-4,3,1

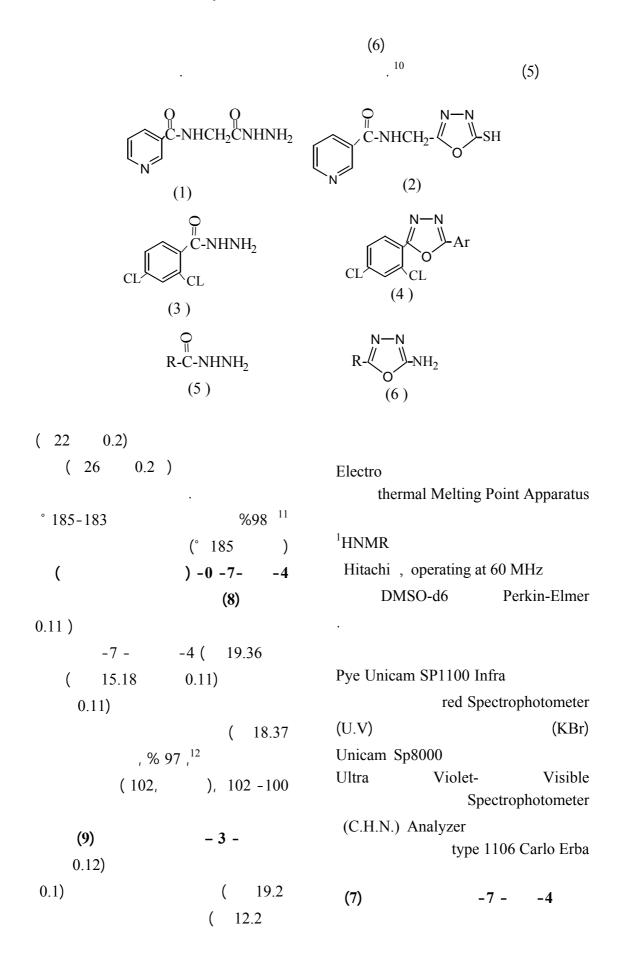
- -

-

(NJC)

(2006 / 4 / 29) (2005/ 9/ 14)

-4,3,1


2.3

Abstract

Substituted 1,3,4-oxadiazoles are well known to posses biological activities, and to have important uses in the medical, agricultural and industrial applications. Several compounds of this group were synthesized from coumarin derivatives, the structure of the new compounds were established on the basis of elemental analysis, physical and spectral data

. 6 -4 3 1 (1) (2) .⁷ (4) (3)

9 (Aspergillus Niger)

National Journal of Chemistry, 2006, Volume 22

-2006-

: (1)

$$\mathop{\rm R-C}^{\ \ \ \ }_{\ \ \ }^{\ \ \ \ \ \ \ }_{\ \ \ \ }^{\ \ \ \ \ \ }$$

Compd. No.	R	M.p. °C	Yield %	Color	Analysis Calc./ Found C. H. N.
10	R _i = CH ₃	201-204	94		58.06 4.8 3 11.29 57.88 4.78 11.13
11		205-206	85		58.82 3.92 13.72 58.46 4.01 13.58

: (2) $\overset{\bigcirc}{\underset{R-C-NHNH_2}{\bigcirc}}$

			I.R vcm ⁻¹		
		U.V			¹ HNMR δ(ppm)
Compd. No.	R	λmax nm EtOH	N-H	C=O	Solv. DMSO-d6
10	CH ₃	248	3500	1680	2.2(s,3H) CH3 4.2(b,2H)NH2 5.1(s,2H)OCH2 6.12-7.5(m,4H)CH, Ar-H 9.0(b,1H)CONH
11		310	3550	1660	4.0(b,2H)NNH2 7.2-7.63(m,4H)Ar-H 8.9(b,1H)CONH 8.72(s,1H)CH

Compd.	R	M.P. °C	Yield %	Color	Analysis (Calc./ Found		
No.					C.	Н.	N.
12	OCH ₂ .	220-2	73		57.14 56.89	4.02 3.98	15.38 15.22
13	CCC.	178-180	50		57.64 57.41	3.05 3.00	18.34 18.24

$$R - N - N$$
 $N - N$
 $N + NH_2$

Compd. No.	R	U.V λmax nm EtOH	I.Rv cm ⁻¹ N-H C=N C-O-C	¹ HNMRδ(ppm) Solv. DMSO-d6
12	CH ₃ OCH ₂ .	259	3500 1650 1100	2.3 (s, 3H) CH3 3.0 (b, 2H) NH2 4.8 (s, 2H) OCH2 6.1 (s, 1H) CH 6.7- 8.0 (m, 3H) Ar-H
13		305	3450 1650 1100	

