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Abstract— The objective of this paper is to design a robust controller for a system modeled 

as a two-mass system, with a flexible coupling.  Here, the flexible Joint between two-mass 

systems is characterized by a spring. In fact, a two-mass system represents most of an 

industrial drive, like rolling mill drives, automated arms, conveyor belts, and so on, that 

has a flexible joint, for which oscillation suppression and robust control against model 

uncertainties and external disturbances are very important. The proposed controller is 

based on sliding mode control with a back-stepping approach. Two subsystems (upper and 

lower) strategies are proposed for two- mass systems. On this basis, the classical sliding 

mode controller for each subsystem based on Lyapunov stability theory and sliding mode 

control theory is addressed to eliminate the influences of the parametric uncertainties, 

nonlinearities, and external disturbance load with the aid of sliding mode perturbation 

observer. Finally, comprehensive simulations are conducted to demonstrate the excellent 

performance of the proposed method. 

Index Terms—Two-mass system, Flexible joint, Sliding Mode Control, Back-stepping approach. 

I. INTRODUCTION 

The drive and the load in many industrial applications are connected by a coupling shaft 

which cannot be modeled completely by a rigid body, such as steel rolling mills drives, 

flexible robot arms, conveyor belts. In many cases of the above applications, the process can 

be characterized as elastic coupled two-mass systems. If the coupling is not stiff enough in 

two-mass systems, various vibrations are caused by a torsional torque. Flexible joints lead to 

elastic torsion, thus, the two-mass systems have the tendency to swing [1]. 

In various applications such as robots, machine tools, systems, electric driving systems 

with flexible joints are widely used. Due to the flexible joint, non-linear friction, and 

backlash, the dynamic performances of speed and the position-controlled multi-mass driving 

system can deteriorate [1]. These vibrations need to be suppressed actively, therefore; this 

can be a problem for standard classical control strategies.  

Many methods have been used to control the speed or position in order to achieve good 

performance. One of the most popular control methods in the rotary positioning systems or speed control 

is a PID controller, the tasks for the control of the two-mass resonant system suppress the shaft torsional 

vibration, reject the external load disturbance and tracking the speed of load to the speed of reference 

without overshoot are proposed in [2-4]. For adjusting the feedback gains of the PID controller for pre-

designed load inertia, there are many gain tuning methods of PID control as given in [5, 6]. 

As well, in spite of the existence of the nonlinearities between the motor and the load, 

also without using the motor side sensing element, semi-dual loop control designed with 

luenberger state observer to feedback the motor side velocity was presented by [7] to 

improve the positioning performance.  

The adaptive back-stepping control in [8] is proposed to overcome systems with 

nonlinear stiffness. As well as the friction torques on the end of the shaft are considered. So, 

DOI: https://doi.org/10.33103/uot.ijccce.20.2.7 

 

mailto:61457@student.uotechnology.edu.iq
mailto:60132@uotechnology.edu.iq
https://doi.org/10.33103/uot.ijccce.20.2.7


 59 

Received 27 Oct 2019; Accepted 10 Dec 2019 

 

this controller is able to remove the shaft oscillations and to compensate for the nonlinear 

friction with the presence of unknown parameters.   

Another different concept to test and evaluate the torsional vibration suppression in the 

two-mass system is used in [9] based on the model reference adaptive system with a fuzzy-

neural controller and one basic feedback from easily measured motor speed. Neural 

Networks (NNs) based speed estimation is proposed in[9] for the uncommon sort of the 

drive system with a flexible association between the determined motor and load. 

Robust tracking and vibration suppression for a two-mass system are proposed in [10] 

which is combining between two controllers, one controller designed by the back-stepping 

approach for the outer loop and the other controller designed by the new partial disturbance 

observer (DOB)for the inner loop. On the other hand in [11], the adaptive robust control 

(ARC) has a better tracking performance and transient in the presence of discontinuous 

disturbances, such as friction, and it is of a lower order compared with disturbance observer 

(DOB). 

Disturbance observer which is added to the Kalman filter in order to have robustness 

against the system errors and motion controller were proposed in [12] to improve the 

robustness of the system. As well the motion controller is robust to the disturbance and the 

parameter variations. A common nonlinear control design by means of exact linearization 

has been proposed in [13]. 

When the load is connected to the driving motor by a long shaft, a finite and small 

elasticity of the shaft gets magnified and has a vibrational influence on the load speed. This 

vibration is not only undesirable but also the origin of the instability of the system in some 

cases. Imperfect derivative feedback of the estimated torsional torque controller is proposed 

[14], where this controller consists of three simple elements: the disturbance observer, the 

imperfect derivative filter, and the feedback gain. 

