
Iraqi Journal of Statistical Science (9) 2006
P.P. [75-90]

Dealing with DirectPlay Environments
under DirectX

Aseel Waleed A. Al-Niamey*

ABSTRACT
The idea of this project is based on programming the functions of

DirectX, which will connect the last one with the windows, this work is
needed because DirectX deals with the hardware and the buffers of the
memory while the windows does not directly deal with it.

The work focuses on programming the DirectPlay function, which is
considered as an interface programming to guarantee the arrival of the
applications to the communication services.

DirectPlay supports the facilities of connecting the game with the
internet directly by the Modem Link or indirectly by the Ethernet. Actually
the game becomes more flexible and enjoying if it is played against a real
player (or another user of the computer) instead of playing with the
computer itself. Also DirectPlay supports a group of users connected with
each other in an active way at the same time (for example, the Internet
chatting or Ethernet chatting).

In this work, an Ethernet chatting is done by using a Client/Server
applications to see the working of DirectPlay, then, we try to use an active
and strong language to make this is possible, and therefor we use the Visual
C++ language.

 ���� ��� ��	
�	 ����� ��� ��� ����	DirectX
�����	

��� ���� 	
� ���� ����� ���� �� ������� ���� ������ � Microsoft DirectX
!�"# $� ��%&� '��� �����windows ()%� *�#����� $'�+�� ���,�� $� ��-��� ���,�
� .�/�

!�"#windows ��-��� �0,� ���,��& 1/�� .
������ � ��� 	
� ����� 3���� Direct Play ���,� ���� 	�
� ��,� �� ��� �0 ��

�� ��4���4�&� *���% 	�� 5��'� .���� ����Direct Play 6��,�7� '������ ���#����
5��' �� ��-��� ���4� ��� ���0�� *�#��#&��Modem Link 5���' �� ��-��� ��8 ��

��
%�� ��
�� ���-Ethernet *�#�� �/� �,��� ��
��� �9�� ���� 6�,�7� �� (��,��� ��� :
*Assistant Lecturer/Computer Science Dept. /College of Computer Sciences and
Mathematics

Received: 18/ 5 /2005 ____________________Accepted: 6/ 2 / 2006

Dealing With DirectPlay…_____________________________

[76]

 �+�+� 6�& �;)
� �%= !�%�������� (?&������0��/ �������� $�� 6�,
�� .����� ����
DirectPlay :@�A# *���� �� �
��A�� ���4� !0;,� $� ��'������ ����%����� �� ���� �

*�#��#&� 5��' �� !�� ���� �9������ .�/ 	
� ��9��)Internet chatting (���� �9������ ��
 ��
%�� ��
�� ���- �'���� !��)Ethernet chatting.(

���� ����� �/� �� !�Ethernet chatting 5���'��� !��%����� Server/Client
����
� �
�,�� 5��'��� ����-� B�C�DirectPlay �D��A� ��� ��� �C� (�"�� �� ��& ����

�C� *#��� ��,�� �/� �9� ���E��Visual C++6�#&� �� .

1- Introduction
 Multiplier gaming across computer networks is a relatively new
idea, and the concept of being able to interact in a virtual world together
with thousands of other players would have seemed like science fiction only
a couple of years ago. Today, counterstrike is a competition sport much like
any other, and multiplier games are common. Network programming is
becoming nearly as central as graphics programming to the game
programming process, and network efficiency is more and more important
[2].

In general, the game needs a lot of computation power for higher
speed graphics. then the window is a real problem in front of this work,
because it is suffering from the low speed as a result of dealing with the
buffers of the memory which is worked as a mirror for the locations of the
data to be displayed instead of dealing with the data itself. For this reasons
DirectX being the solution for this problem, because DirectX directly deal
with the buffers that contain data. For the above reasons, it is necessary to
develop programs that can work as an interface between DirectX (where
Microsoft DirectX is a group of a low level application programs which
help us to make the games and the Multi-Media applications with high level
programming) and the windows.

The program can be defined as a Network Supervisor that can be
used for session and gaming as well. The programmer wants to develop a
server\client application. The server application is resided in the server
computer and receives the information from the client of the LAN and
manages the messages and information about users. The server program can
save the time that each user spends using its space in the domain, this can be
done by a database system. The server can prompt the user that spend more
than one hour for warning him only. Another aspect of this Server\Client
application is that each user can launch a session that is currently worked.
The user can run the client application and see the list of all session, then
choose one of them and enter it for conversation [7].

