
Journal of Kerbala University , Vol. 12 No.2 Scientific . 2014 
 

911 

 

Frequency Postulate's Theoretical Calculation for the 

Sequences Produced by Modified Geffe Generator 
 

 الحساب النظري لفرضية التردد للمتتابعات المولذة من مولذ جيف المطور
 

Hussein Ali Mohammed Al_Sharifi 

M.Sc. in Mathematics /College of Education/Karbala University 

Email: hussein7712a@yahoo.com 
 

 

Abstract 
The Randomness is one of the basic criterions to measure stream cipher efficiency. The 

stream cipher generator depends basically on Linear FeedBack Shift Register (LFSR) which is 

considered as one of the basic units of Stream Cipher Systems (SCS). 

The basic idea of this paper is attacking and analysis of cryptosystems. So any developing in 

some kinds of stream cipher generators without taking in considers the basic criteria of 

efficiency may give no security to the generator, so this paper consists of two parts 

First, the design part, this paper introduces developing of Geffe generator by increasing the 

LFSR's from (three) to (five) with new combining nonlinear function which has good statistical 

properties. The new generator called Modified Geffe generator.  

Second, the attacking part, the frequency postulate of randomness criteria is calculated 

theoretically, this mean the generated sequence product by the new generator can estimated and 

this mean clear weakness in the suggested generator. 
 

 الخلاصة
الاَغٍابً ٌؼتًذ بشكم تؼتبش انؼشىائٍت يٍ اهى يقاٌٍظ الاعاعٍت نقٍاط كفاءة َظى انتشفٍش الاَغٍابً. اٌ يىنذ انتشفٍش 

 اعاعً ػهى انًغجم انضاحف انخطً رو انتغزٌت انخهفٍت كىَه أحذ انىحذاث الاعاعٍت نُظى انتشفٍش الاَغٍابً.

اٌ فكشة انبحث الاعاعٍت هً يهاجًت وتحهٍم َظى انتشفٍش. نزنك فاٌ اي تطىٌش فً بؼض اَىاع اَظًت انتشفٍش الاَغٍابً 

 اٌٍظ انكفاءة الاعاعٍت لاٌؼطً اي صٌادة فً ايٍُت انًىنذ، نزنك فاٌ هزا انبحث ٌتانف يٍ جضئٍٍ.بذوٌ الاخز بُظش الاػتباس نًق

اولا، جضء انتصًٍى، فً هزا انبحث تى تطىٌش يىنذ جٍف يٍ خلال صٌادة ػذد انًغجلاث انضاحفت يٍ )ثلاثت( انى )خًغت( 

 انًىنذ انجذٌذ ٌذػى يىنذ جٍف انًطىس.يغ اعتخذاو دانت يشكبت غٍش خطٍت نها خىاص احصائٍت جٍذة. 

ثاٍَا، جضء انًهاجًت، تى فً هزا انبحث، حغاب خاصٍت انتشدد نهؼشىائٍت َظشٌا، وهزا ٌؼًُ ًٌكٍ تخًٍٍ انًتتابؼت انُاتجت 

 يٍ انًىنذ انجذٌذ وبانتانً هزا ٌؼطً ضؼف واضح فً تصًٍى انًىنذ.
 

1. Introduction 
Linear Feedback Shift Register (LFSR) and Combining Function (CF) are considered as basic 

units to construct Stream Cipher Generator (SCG) that used in stream cipher systems [14]. Any 

weakness in any one of these units means clear weakness in SCG sequence, so there are some 

conditions must be available in SCG before it is constructed; therefore the SCG efficiency is 

concluded. 

In 1967 [8] Golomb deduced three theorems about the maximal sequence generated from 

LFSR. One of the three Golomb’s theorems deduced from the frequency postulate. 

Although now dated, Rueppel in 1986 [10] provides a solid introduction to the analysis and 

design of stream ciphers. The results on the expected linear complexity and linear complexity 

profile of random sequences are from Chapter 4 of Rueppel. 