A classical control structure of sliding mode control using a two-mass drive system has 

the chattering phenomenon seems to be a big obstacle. In order to eliminate this 

phenomenon, and to improve the characteristics of the performance of the system, 

investigating an integral sliding mode control(ISMC) with an adaptive low pass filter (LPF) 

as proposed[15]. The observer-based discrete-time sliding mode (ODSM) control 

implementation for a two-mass system coupled with a flexible shaft to speed control is 

proposed by [16]. 

As the studies showed, the SMC guarantee insensitivity to parametric variation and 

external disturbances. Due to this, it a very attractive control method, because it meets 

modern, high requirements.But unfortunately, such a control method has a phenomenon 

namely – the chattering effect. This phenomenon may cause damage to system components. 

However, due to the characteristic of the SMC, many efforts have been made to minimize or 

eliminate the chattering. In addition to the SMC is developing by many scientists, who have 

been trying to implement it in many advanced, practical applications working in difficult 

environments such as a steered-by-wire road vehicle [17-24]. 

In the present work, the SMC theory-based backstepping approach will be utilized to design a robust 

controller that makes the position of the load part of the two-mass system follow the desired position 

with high precision. The proposed controller in this work will use the sliding mode perturbation 

estimator and the sliding mode differentiator in order to estimate an unknown perturbation and required 

derivatives in its formula. 
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II. SYSTEM  DESCRIPTION AND PROBLEM STATMENET 

Flexible joints are widely used in industrial robotics. This can be seen in many applications 

especially in flexible robot arms, where the drive and the load are connected by a flexible joint which 

cannot be modeled completely by a rigid body [1]. The flexibility at a joint can be characterized by a 

linear, torsional spring as indicated in figure 1. 

 Inflexible joint robot manipulators, the elasticity of the transmission devices on the joints has 

been taken into account. Considering the effect of joint flexibility would develop a more exact model 

of an industrial robot. However, further complexity is added to the robot model, which raises a new 

control problem and therefore motivated the researchers in this relevant field to further indulge [25].

 

FIGURE 1: FLEXIBLE JOINT ROBOT. 

A. Mathematical model of the system 

A two-mass drive system with an elastic joint is shown in figure .2. This model for the flexible 

system is considered in this work, which can be described in the per-unit system. 

The two-mass resonant system is consisting of two lumped inertias J_mand J_l, representing the 

motor and load, respectively, which coupled via a shaft of finite stiffness k_s. The first mass represents 

the load mass while the second mass represents the motor mass. The two-mass system is subject to 

torsional torque T_spand excited by a combination of electromagnetic torque T_m and load torque T_l. 

Generally, the angular position θ_m and angular velocity ω_m of the motor shaft differ from the 

respective variables θ_l and ω_l on the load side. The torsional torque equals the load torque only in the 

steady-state. Table 1 gives a definition of the two-mass system. 

𝝎𝒎 𝜽𝒎 𝝎𝑳 𝜽𝑳 𝑻𝑳 

Motor

𝑱𝒎 

Load

𝑱𝒍 

𝑲𝒔 

𝑻𝒎 𝑻𝒔 
 

FIGURE 2: TWO-MASS DRIVE SYSTEM 

TABLE 1: THE PARAMETERS OF THE TWO-MASS SYSTEM[26] 

Symbol Quantity 

𝐾𝑠 shaft stiffness 

𝐽𝑚 motor inertia 

𝐽𝑙  load inertia 

𝐵𝑚 coefficient of motor viscosity 

𝐵𝑙 coefficient of load viscosity 

 
 

 

The state equation of two-mass resonant system is as follows[27]: 
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𝐽𝑚𝜃̈𝑚 = 𝑇𝑚 − 𝐾𝑠(𝜃𝑚 − 𝜃𝑙) − 𝐵𝑚𝜃̇𝑚                                                      (1) 

𝐽𝑙𝜃̈𝑙 = 𝐾𝑠(𝜃𝑚 − 𝜃𝑙) − 𝐵𝑙𝜃̇𝑙 − 𝑇𝐿                                                         (2) 

For the convenience of controller design, the following state variables are defined  

[𝜃𝑙, 𝑤𝑙 , 𝜃𝑚, 𝜔𝑚]
𝑇 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]

𝑇 

Also, the motor torque 𝑇𝑚 is considered here as the control input; so set 𝑇𝑚 = 𝑢, thus, the dynamics in 

(4) and (5) can be rewritten as follows: 

