number of bit “a” in the maximal sequence [8] s.t.:

1
P(N=2"-1=(2"-1)+2"'=>"N, (a)
a=0
Let Ns(a) be the frequency of bit “a” in S which generates from SCG then:
1
P(S):ZNS(a) = er (O)Nrn (0)+ er (0) Nrn (1) oot er (:]')Nrn (1) .- (8)

a=0
From this equation the act of CF will starts to distribute the ratio of “0” and “1” in S. If the terms of
equation (8) rearranged s.t. 0=F(ai1,aip,...ain), 1<i<mo for the 1% mq terms, and 1=F(ai1,air,..,ain),
1<i<m; for 2" m; terms 2"=mq+m; then,

Ns(a):iﬁl\lrj (@) .(9)

i=1 j=1
subject to a=F(ai1,aiz,..,ain) S.t. 1<i<m, , a=0,1.
Where m, denotes the number of states which are subject to the above condition [3].

4. Modified Geffe Generator
4.1 Geffe Generator
The Geffe generator [6] is defined by three maximum-length LFSRs whose lengths ry, 12, 13
are pair wise relatively prime, with nonlinear combining function:
F3(X1,X2,X3) = X1 *Xo@D(1DX2)*X3 = X1*Xo@X2*X3DX3
(see figure (1)).

LFSR1

L
LFSR2 é}o—ufpm

LFSR3

Figure (1) Geffe generator [6].

The keystream generated has period (27-1)(2”-1)(2°-1) and linear complexity
LC=rirtrorstrs. The Geffe generator is cryptographically weak because information about the
states of LFSR1 and LFSR3 leaks into the output sequence. Despite having high period and
moderately high linear complexity, the Geffe generator succumbs to correlation attacks [11].
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4.2 Modified Geffe Generator (5-MGG) Description

Know we would improve this generator by choosing 5 LFSR's instead of 3 LFSR's, if the
output of LFSR3 is 0 then we choose the xoring of LFSR1 and LFSR2, otherwise we choose the
xoring of LFSR4 and LFSR5. The CF of this generator is:

F5(X1,Xz,X3,X4,X5):(Xl@Xz)*(Xg@1)@(X4@X5)*X3 .. .(10-a)

Or it can be written as follows:
F5(X1,Xz,X3,X4,X5):X]_@Xz@X1X3@X2X3@X3X4@X3X5 .. (10-b)

so we called this system Modified-Geffe generator.

4.3 Efficiency Criteria of 5--MGG

1. Periodicity
From equation (5) we can find general formula to calculate the Periodicity of 5-MGG:
5
PE)=]]@"-1).
i=1
Example (1)

if ri=2,3,...,6 fori=1,...,5, then:

P(S)=1.c.m(3,7,15,31,63)
=l.c.m(3'.5%.7°.31° 3°5%7%.31° 3'5!.7°.31° 3° 5770 31%, 32.5°.71.31%)
— 3max(0,1,2).5max(0,1).7max(0,1).Blmax(o,l): 32.51.71.311:9765.

2. Randomness

From the truth table of CF of modified Geffe, notice the ratio of number of 0's to the total
output of the function = 32 (2°=32) is 0.5, this mean the number of 0's=16 and so as number of 1's,
that's indicates that this generator can generates random sequence. The truth table of CF is shown in
table (1).

Table (1) Truth table of CF of 5-MGG.

X1 X2 X3 X4 X5 Fs
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 1 1
1 0 0 1 0 1
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1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 0 1 1
1 0 1 1 0 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0
0.5 0.5 0.5 0.5 0.5 0.5
Correlation Probability (CP;) for each LFSR | Ratio of "0"

Note: the shaded cells means the similarity between x; and the output of CF.

3. Linear Complexity

The Linear Complexity is defined as the length, of the shortest LFSR (which is equivalent
LFSR) that can mimic the generator output. Any sequence generated by a finite-state machine over
a finite field has a finite linear complexity [9].

The Linear Complexity (LC) for the generated sequence can by calculated by:

LC(S): r+ro+rrg+rorg+rars+ralg (1 1)

Example (2)

Let's use the same information mentioned in example (1), then:
LC(S)=2+3+2*4+3*4+4*5+4*6 = 69

4. Correlation Immunity

Correlation can be defined as the relation between the sequence of CF=F, from the key
generator and the sequences that are combined each other by CF. This relation caused because of
the non-linearity of the function F,. The correlation probability CP(x), in general, represents the
ratio between the number of similar binaries of two sequences to the length of the compared part of
them. F, has m™ order ClI, if the output z of F, is statistically independent from m output from m-
sequences (X1,X2,...,Xm), 0f n combined sequences s.t. m<n.