Iraqi Journal of Statistical Science (9) 2006 __________________ [77]

 Both client and server programs are installed on the computer by a
setup approach (setup.exe file), at client side the program is running in
background of other applications and can not be realized and manipulated
by user, but other utilities of it (session hosting or session participation,
gaming, …etc) can be accessed directly from start menu of windows
desktop [4].
1.1 An overview on DirectX:
 Microsoft DirectX is a set of low-level Application Programming
Interfaces (APIs) for creating games and other high-performance
multimedia applications. It includes support for two-dimensional (2-D) and
three-dimensional (3-D) graphics, sound effects and music, input devices,
and networked applications such as multi-player games. Microsoft DirectX
9.0 (the newest version) is a major release primarily for graphics. It includes
new tools, new features for graphics and Microsoft DirectShow, and
enhancements for Microsoft DirectInput and Microsoft DirectPlay [3].
1.2 DirectX major components:
 One of the main purposes of DirectX is to provide a standard way of
accessing many different properties hardware devices. The major
components of DirectX are as follows [6]:

1.2.1 DirectPlay:
 DirectPlay is an API that simplifies application access to
communication services as shown in figure (1). It provides a way for
applications to communicate with each other independent of the underlying
protocol, transport, or online service [7]. This is especially useful for games.
Real players, each on his own personal computer, can be gathered and
launched into a game, without the game developer worrying about the
connections. Instead of forcing the developer to deal with the differences
that each connectivity solution represents, DirectPlay provides well-defined,
generalized communication capabilities. DirectPlay also shields developers
from the underlying complexities of diverse connectivity implementations,
freeing them to concentrate on producing great applications [6].
 DirectPlay is Microsoft’s own network library provided as a part of
DirectX on the MS_Windows and XBox platforms. If a game is to be
marketed solely for the PC or XBox markets, relying on the more advanced
features of DirectPlay might be an option. Most games of today are
primarily targeted for release on Play station-2, so for DirectPlay to be of

DirectX

DirectMusicDirectSound DirectPlay DirectInpu DirectSho Direct3D

Dealing With DirectPlay…_____________________________

[78]

use, the programmer would have to duplicate much of its features on that
platform manually [5].
The main use of DirectPlay in the context of XBox Live is as a game
arbitrer, a central server keeping track of current games in progress and
potential participants. It provides chat functionality for those looking for
games, and services such as high score charts.

Figure1: General Definition of DirectPlay

1.2.2 Architecture of DirectPlay
 The DirectPlay API is a network abstraction and distributed object
system that applications can be written to. The API defines the functionality
of the abstract DirectPlay network, and all the functionality is available to
the user’s application regardless of whether the actual underling network
supports it. In cases where the underling network does not support a
method, DirectPlay contains all the code necessary to emulate it. Example
includes group messaging and guaranteed messaging [6].
 DirectPlay’s service-provider architecture insulates the application from
the underlying network it is running on, as shown in figure (2). The
application can query DirectPlay for specific capabilities on the underlying
network, such as latency and bandwidth, and adjust its communication
accordingly [7].
The first step in using DirectPlay is to select which service provider to use.
The service provider determines what type of network or protocol will be
used for communications. The protocol can range from TCP/IP over the
Internet, to an IPX local area network, to a serial cable connection between
two computers [5].

Service
Providers &

Protocols

Service
Providers &

Protocols

Service
Providers &

Protocols

DirectPlay

Client
Application

DirectPlay DirectPlay

Server
Application

Client
Application

Iraqi Journal of Statistical Science (9) 2006 __________________ [79]

DirectPlay3 Interface

Service
Providers

Internet LAN Modem .Privet
 Network

Fig.2: Direct Play service-provider architecture

1.2.3 Session Management
 A DirectPlay session is a communications channel between several
computers. Before an application can start communicating with other
computers, it must be part of a session. An application can do this in one of
two ways: It can enumerate all the existing sessions on a network and join
one of them, or it can create a new session and wait for other computers to
join it. Once the application is part of session, it can create a player and
exchange messages with all the other players in the session [3].
 Each session has one computer that is designated as the host. The host
is the owner of the session and is the only computer that can change the
session’s properties as shown in figure (3).

Application
Machine A
(host)

Application Application
Machine B Session Machine D

Application
Machine C

Application

DirectPlay

TCP/IP IPX TAPI Net X

Dealing With DirectPlay…_____________________________

[80]

Figure 3: DirectPlay session model

2- DirectPlay Communications
 DirectPlay’s default mode of communications is peer-to-peer. In this

model, the session complete state is replicated on all the computers in the
session as shown in figure (4). This means that the session description data,
the list of players and groups, and the names and remote data associated
with each session are duplicated on every computer [4]. When one computer
changes something, it is immediately propagated to all the other computers.