-4 3 1

$$R - N - N - R_1$$

Cpd. No.	R	R1	M.P.	Yield %	Color		Anal (Calc. /	lysis Found.)
			°C			C.		н. N.
14	CH,	H ₂ N -	180-2	91		65.32 64.99	4.29 4.32	12.03 11.88
29		CLCH2-	225-7	53		54.81 54.33	3.58 3.65	9.13 9.08

-4 3 1 : (6)
$$R - N - N - R_1$$

Cpd. No.	R	R1	U.V λmax nm EOH	I.R v cm ⁻¹ N-H C=N C-O-C	HNMR δ(pmm) Solv. DMSO-d6
14	OCH ₂ .	H ₂ N	254	3350 1660 1095	4.1 (b,2H) NH2 2.2 (s,3H) CH3 4.7 (s,2H,) OCH2 6.2(s,1H) CH 6.7-7.6(m,7H) Ar-H
29		CLCH ₂ -	327	1610 1180	

-2006-

.(10 9) .(8 7) -2- (-3) -5] -2-**-431-**()

> .(30) 16 (0.26 0.001) (0.17 0.001) (29) 0.002) -2

> > 0.08 .() 20)

.(10 9) -4)-2- (-3)-5] $(31)^{17}$ -4,3,1(

-4 1.3 -2 : (7)

 R_1 -N=C- R_2

Comnd	npd. Yield Color							Analysis			
Compd. No.			M.P.	%	Color		ac. / Fo				
110.		R2	141.1 .	/0		C.	H.	N.			
	R1					C.	п.	14.			
			°C								
15	oCH ₂ ·X		236-8	60		66.48 65.99	4.15 4.08	11.63 11.54			
16	OCH _{2-X}	CL-	238- 240	56		60.68 60.38	3.53 3.41	10.61 10.09			
17	oCH ₂ X	OCH ₃	232-4	55		64.45 64.23	4.34 4.38	10.74 10.65			
18	OCH ₂ X	ОН	228- 230	58		63.66 63.41	3.97 4.00	11.14 11.08			
19	oCH ₂ X	O ₂ N-\	219- 220	40		59.11 58.85	3.44 3.36	13.79 13.62			
20	OCH ₂ -X		240-3	43		61.01 60.79	5.08 5.00	15.81 15.62			
21	OCH ₂ -X	MeO-	220-3	54		64.45 64.19	4.34 4.24	10.74 10.63			
22	OCH ₂ Y		169- 170	43		71.39 70.98	4.34 4.27	9.61 9.52			

23	OCH ₂ Y	CL-	176-8	39	66.17 65.88	3.81 3.72	8.90 8.78
24	OCH ₂ Y	OCH ₃	166-8	36	69.37 68.96	4.49 4.41	9.61 9.52
25	oCH ₂ Y	OH	171-3	34	68.87 68.59	4.19 4.08	9.27 9.16
26	oCH ₂ Y	O ₂ N-	175- 176	30	64.73 64.58	3.73 3.64	11.61 11.05
27	OCH ₂ Y	_\n_	170- 172	33	66.97 66.69	5.11 5.06	13.02 12.85
28	OCH ₂ Y	MeO-	149- 150	37	69.37 68.98	4.49 4.39	9.61 9.52

$$X = \sqrt[N-N]{}$$
 $Y = \sqrt[N-N]{}$

$$R_1$$
-N= C - R_2

Compd.	R1	R2	U.V	I.R	vcm ⁻¹
No.			λmax nm EtOH	C=N	C-O-C
15	oCH ₂ X		335	1630	1100
16	OCH _{2-X}	CI	317	1630	1120
17	OCH ₂ X	OMe	323	1640	1110
18	OCH ₂ X	OH	326	1640	1120
19	OCH ₂ -X	O ₂ N-	319	1650	1100
20	OCH _{2-X}	N-	327	1630	1100
21	OCH ₂ X	MeO	330	1650	1120
22	CH ₃ OCH ₂ Y		324	1640	1120

23	oCH ₂ Y	CI-	315	1640	1110
24	oCH ₂ Y	OMe	297	1640	1100
25	oCH ₂ Y	OH	288	1630	1110
26	OCH ₂ Y	O ₂ N-	328	1650	1110
27	OCH ₂ Y	N-	302	1640	1100
27	oCH ₂ Y	MeO	332	1630	1120

$$X = \sqrt[N-N]{N-N}$$
 $Y = \sqrt[N-N]{N-N}$

Compd. No.	R	M.P. °C	Color	Analysis (Calc./ Found)		
				C.	Н.	N.
30	S S -	148-150		58.01 57.77	2.79 2.68	10.68 10.49
31	O ₂ N-NH-	194-196		59.34 58.99	3.29 3.21	15.38 15.29
32	N—NH-	200-202		63.75 63.49	3.75 3.68	17.50 17.38