In 1989, Staffelbach and Meier [13] presented two new so-called fast correlation attacks which 

are more efficient than Siegenthaler’s attack in the case where the component LFSRs have sparse 

feedback polynomials, or if they have low-weight polynomial multiples (e.g., each having fewer 

than 10 non-zero terms) of not too large a degree. 
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A comprehensive survey of correlation attacks on LFSR-based stream ciphers is the paper by 

Golić in 1994 [7]; the cases where the combining function is memoryless or with memory, as well 

as when the LFSRs are clocked regularly or irregularly, are all considered. 

A PH. D. thesis which introduced by Al-Ageelee [2] in 1998, this work used Genetic Algorithm 

in cryptanalysis of class of stream cipher system depending on finding correlation between 

ciphertext and the output of some of LFSR. 

In 2005, Ahmed [1] introduces a paper which contained the design of artificial neural networks 

for decryption i.e. getting distinguished polynomial for binary sequence with linear equivalence 

which is equal to 8 as well as getting the binary sequence that is related to the distinguished 

polynomial. And it was proved by the results that by using the ANN were very appropriate for the 

decryption of the stream cipher systems. 

In 2009 [3] Al-Shammari, A. G., introduces the estimation of the four basic criterions which 

are: Periodicity, Linear Complexity, Randomness and Correlation Immunity used as basic criterions 

to measure Key Generator Efficiency. He can calculated these basic criterions theoretically for any 

key generator before it be implemented or constructed (software or hardware). This work introduces 

the mathematical proof of the good efficiency of the linear key generator deterministically. 

In this paper, some studies are applied on the SCG sequences to determine the sequence 

frequency. The Basic efficiency for SCG can be defined as the ability of SCG and its sequence to 

withstand the mathematical analytic which the cryptanalyst applied on them, this ability measured 

by some basic criterions, the most important one of the randomness postulates is the frequency 

postulate. 

In the next part of this paper, the frequency postulate of randomness criterion will be discussed 

in details and introduce the basic conditions to obtain efficient SCG especially those related to 

frequency.  It’s important to mention that the zero input sequences must be avoided, this done when 

the non-all zeros initial values for LFSR’s are chosen. 

Let SCG consists of n-LFSR’s with lengths r1,r2,..,rn respectively with CF=Fn(x1,x2,…,xn), s.t. 

xi{0,1} 1in, represents the output of LFSRi, let S={s0,s1,…} be the sequence product from SCG 

and sj, j=0,1,… represents elements of S. let Si be the sequence i product from LFSRi with aij 

elements i=1,…,n, j=0,1,…,. 
 

2. Conditions of the Theoretical Estimation 
In the next definition we want to generalize the using of gcd function. 

Definition (2.1) [3]: Let GCD2=gcd(


1

1i

im ,m2.GCD1)=gcd(m1,m2), for convenient let GCD1=1 and 

so on the general form of the recursion equation will be: 

GCDn=gcd(




1n

1i

im ,mn.GCDn-1)       …(1) 

where n2 s.t mi are positive integers, 1in. 

 

Theorem (2.2) [3]: Let miZ+, 1in then: 

lcm(m1,m2,…,mn)=
)m(GCD

m

in

n

1i

i
        …(2) 

where GCDn(mi) defined in (1).  

Let the sequence S has period P(S), the period of LFSRi denotes by P(Si), P(S) and P(Si) are least 

possible positive integers, so: 

P(S)=lcm(P(S1),P(S2),…,P(Sn))        …(3) 
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P(S)=
))S(P(GCD

)S(P

in

n

1i

i
          …(4) 

s.t. GCDn(P(Si))= 







 





 ))S(P(GCD)S(P,)S(Pgcd i1nn

1n

1i

i
[8] 

If P(Si) are relatively prime with each other this mean GCDn(P(Si))=1 this implies: 

P(S)=


n

1i

i )S(P          …(5) 

It’s known earlier that P(Si) ≤ 12 ir  , and if the LFSRi has maximum period then P(Si)= 12 ir   [5]. 

 

Theorem (2.3) [3] 

P(S)=



n

1i

r
)12( i if and only if the following conditions are holds: 

1. GCDn(P(Si))=1. 

2. the period of each LFSR has maximum period (P(Si)= 12 ir  ). 
 