DirectPlay’s alternative mode of communications is Client/server. In
this model, only the server stores the session complete state, and each client
has only a subset of the session’s state as shown in figure (5). Each client
has only the information that is relevant to that computer and receives that
information from the server. When one computer changes something, it
propagates the change to the server. The server then determines which client
it must inform of the change [7].

3- Client/Server Session
The work is a Client/Server Chat Program. A Client/Server Session

consists of a collection of players, or clients connected to a central server.
As far as Microsoft DirectPlay is concerned, a client has no knowledge of
any other client, only the server. The massaging needed to run the game is
between the individual clients and the server. DirectPlay does not provide
direct client-to-client massaging, as it does for peer-to-peer session’s [5].
The designed client/server session requires two distinctly different
applications [7]:

 - The server application runs on a remote server. At a minimum, it
serves as a central massaging hub and game host. The server must

Figure 5: Client/Server modelFigure 4: Peer to Peer model

Iraqi Journal of Statistical Science (9) 2006 __________________ [81]

receive and handle all incoming massages from the clients, and
send appropriate massages back out. Any transfer of data from one
client to another must be handled by the server application. The
majority of the processing can be done on a separate computer (the
server), therefore, there wasn’t a need to rely on the power of the
client’s computer.

 - The client application runs on each player’s computer. The primary
function of this application is to handle the user interface, and
keep the player’s game state synchronized with the server. A
client\server session requires client to pass information to each
other indirectly through the server. No automatic method exists for
the server to pass information from one client to another, then the
user should use the server to pass the information between the
client’s.

4- Design Steps:
1- At the beginning, the programmer should load the Microsoft

DirectX version.9 to the computer.
2- Initiating the Client/Server session including:

- The Server application.
- The Client application.

3- Selecting a service provider for communication.
4- Selecting the Client/Server Host.
5- Connecting to the Client/Server Session.
6- Managing the Client/Server Session.
7- Handling the Client/Server messages.
8- Terminating the Client/Server Session.

4.1 The Server Application:
The server is responsible for updating clients about the Chat Program

state , for example when player joins or leaves the session. For setting up
the server, the programmer must do the following three tasks:
 - Create a DirectPlay Server object
 - Create the Server Address object
 - Initiate Hosting
Client\Server games are often arranged through lobbies. The most
straightforward way to launch the server is to implement it as a lobbyable
application . This approach provides a way to launch the server, and
supports communication between server and lobby during the course of the
session. But the designing is through server application. The server directly
launched, and then advertises itself as available and waits for clients to
connect; first the programmer initialize the server side as shown in figure
(4) and listed below:
- Create a DirectPlay Server object:
 For creating a Microsoft DirectPlay Server object the programmer
must pass the class identifier of server object (CLSID_DirectPlay8Server),

Dealing With DirectPlay…_____________________________

[82]

the identifier of the interface (IID_IdirectPlay8Server), and the address of
pointer to the IDirectPlay8Server interface.
IDirectPlay8Server *g_pDPServer=NULL;
Hr=CoCreateInstance(CLSID_DirectPlay8Server, NULL,
 CLSCTX_INPROC_SERVER,
 IID_IDirectPlay8Server,
 (LPVOID*)&g_pDPServer);

- Initialize a DirectPlay Server object:
 After the programmer has created the DirectPlay Server object, he
must initialize it by calling the IDirectPlay8Server::Initialize method. In
the initialization, the programmer must pass the pointer to an Implementing
a Callback Function in DirectPlay and DirectPlay Voice, Direct Play
Message Handler Server, which handles messages received by the server.

Hr=g_pDPServer->Initialize(NULL, DirectPlayMessageHandlerServer,0)

4.2 The Client application:
 The Client application is responsible for handling the user interface
(UI) and processing messages from the server. Because the application is
not lobby launched, the designed client application will receive neither the
connection handle, nor the message. Therefore the programmer doesn’t need
to handle any lobbied messages. the programmer should only create and
initialize a client object (CLSID_DirectPlay8Client). This object will be the
primary means of communicating with DirectPlay and the sever as shown in
figure (4).
4.3 Selecting a Service Provider for Communication:
 The service provider is the network connection. Most games use either
the Transmission Control Protocol/Internet Protocol (TCP/IP) or modem
service provider, but Microsoft DirectPlay also provides support for serial
and Internet work Packet Exchange (IPX) connections. They could
determine which service provider to use, then the client object’s
IDirectPlay8Client::EnumSeviceProviders method is used to enumerate
the available service providers. Then the programmer should have created
the DirectPlay address object for the user (a device address). This address
was used to identify the device with a number of DirectPlay methods as
shown in figure (5).