𝑥̇1 = 𝑥2

𝑥̇2 = −
𝐾𝑠

𝐽𝑙 
𝑥1 −

𝐵𝑙

𝐽𝑙 
𝑥2 +

𝐾𝑠

𝐽𝑙 
𝑥3 −

1

𝐽𝑙 
𝑇𝐿

𝑥̇3 = 𝑥4

𝑥̇4 =
𝐾𝑠

𝐽𝑚
𝑥1 −

𝐾𝑠

𝐽𝑚
𝑥3 −

𝐵𝑚

𝐽𝑚
𝑥4 +

1

𝐽𝑚
𝑢 }
 
 

 
 

                                               (3) 

Consider the plant dynamics as follows; 

𝑥̇1 = 𝑥2

𝑥̇2 = −
𝐾𝑠

𝐽𝑙 
𝑥1 −

𝐵𝑙

𝐽𝑙 
𝑥2 +

𝐾𝑠

𝐽𝑙 
𝑥3 −

1

𝐽𝑙 
𝑇𝐿
}    (4) 

Let 𝑎1 = −
𝐾𝑠

𝐽𝑙 
,𝑎2 = −

𝐵𝑙

𝐽𝑙 
 , 𝑏1 =

𝐾𝑠

𝐽𝑙 
 , 𝑑(𝑡) = −

1

𝐽𝑙 
𝑇𝐿and 𝑢𝑙 = 𝑥3. Equation (4) accordingly 

becomes; 

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑏1𝑢𝑙 + 𝑑(𝑡)

}                                                 (5) 

The uncertainty in the above equation consists in the stiffness value; i.e.,  𝐾𝑠 can be written as 

𝐾𝑠 = 𝐾𝑠𝑛 + ∆𝐾𝑠 ⟹ 𝑎1 = 𝑎1𝑛 + ∆𝑎1, 𝑏1 = 𝑏1𝑛 + ∆𝑏1 

Equation (5) is then written as; 

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑎1𝑛𝑥1 + 𝑎2𝑛𝑥2 + 𝑏1𝑛𝑢𝑙 + 𝛿𝑙(𝑡)

}                                               (6) 

where𝑎2𝑛 = 𝑎2, and  

𝛿𝑙(𝑡) = ∆𝑎1𝑥1 + ∆𝑏1𝑢𝑙 + 𝑑(𝑡)                                                       (7) 

Now, consider the motor dynamics as follows; 

𝑥̇3 = 𝑥4

𝑥̇4 =
𝐾𝑠

𝐽𝑚
𝑥1 −

𝐾𝑠

𝐽𝑚
𝑥3 −

𝐵𝑚

𝐽𝑚
𝑥4 +

1

𝐽𝑚
𝑢}

    (8) 

Let𝑐1 =
𝐾𝑠

𝐽𝑚
,𝑐2 = −

𝐾𝑠

𝐽𝑚
,   𝑐3 = −

𝐵𝑚

𝐽𝑚
and𝑏2 =

1

𝐽𝑚
. Equation (8) accordingly becomes; 

𝑥̇3 = 𝑥4
𝑥̇4 = 𝑐1𝑥1 + 𝑐2𝑥3 + 𝑐3𝑥4 + 𝑏2𝑢

}                                               (9) 

As for in Eq. (6), the uncertainty in Eq. (8) consists in the stiffness value; i.e., in 𝐾𝑠 magnitude and 

can be written 

𝐾𝑠 = 𝐾𝑠𝑛 + ∆𝐾𝑠 ⟹ 𝑐1 = 𝑐1𝑛 + ∆𝑐1  &𝑐2 = 𝑐2𝑛 + ∆𝑐2 

Equation (9) is then written as; 

𝑥̇3 = 𝑥4
𝑥̇4 = 𝑐1𝑛𝑥1 + 𝑐2𝑛𝑥3 + 𝑐3𝑛𝑥4 + 𝑏2𝑛𝑢𝑚 + 𝛿𝑚(𝑡)

}                                  (10) 

wherec3n = c3, b2n = b2  and 
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𝛿𝑚(𝑡) = ∆𝑐1𝑥1 + ∆𝑐2𝑥3                                                    (11) 

Note that in Eq. (6) and (10), the subscription refers to the functions with nominal parameters, δ_l and 

δ_m are the terms of the perturbation, which they act on the dynamics of the first and the second mass 

respectively. The first and the second subsystems are referred to them here as the upper and lower 

subsystems respectively. 

Eventually, from the two-mass system model in Eq. (6) and Eq. (10), the following points can be noted;  

1) The two-mass system model is an underactuated mechanical system. That because the system 

modeled with two degrees of freedom (DOF), but actuated by only one control input (the motor torque). 