3. Randomness 
The sequence that is satisfied the 3-randomness properties called Pseudo Random Sequence 

(PRS) [8]. The randomness criterion depends on LFSR’s and CF units, therefore from the important 

conditions to get PRS is that the sequence must be maximal and CF must be balance [5]. 

For our purposes, a sequence generator is pseudo-random if it has this property: It looks 

random. This means that it passes all the statistical tests of randomness that we can find [8]. 
 

Definition (3.1) [14]: A random bit generator is a device or algorithm which outputs a sequence of 

statistically independent and unbiased binary digits. 

To guarantee the SCG to produces PRS, the sequence must passes randomness tests with complete 

period, these tests applied into two ways, on: [6] 

1. Global sequence for complete period and that is the right way (but it’s hard to applied for high 

periods). 

2. Local sequence for many times for various lengths less than the origin length. 
 

In this part, the 1
st
 way will be applied theoretically for any period. 

If GCDn(P(Si))=1 then,  

P(S)=
nrr1nrrrr

r

)1()22()1(22()1(2 n1n21n1

n

1i

i




   
   …(6) 

Let 
t

mR denotes the combination to sum m of numbers ri from n of the numbers ri, Rm denotes the 

set of all possibilities of 
t

mR s.t. 





















m

1j

i

n21

t

m

j
r

r,...,r,r

R 0mn, 1in, t{1,2,…,Cm
n
} 

define R0={R0
1
}, R0

1
=0. 

For instance m=1 then n

n

11

1

1

C

1

2

1

1

11 rR,...,rR},R,...,R,R{R
n
1   

If m=n then Rn={Rn
1
}, Rn

1
=



n

1i

ir  
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So equation (6) can be written in compact formula: 

 
 


n

0k

C

1t

Rk

n
k

t
kn2)1()S(P         …(7) 

In the next sections we will introduce new theorems, as Golomb do on LFSR, to show the 

frequency distribution for the new proposed generator. 

1st Golomb’s theorem says that if LFSR with length r has maximal sequence then Nr(0)=2
r-1

-1 and 

Nr(1)=2
r-1

, where Nr(a) denotes the number of bit “a” in the maximal sequence [8] s.t.: 

P(r)=2
r
-1=(2

r-1
-1)+2

r-1
=



1

0a

r )a(N  

Let NS(a) be the frequency of bit “a” in S which generates from SCG then: 

P(S)= )1(N)1(N)1(N)0(N)0(N)0(N)a(N
n1n1n1 rrrrrr

1

0a

S  


             …(8) 

From this equation the act of CF will starts to distribute the ratio of “0” and “1” in S. If the terms of 

equation (8) rearranged s.t. 0=F(ai1,ai2,..,ain), 1im0 for the 1
st
 m0 terms, and 1=F(ai1,ai2,..,ain), 

1im1 for 2
nd

 m1 terms 2
n
=m0+m1 then, 

NS(a)=
 

a

j

m

1i

n

1j

ijr )a(N          …(9) 

subject to a=F(ai1,ai2,..,ain) s.t. 1ima , a=0,1. 

Where ma denotes the number of states which are subject to the above condition [3]. 

 

4. Modified Geffe Generator 
4.1 Geffe Generator 

The Geffe generator [6] is defined by three maximum-length LFSRs whose lengths r1, r2, r3 

are pair wise relatively prime, with nonlinear combining function: 

F3(x1,x2,x3) = x1*x2(1x2)*x3 = x1*x2x2*x3x3  

(see figure (1)). 

 

 
The keystream generated has period ( 1r2 -1)(

2r2 -1)(
3r2 -1) and linear complexity 

LC=r1r2+r2r3+r3. The Geffe generator is cryptographically weak because information about the 

states of LFSR1 and LFSR3 leaks into the output sequence. Despite having high period and 

moderately high linear complexity, the Geffe generator succumbs to correlation attacks [11]. 
 

 
 

 
 

 

 
 

Figure (1) Geffe generator [6]. 