Notes from table (1) (from the shaded cells) that the number of similarity between x; and the
output of CF is 16 bits from the total number 32 bits Vi, then the correlation probability (CP;) can
be calculated as:

CPi=16/32=0.5, fori=1,2,...,5.

Let's denotes the Correlation Immunity for the generated sequence by CI(S), then it can by
calculated by:

CI(S) =5,

since the number of immune x; = 5.

This indicates that 5-MGG is immune and it cannot be attacked by correlation attack or fast
correlation attack, while Geffe generator is not immune [12].
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5. Estimation of Frequency Postulate for 5-Threshold Generator

5.1 Theoretical Estimation of Ng(1)

Let Ns(1) be the number of bit (1) in the sequence S generated from 5-MGG.

Recall equations (8) and (9), and when n=5:

P(S)=N, (0).N, (0).N, (0).N,, (0).N, (0) +...+ N, (®.N, (©.N, ).N, ().N, (1)

Suppose that x;, i=1,...,5 is the output of LFSR’s of MGG. and we know that the x3 will be control
on the (X1®x2) and (X;®Xs).

To calculate Ns(1) we add all terms which contain the following states:

N, (0)-N, @)-N, ()N, @)-N,(0)-N,_(0)-

and
N, @- N, 0)- N, @, - N, @D- N, @- N, 0).
Then:
Ns(1)=[N, (0)-N, D)+ N, @®)-N, (0)]-N_ (@-ZZ N, (1)-N, ()
+[D°D N, ()-N,(D]-N, @-[N, (0)-N_ @) +N, @)-N,_(0)]-

i=0 j=0
After simplify the above equation we obtain:
Ns(l): [2r1+r271 _ (2r171 + 2r271)] R (2|’3—1 _1) [2r4+r5 _ (2r4 + 2|’5) +1]
+[2% — (2% 4+ 2%) +1]- 2% 2% — (247 + 2571)] ...(12)

Note: we believe that formula (12) is the simplest form.

5.2 Theoretical Estimation of NS(0)

in the same way we can calculate Ns(0).

Let Ns(0) be the number of bit (0) in the sequence S generated from 5-MGG.
Recall equations (8) and (9), and when n=5:

To calculate Ns(0) we add all terms which contain the following states:

er (0) ’ er (0) ’ Nr3 (O) N Nr1 (1) ’ er (1) ' Nr3 (O) Y

and
N, @)-N, (0)-N,(0);-N, @)-N, DN, ().
Then:
Ns(0)=[N, (0)-N, (0)+ N, (@)-N, (1)]-N, (0)- ZZ N, (1)-N, ()
+[D-D N ()N, (DI-N, @) [N, (0)-N, (0)+N, (1)-N, @]

i=0 j=0
After simplify the above equation we obtain:
Ng(0)= [2" 7" — (27" +2%7) +1]- (2% =) [2" " — (2% +2%) +1]
+[207" — (20 4 27) +1]- 28 [2% T — (2% 4 257 +1] ...(13)

Remark (1)
Notes that if we add formulas (12) and (13) we obtain:
C

AN e SR I © N
P(S)= 2% — > 2% 1 S 2R SR N R g ..(14)
i=1 =1 1 i=1
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Example (3):
Table (2) shows the values of Ns(0) and Ns(1) for different r; of 5-MGG.

Table (2) the values of Ns(0) and Ns(1) for different r; of 5-MGG.

Ns(a)
P(S)

Ns(0) Ns(1)

86569845 | 82669974 | 169239819
2 11 31 | 127 | 511 | 2047 | 6210205905 | 6144300882 | 12354506787

3 11 31 | 127 | 255 | 2047 | 7209141779 | 7176242836 | 14385384615
5.3 Calculate the Proportion of Ng(1) to P(S)

Ns(l) ~ [2rl+r2—1 _ (2r1—1 + 2r2—l)]‘ (2r3—1 _1)[2r4+r5 _ (2r4 + 2r5)+1] .
P(S) :

[T@ -

i=1

[2r1+r2 _ (2|'1 + 2r2) +1] . 2r3—1 . [2r4 +r5-1 _ (2r4—1 + 2r5—1)]