Iraqi Journal of Statistical Science (9) 2006 __________________ [83]

End

Start

Yes
 Failed?

No

Yes
 Failed?

No

Yes
Failed?

No

Yes
 Failed?

No

This Flowchart
Creates and initializes the IDirectPlay8Server object
and sets the properties to hosts the session.
Then creates the CNetVoice object and initializes
it for voice communication and message handling.

Figure 4: Complete General Flowchart of Setting up the Server/ Client

Display
Error and

End
Create IDirectPlay8

Server (Client) Object

Initialize IDirectPlay8
Server (Client) Object

Set Service provider to
Transmission Protocol

Add port to IDirectPlay8
Address

Assign the description
of the server (Client)

Host the session

Display Error
and End
Program

Display Error
and End
Program

Success on starting the
Server (only for text

message transmission)

Display Error
and End
Program

Dealing With DirectPlay…_____________________________

[84]

End

Start

Yes
 Failed?

No

Yes
 Failed?

No

Yes
 Failed?

No

This Flowchart
Creates an object instance of the LPDirectPlay Voice
Client (or server) and initialize it for enumerating all
voice compression codecs on the underling system and
displays them in a combo box to be used by the program.

*SP: Service Provider
Figure 5 :Enumerating Voice Compression Codecs

Display Error
message and

End
Create IDIRECTPLAY

VOICE CLIENT or
IDIRECTPLAY VOICE

SERVER

Allocating Memory
 to buffer

Get Compression Types
& filling the Buffer with

earned Information

Filling the Combo Box
with the Buffer Data by

no. of DPS iteration

Display Error
message and

End

Display Error
message and

End

Get Compression Types
for determining the No
of SPs and the Buffer

needed for its
Information

Iraqi Journal of Statistical Science (9) 2006 __________________ [85]

4.4 Selecting the Client/Server Host:
 In order to host the session, the address of the host device should be
specified. This work can done by creating an IDerctPlay8Address object
and calling the IDerctPlay8Address::SetSP method:

IDerctPlay8Address* g-pDeviceAddress=NULL;
……..
//Create our IDirectPlay8Adress Device Address
 hr=CoCreatInstance(CLSID_DirectPlay8Address, NULL,

CLSCTX_INPROC_SERVER,
IID_IDirectPlay8Address,
(LPVOID*)&G_pDeviceAddress);

//Set the SP for our Device Address
 hr=g_pDeviceAddress->SetSP(&CLSID_DP8SP_TCPIP);

4.5 Connecting to the Client/Server Session:
 All Clients must explicitly join the session by connecting them to the
host. A connection establishes the client as a member of the session, and
provides the host with the information which needs to communicate with the
client. The host has the option of accepting or rejecting a connection
request.

4.6 Managing the Client/Server Session:
 After server and clients are created, initialized and the clients are
connected to the server, they must handle the session and all messages (user
messages or system messages) that are exchanged between the server and
the clients.
As host, the server is responsible for managing the course of the session.
The details depend on how the application is designed.
The server should have the capability of removing a player from the session
by calling IDirectPlay8Server::DestroyClient:

HRESULT Destroy Client (
 Const DPNID dpnid Client,
 Const VOID *const pDestroylnfo,
 Const DWORD dwDestroylinfoSize,
 Const DWORD dwFlags
) ;

4.7 Handling Client\Server Messages:
 We must handle Microsoft DirectPlay messaging for the designed
Client\Server session. First it is necessary to know that:

Dealing With DirectPlay…_____________________________

[86]

- A client does not receive messages that carry information about other
players and no group-related messages because DirectPlay does not
provide a way for a client to know about or to communicate with other
clients.

- DirectPlay does not provide host-migration messaging because the server
must be the host. A client cannot host the client/server session as shown
in figure (6).

4.8 Terminating the Client/Server Session:
 For terminating the client/server session, the server calls
IDirectPlay8Server::Close. These methods terminate all connections and
close the session. The client is notified of the session end by a
DPN_MSGID_TERMINATE_SESSION message as shown in figure (7).

HRESULT Close (
Const DWORD dwFlags);

Iraqi Journal of Statistical Science (9) 2006 __________________ [87]

Start

(DPN-MSGID-DESTROY-PLAYER) (DPN-MSGID-CREATE-PLAYER)
 ?

yes yes
 fail (otherwise) fail

No No

(DPN-MSGID-TERMINATE) (DPN-MSGID-RECIVER)
- ?