Output 

LFSR1 

LFSR2 

LFSR3 
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4.2 Modified Geffe Generator (5-MGG) Description 

Know we would improve this generator by choosing 5 LFSR's instead of 3 LFSR's, if the 

output of LFSR3 is 0 then we choose the xoring of LFSR1 and LFSR2, otherwise we choose the 

xoring of LFSR4 and LFSR5. The CF of this generator is: 
 

F5(x1,x2,x3,x4,x5)=(x1x2)*(x31)(x4x5)*x3     …(10-a) 
 

Or it can be written as follows: 

F5(x1,x2,x3,x4,x5)=x1x2x1x3x2x3x3x4x3x5     …(10-b) 
 

so we called this system Modified-Geffe generator. 

 

4.3 Efficiency Criteria of 5-MGG 
1. Periodicity 

From equation (5) we can find general formula to calculate the Periodicity of 5-MGG: 

 P(S)= )12(
5

1i

ri


 . 

 

Example (1) 

 if ri=2,3,…,6 for i =1,...,5, then: 

P(S)=l.c.m(3,7,15,31,63) 

       =l.c.m(3
1
.5

0
.7

0
.31

0
, 3

0
.5

0
.7

1
.31

0
, 3

1
.5

1
.7

0
.31

0
,3

0
.5

0
.7

0
.31

1
, 3

2
.5

0
.7

1
.31

0
) 

       = 3
max(0,1,2)

.5
max(0,1)

.7
max(0,1)

.31
max(0,1)

= 3
2
.5

1
.7

1
.31

1
=9765. 

 

2. Randomness 
From the truth table of CF of modified Geffe, notice the ratio of number of 0's to the total 

output of the function = 32 (2
5
=32) is 0.5, this mean the number of 0's=16 and so as number of 1's, 

that's indicates that this generator can generates random sequence. The truth table of CF is shown in 

table (1). 
 

Table (1) Truth table of CF of 5-MGG. 

x1 x2 x3 x4 x5 F5 

0 0 0 0 0 0 

0 0 0 0 1 1 

0 0 0 1 0 1 

0 0 0 1 1 0 

0 0 1 0 0 0 

0 0 1 0 1 0 

0 0 1 1 0 0 

0 0 1 1 1 0 

0 1 0 0 0 0 

0 1 0 0 1 1 

0 1 0 1 0 1 

0 1 0 1 1 0 

0 1 1 0 0 1 

0 1 1 0 1 1 

0 1 1 1 0 1 

0 1 1 1 1 1 

1 0 0 0 0 0 

1 0 0 0 1 1 

1 0 0 1 0 1 
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1 0 0 1 1 0 

1 0 1 0 0 1 

1 0 1 0 1 1 

1 0 1 1 0 1 

1 0 1 1 1 1 

1 1 0 0 0 0 

1 1 0 0 1 1 

1 1 0 1 0 1 

1 1 0 1 1 0 

1 1 1 0 0 0 

1 1 1 0 1 0 

1 1 1 1 0 0 

1 1 1 1 1 0 

0.5 0.5 0.5 0.5 0.5 0.5 

Correlation Probability (CPi) for each LFSR Ratio of "0" 

Note: the shaded cells means the similarity between xi and the output of CF. 
 

3. Linear Complexity 
 

The Linear Complexity is defined as the length, of the shortest LFSR (which is equivalent 

LFSR) that can mimic the generator output. Any sequence generated by a finite-state machine over 

a finite field has a finite linear complexity [9]. 

The Linear Complexity (LC) for the generated sequence can by calculated by: 

LC(S)= r1+r2+r1r3+r2r3+r3r4+r3r5       …(11) 
 

Example (2) 

Let's use the same information mentioned in example (1), then: 

LC(S)=2+3+2*4+3*4+4*5+4*6 = 69 
 

4. Correlation Immunity 
Correlation can be defined as the relation between the sequence of CF=Fn from the key 

generator and the sequences that are combined each other by CF. This relation caused because of 

the non-linearity of the function Fn. The correlation probability CP(x), in general, represents the 

ratio between the number of similar binaries of two sequences to the length of the compared part of 

them. Fn has m
th

 order CI, if the output z of Fn is statistically independent from m output from m-

sequences (x1,x2,...,xm), of n combined  sequences s.t. mn. 