1@ -

i=1

5 4

Zri—l Zri—l iri—l
Ns(l) ~ 2i:1 _ (2i:1 Foeet 2i:2 )-I- (2r1+rz+r3—2 ot 2r3+r4+r5—2) _ (2r1+r2—1 oot 2r3+r5—2) + (2r1—1 n 2r2—1)

- As 1 be as
PE)

[T@ -1

i=1

5 iri
large as possible, for 1<i<5, then 2 —1— 2" (ignore 1), then P(S)zl_[2ri =27 | then:

i=1

5 4 5
Y- Y-t Yot
£ £

NS(].) ~ 2,1 ) (2, +,,,+2i:2 )+ (2r1+r2+r3—2 +_..+2r3+r4+r5—2) ) (2r1+r2—1 +"'+2r3+r5—2) N (21’1—1 +2r2—1)
P(S) Zfi Zri Z'i Zri Zri
2 i=1 2 i=1 2 i=1 2 i=1 2 i=1
Ne@ 1 1 1 1 1
T T ol r+1+ Iy+r5+2 NH0+2 A+l r+r+r+1+ S as ri—00,
P(S) 2 257 +...42%7 20757 4. g 20T QRTWIRT 4L g QTR Y

2i:2 + 2r1+r3+r4+r5+1

then: 2" —o0, and S 0, where a=1,2, for 1<i<5, and so on for all dominator of the above

equation, then:

o N®@ 1 510-0+0=05 ...(15)
PS) 2

Remark (2)
Notes from equation (15) that: Ng(0) ~ Ns(1).
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Example (3):
Table (3) shows the proportion of Ng(1) to P(S) for various 5-MGG.

Table (3) the proportion of Ng(1) to P(S) for various 5-MGG.
Proportion of Ng(a)

Observed
EXp.
86569845 82669974 169239819

6210205905 | 6144300882 | 12354506787
7209141779 | 7176242836 | 14385384615

6. Applying of Chi-Square Test on 5-MGG

In this section we will apply chi-square test on the results gotten from calculations of frequency
postulate on 5-MGG.

Let M be the number of categories in the sequence S, c; be the category i, N(c;) be the observed
frequency of the category c;, pi the probability of occurs of the category c;, then the expected
frequency E; of the category c; is E;=P(S)-pi, the T (chi-square value) can be calculated as follows

[4]:

— c (N(Ci)_Ei)2
T Zl: 3 ...(16)
Assuming that T distributed according to chi-square distribution by v=M-1 freedom degree by a as
significance level (as usual a=0.05%), which it has Ty as a pass mark. If T<T, then the hypothesis
accepted and the sequence pass the test, else we reject the hypothesis and the sequence fails to pass
the test, this mean that T not distributed according to chi-square distribution. Let
N(ca)=pa=Ns(a)/P(S), for a=0,1, p, is the mean of Ns(a). To apply Hypothesis test:

Ho: Ho = 1, While,

Hi: there are a big difference between po and p;.

Then we apply the hypothesis test for the difference between two means using chi-square
distribution:

2

T={Ho=H)” 2y st v=1,

Ho + 14
In order to test our results we have to suggest an example (we choose worst case from table (3)). Let
r=2, r,=3, r3=5, r,=7 and rs=11. P(5)=169239819, E;=84619909.5. In Frequency test v= 1, with
a=0.05%, then T;=3.84 (see chi-square table). it’s clear that po + w=1. From equation (12), we get
Ns(0)= 86569845 and Ng(1)= 82669974, then: np =0.512 and p,; =0.488, then:
T=0.000531<<T(=3.81, then S generated from 5-MGG passes the test this means we accept the
hypothesis Hy and refuse Hj.
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7
1.

2.

. Conclusions

In this work we prove deterministically that the Modified Geffe cryptosystem has good statistical
frequency properties.

We notice that if we apply chi-square on the values of Ng(a) not on means of them, then the results
fail to passes the test since the difference between Ns(0) and E; is too big and when the difference
squared will be bigger although its divided on E; added to the result of the same thing done for
Ns(1), so T will fail to passes the test.

. These theoretical studies can be applied on other kind of SCG,s to calculate the frequency of these

SCG,s which are use combining functions with some combinations of variables.

.As future work we may apply other properties of randomness criterion like, run and

autocorrelation on non-linear SCG.

. The frequency test not enough to judge on the sequence that has good randomness tests we still

have the run and autocorrelation test.

. We recommended not using MGG in cryptography since it’s still weak even it passes the

randomness tests.
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