End
 End

End

This Flowchart
is used for handling the message of IdirectPlay&Server
object in sum cases such as:
 - When a new player joins the session (connects to the server).
 - When an existing player leaves the session (disconnects from the server).
 - When the session is terminated.
 - When any message is received from each player of the session.

Figure 6: DirectPlay Message Handler

Get Client
Information

Send create Play
message to all

Players

Send state of chat
program to new

Players

Display
Error

message
& End

Update the
Status of its

Dialog

Getting the type
of Receiving

Message

Get Client
Information

Display
Error

message
& End

Send destroy Play
message to all Players

End
Dialog

Get the
received

data

Package the
Data & send
to all Players

Dealing With DirectPlay…_____________________________

[88]

Start

False Server
 started
 flag?

True

End

This Flowchart
Stops the server by deleting the CNetVoice and closing
the IDirectPlay8Server object, then releasing it.

Figure 7 : Stopping the Server

Safe release the
CnetVoice Object first

Close the
IDirectPlay8 Server

Save release
IDirectPlay8

Server

Do nothing
and End
Program

Iraqi Journal of Statistical Science (9) 2006 __________________ [89]

5- Testing

First of all and before testing the designed program, DirectX-9 must
be installed on the system.

The message box should be setting in the server program, so that
when it is displayed, a new player can join the session. If the server is busy,
it is suspended because the message box must be acknowledged by clicking
the OK button. Then the user can talk to any of the players microphone.
This data voice was sent to the server, not to the players in the session. After
clicked the OK button of the message box, the data voice was sent to the
players, some of data voice was lost, but it was very little compared to the
whole of data voice that was sent to the server.

Another testing decline that the time elapsed to the server stop

depends on the number of clients joined to the session. Because first of all
the clients must be notified about the termination of the session and after
receiving acknowledgment from them, the server closed all the objects.

When testing the quality of sound, found that it is very good, especially
by using the best codec from ones available on the designed system.

The speed of the connections between the user and the server
computer as found good due to the use of DirectPlay which gives a rapid
developing without any hardware concerning, so the user can have a fast
networking program.

The speed of the program was tested over two networks (using
wireless) that have (300) meters distance between each other so it was very
good. The synchronization is very well between the users that where
speaking together.

In some situations that server may be busy with some of its internal

processing or connection accepting; the whole data voice received by clients
are saved in a queue then it will be sent to the clients after server being free.

6- Conclusions
 A Client/Server program was implemented in C++ using strong
object-oriented development technique.
The visual C++, MFC and API of the C++ itself can helps inr writing all the
features explicitly.

It is a reality that DirectPlay is more useful for developing games for
networks, since it shields the complexity of network connections and all

Dealing With DirectPlay…_____________________________

[90]

protocol and transport connections. Then the developer can develop the
game programs more rapidly.
DirectPlay handles all network dependent tasks, also it has the most
available messages handling, then it can be used to develop variety of
network programs.

DirectPlay is an interface between the applications and the available
protocols of the underling system, then it treats all network problems itself
and makes relations between the other sides of connection. DirectPlay
speaks with DirectPlay on another side, gets its messages, and gives them to
the application as needed. The task handles all the messages before sending
it to the client.
 Another point is about using DirectX_SDK for developing the work.
SDK adds a wizard to visual C++ that can build the backbone of the
program and then the programmer can expand it.

Using 3D-voice feature of DirectPlayVoice is a good ability to create
real games. It can simulate the real world space and give the players a sense
that they are playing within a natural area rather than artificial 2D voice
effects.

Another feature is guarantying the data, which is communicated
between the players. A good quality of sounds and transmission of data is
also good in this work. Furthermore, the players can select the best
compression codec type for improving their voice transmission.

7- References
1- C++ Standards Committee. Boost library. http://www.boost.org/, 2004-

01- 15.website.
2- Jesse Aronson. Dead reckoning: Latency hiding for networked

games.http://www.gamasutra.com/, 2004-01-15. website
3- Microsoft DirectX SDK, January-2000.
4- MSDN (Microsoft Developer Network)-January 2000.
5- Microsoft DirectPlay http://www.microsoft.com/DirectX/, 2004-01-15.

website
6- WWW.DirectX Experience.Com David Joffe’s to Programming Games

with DirecX – 1997.
7- WWW.DirectX Experience.Com_DirectPlay programming by Lar
Madar -1999.
8- WWW.Microsoft.Com/DirectX.
9-WWW.Yaho.Com_Yaho Search DirectX Books_ inside DirectX by

Bradley Bargain and peter Donnell.