Notes from table (1) (from the shaded cells) that the number of similarity between xi and the 

output of CF is 16 bits from the total number 32 bits i, then the correlation probability (CPi) can 

be calculated as: 

CPi = 16/32 = 0. 5, for i = 1,2,…,5. 

Let's denotes the Correlation Immunity for the generated sequence by CI(S), then it can by 

calculated by: 

CI(S) = 5, 

since the number of immune xi = 5.  

This indicates that 5-MGG is immune and it cannot be attacked by correlation attack or fast 

correlation attack, while Geffe generator is not immune [12]. 
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5. Estimation of Frequency Postulate for 5-Threshold Generator 
5.1 Theoretical Estimation of NS(1) 

Let NS(1) be the number of bit (1) in the sequence S generated from 5-MGG. 

Recall equations (8) and (9), and when n=5: 

P(S)= )1(N).1(N).1(N).1(N).1(N...)0(N).0(N).0(N).0(N).0(N
5432154321 rrrrrrrrrr   

Suppose that xi, i=1,…,5 is the output of LFSR’s of MGG. and we know that the x3 will be control 

on the (x1x2) and (x4x5). 

To calculate NS(1) we add all terms which contain the following states: 

,)0(N)0(N)1(N,)0(N)1(N)0(N
321321 rrrrrr   

and 

)0(N)1(N)1(N),1(N)0(N)1(N
543543 rrrrrr  . 

Then: 

NS(1)= 
 


1

0i

1

0j

rrrrrrr )j(N)i(N)0(N)]0(N)1(N)1(N)0(N[
5432121

 

          + 
 

)]0(N)1(N)1(N)0(N[)1(N)]j(N)i(N[
545431 rrrr

1

0i

1

0j

r2rr  

After simplify the above equation we obtain: 

NS(1)= ]1)22(2)[12()]22(2[ 545432121 rrrr1r1r1r1rr



 

          + )]22(2[2]1)22(2[
1r1r1rr1rrrrr 545432121 

     …(12) 
 

Note: we believe that formula (12) is the simplest form. 
 

5.2 Theoretical Estimation of NS(0) 

in the same way we can calculate NS(0). 

Let NS(0) be the number of bit (0) in the sequence S generated from 5-MGG. 

Recall equations (8) and (9), and when n=5: 

To calculate NS(0) we add all terms which contain the following states: 

,)0(N)1(N)1(N,)0(N)0(N)0(N
321321 rrrrrr   

and 

)1(N)1(N)1(N),0(N)0(N)1(N
543543 rrrrrr  . 

Then: 

NS(0)= 
 


1

0i

1

0j

rrrrrrr )j(N)i(N)0(N)]1(N)1(N)0(N)0(N[
5432121

 

          + 
 

)]1(N)1(N)0(N)0(N[)1(N)]j(N)i(N[
545431 rrrr

1

0i

1

0j

r2rr  

After simplify the above equation we obtain: 

NS(0)= ]1)22(2)[12(]1)22(2[ 545432121 rrrr1r1r1r1rr



 

           + ]1)22(2[2]1)22(2[
1r1r1rr1rrrrr 545432121 


   …(13) 

 

Remark (1) 

Notes that if we add formulas (12) and (13) we obtain: 

P(S)= 122222

5
4

i
1

5
3

i
2

5
2

i
3

5
1

i
4

1
5

C

1i

R
C

1i

R
C

1i

R
C

1i

RR
 



     …(14) 
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Example (3): 

Table (2) shows the values of NS(0) and NS(1) for different ri of 5-MGG. 

 

Table (2) the values of NS(0) and NS(1) for different ri of 5-MGG. 
 