Compd.	R	U.V		I.R vcm ⁻¹		
No.		λmax nm EtOH	N-H	C=N	С-О-С	
30	S S -	336		1650	1090	
31	O ₂ N-NH	363	3250	1640	1120	
32	N—NH-	310	3400	1640	1130	

 (1740cm^{-1})

0-0-

(8)

-4

(7) -7-(4.0-4.2 ppm)

(N-NH2)

(8.9- 9.0 ppm) (CONH)

12,13

(11 10) (9 8)

(2)
$$\lambda \max((248-310 \text{ nm}))$$

-3550cm⁻¹)

-4 3 1- -2

(N-H)

(3500

(13 12)

(1660-1680 cm⁻¹)

$$R \stackrel{\text{N-N}}{\longleftarrow} NH \longrightarrow R \stackrel{\text{N-N}}{\longleftarrow} NH_2$$

(N-H) (3500cm⁻¹

(3.0-3.2 ppm) (C=O)

(NH2) (1100 cm⁻¹) (C-O-C)

. (1650cm⁻¹)

- 13- H.A. Shah and R.C. Shah; *J. Chem. Soc.*, 1939, Part 1, 132.
- 14- T. Ramalingam; A.A. Deshmukh; P.B. Sattur; U.K. Sheth and S.R. Naik, "Synthesis and pharmacology of 2,5 disubstituted 1,3,4 oxadiazole", *J. Indian Chem. Soc.*, 1981, LVIII, 269.
- 15- M.M.Dutta and J.C.S. Kataky; *Indian Journal of Chemistry*, 1992, **31B**, 139.
- 16- W.J. Kenney; J.A. Walsh and D.A. Davenport, *J. Am. Chem. Soc.*, 1961, **83**, 4019.
- 17- M. I. Husain and M.R. Jamali; *Indian Journal of Chemistry*, 1987, **27B**, 43.
- 18- R.M. Silverstein; G.C. Bassler and T.C. Morrill; "Spectrometric identification of organic compounds "3rd Edn. John Willy and Sons, Inc., New York, 106, (1974).

- 1- A.Mansour; M.Eaid and S.A.M. Khali; "Synthesis and reaction of some new heterocyclic carbohyrizide and related compounds as potential anti cancer agents "Molecules, 744-755, (2003) Internet.
- 2- M.A. Salama; F.M.A. Moti; A.A.G. Ghattas and A.Abduilah, *Egypt*.
 - *J. Chem.*, 1981, **24**,1, 47.
- 3- A.H. EL- masry; H.H.Fahmy and S.H. Ali, "Synthesis and antimicrobial activity of some new benzimidazole derivative. Molecules, 5, 1429-1438, (2000) .Internet.
- 4- R.B. Pathak, U. Srivasatava and S.C. Rahel; *J. Indian Chem.Soc.*, 1982, LIX, 776.
- 5- A.EL.Azzouny; Y.A.Makled and H. Bartsch, "Synthesis and pharmacological evaluation of fenamate analogues; 1,3,4- oxadiazole-2-ones and thion . Introduction Symposium on Medicinal Chemistry (2004). Internet.
- 6- C.K.Lai and Y.C.Ke., "Heterocyclic 1,3,4- oxadiazole as columnar cor," Tylor and Francis Group, 29, 915-920, (2002) Internet.
- 7- Ahmad Kh.Ahmad, Ph. D. Thesis, College of Eduction, University of Mosul, Iraq. (1998).
- 8- E.H.El. Tamaty; M.E. Adel Fattah and T.M. El.Deen, *Indian Journal of Chemistry*, 1996, **35B**, 1067.
- 9- SH. M.Said, Ph. D. Thesis, College of Science, University of Mosul, Iraq (1999).
- 10- K. Larc; P. Patel; Upadhyay and H.Parekh, *Indian Journal of Chemistry*, 1996, **35B**, 1062.
- 11- A.O.Fitton and R.K. Smalley, "Practical heterocyclic chemistry" Academic Press, London and New York, p. 197, (1968).
- 12- M.I.Husain; M.K. Shukla and S.K. Agarwal, *J. Indian Chem. Soc.*, 1979, LVI, 306.