Ex 

ri P(Si) NS(a) 

P(S) i i 
NS(0) NS(1) 

1 2 3 4 5 1 2 3 4 5 

1 2 3 5 7 11 3 7 31 127 2047 86569845 82669974 169239819 

2 2 5 7 9 11 3 31 127 511 2047 6210205905 6144300882 12354506787 

3 3 5 7 8 11 7 31 127 255 2047 7209141779 7176242836 14385384615 

 

5.3 Calculate the Proportion of NS(1) to P(S) 











n

1i

r

rrrr1r1r1r1rr

S

)12(

]1)22(2)[12()]22(2[

)S(P

)1(N

i

545432121

+

 









n

1i

r

1r1r1rr1rrrrr

)12(

)]22(2[2]1)22(2[

i

545432121





















n

1i

r

1r1r2rr1rr2rrr2rrr
1r1r1r

S

)12(

)22()22()22()22(2

)S(P

)1(N

i

215321543321

5

2i

i

4
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, where a=1,2, for 1i5, and so on for all dominator of the above 

equation, then:  
 

 
2

1

)S(P

)1(NS  -0+0-0+0=0.5        …(15) 

 

Remark (2) 

Notes from equation (15) that: NS(0)  NS(1). 
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Example (3): 

Table (3) shows the proportion of NS(1) to P(S) for various 5-MGG. 
 

Table (3) the proportion of NS(1) to P(S) for various 5-MGG. 

Ex 

ri NS(a) 

P(S) 

Proportion of NS(a) 

r1 r2 r3 r4 r5 NS(0) NS(1) Exp. 
Observed 

NS(0) NS(1) 

1 2 3 5 7 11 86569845 82669974 169239819 

0.5 

0.512 0.488 

2 2 5 7 9 11 6210205905 6144300882 12354506787 0.503 0.497 

3 4 5 11 8 11 7209141779 7176242836 14385384615 0.501 0.499 

 

6. Applying of Chi-Square Test on 5-MGG 
In this section we will apply chi-square test on the results gotten from calculations of frequency 

postulate on 5-MGG. 

Let M be the number of categories in the sequence S, ci be the category i, N(ci) be the observed 

frequency of the category ci, pi the probability of occurs of the category ci, then the expected 

frequency Ei of the category ci is Ei=P(S)pi, the T (chi-square value) can be calculated as follows 

[4]: 

T=


K

1i i

2

ii

E

)E)c(N(
         …(16) 

Assuming that T distributed according to chi-square distribution by =M-1 freedom degree by  as 

significance level (as usual =0.05%), which it has T0 as a pass mark. If TT0 then the hypothesis 

accepted and the sequence pass the test, else we reject the hypothesis and the sequence fails to pass 

the test, this mean that T not distributed according to chi-square distribution. Let 

N(ca)=a=Ns(a)/P(S), for a=0,1, a is the mean of NS(a). To apply Hypothesis test:  

H0: 0  1, while, 

H1: there are a big difference between 0 and 1. 

Then we apply the hypothesis test for the difference between two means using chi-square 

distribution: 

T=
10

2

10 )(




 

2
(1), s.t. =1.  

In order to test our results we have to suggest an example (we choose worst case from table (3)). Let 

r1=2, r2=3, r3=5, r4=7  and r5=11. P(S)=169239819, Ei=84619909.5. In Frequency test = 1, with 

=0.05%, then T0=3.84 (see chi-square table). it’s clear that 0 + 1=1. From equation (12), we get 

NS(0)= 86569845 and NS(1)= 82669974, then: 0 =0.512 and 1 =0.488, then: 

T=0.000531<<T0=3.81, then S generated from 5-MGG passes the test this means we accept the 

hypothesis H0 and refuse H1. 
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7. Conclusions 
1. In this work we prove deterministically that the Modified Geffe cryptosystem has good statistical 

frequency properties. 

2. We notice that if we apply chi-square on the values of NS(a) not on means of them, then the results 

fail to passes the test since the difference between NS(0) and Ei is too big and when the difference 

squared will be bigger although its divided on Ei added to the result of the same thing done for 

NS(1), so T will fail to passes the test. 

3. These theoretical studies can be applied on other kind of SCG,s to calculate the frequency of these 

SCG,s which are use combining functions with some combinations of variables. 

4. As future work we may apply other properties of randomness criterion like, run and 

autocorrelation on non-linear SCG. 

5. The frequency test not enough to judge on the sequence that has good randomness tests we still 

have the run and autocorrelation test. 

6. We recommended not using MGG in cryptography since it’s still weak even it passes the 

randomness tests. 
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