Designing a controller for the underactuated mechanical system is a difficult task since we need to 

control 2DOF by only one control. 

2) The matching condition is not satisfied. That because the control input does not exist in the upper 

subsystem dynamics (the load mass), which is affected by the perturbation δ_l (t,x).  

In this work, a nonlinear controller will be designed using the sliding mode control theory. The sliding 

mode control will be designed for each degree of freedom separately with the aid of a perturbation 

observer used to estimate the perturbation term δ_l (t,x) which enables us to solve the matching condition 

problem. Then using the Back-stepping approach, the control law can be derived. The proposed 

controller will enforce a desired behavior on the load mass. Using the Back-stepping approach will 

enable one control input from controlling the two-mass system. 

III. CONTROLLER  DESGIN 

A. Sliding Mode Control 

The sliding mode control (SMC) method is recognized as one efficient tool to design a robust 

controller for complex high-order nonlinear dynamical systems because it has superb characteristics 

such as insensitivity to large parameter variations; it’s operating with the presence of disturbance inputs, 

and its ability to reject it. These characteristics gained SMC significant interest in recent years and made 

it a more attractive control method [1]. Unfortunately, this control method has also a phenomenon 

namely the chattering effect, which may cause a glitch to system components in practical engineering 

systems.  

However, many efforts have been made to minimize the chattering phenomenon. As well as this 

method is still being developed and implemented in many practical applications such as an underwater 

vehicle, a steered-by-wire road vehicle[15]. 

B. Control Design Steps 

In this section, a convenience strategy to design a sliding mode controller will be presented. Firstly, 

we will divide the system in Eq. (3) into two subsystems; upper and lower subsystems. For each 

subsystem, the sliding variable is assigned based on the standard or 1st order SMC theory. The objective 

from the designed controller is to force state trajectories into the level zero for each sliding variable. The 

loci of the points of the sliding variable level zero are called the sliding manifold or switching surface. 

After designing the SMC successfully, the state trajectory is directed towards the sliding manifold and 

then maintained it on this manifold for all future time. As a result, the state moves toward the origin or 

its neighborhood and stays there for all next time. This behavior is known as the reaching and sliding 

phases; which are depicted in Figure (3) for a typical second-order system [29]. 
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𝒙𝟐 

𝒙 (𝒕𝟎) 

Reaching

phase

𝒙𝟏 

𝒙 (𝒕𝟏) 

𝑺 = 𝟎 

Sliding Phase 

(Chattering can 

be seen)

Sliding  surface

 

FIGURE 3: STATE PLANE OF THE SECOND-ORDER RELAY SYSTEM. 

As mentioned above, the SMC is designed for each subsystem; so, for the upper subsystem as in 

Eq. 6, let 

𝑢𝑙 = (
1

𝑏1𝑛
) (𝑢𝑙𝑛 + 𝑢𝑙𝑠)     (12) 

where 𝑢𝑙𝑛 is the nominal control, which will be determined later.For the upper subsystem, the sliding 

variable 𝑠𝑙is defined as 

𝑠𝑙 = 𝑒̇𝑙 + 𝜆𝑙𝑒𝑙          (13) 

where𝜆𝑙 > 0 is a design parameter, 𝑒𝑙 and 𝑒̇𝑙 are defined as 

𝑒𝑙 = 𝑥1 − 𝑥1𝑑
𝑒̇𝑙 = 𝑥2 − 𝑥̇1𝑑

}                                                            (14) 

The nominal control for the upper subsystem is selected as; 

𝑢𝑙𝑛 = −𝑎1𝑛𝑥1 − 𝑎2𝑛𝑥2 + 𝑥̈1𝑑−𝜆1𝑒̇𝑙 − 𝛿𝑙    (15) 

where 𝛿𝑙 is perturbation estimation and it will be determined in the section (4). 

The second term in the control law is 𝑢𝑙𝑠 which it is taken here as 

𝑢𝑙𝑠 = −𝑘𝑙 ∗ 𝑠𝑙                                                              (16) 

The value of 𝑘𝑙, is determined using the following non-smooth Lyapunov function: 

𝑉𝑙 = |𝑠𝑙|                                                                    (17) 

To ensure the attractiveness of the sliding manifold(𝑠𝑙 = 0), 𝑘𝑙 is selected such that the derivative 

of the Lyapunov function 𝑉𝑙 is negative definite as can be shown in the following steps; 

𝑉̇𝑙 = 𝑠𝑔𝑛(𝑠𝑙) ∗ 𝑠̇𝑙
     = 𝑠𝑔𝑛(𝑠𝑙) ∗ [𝑎1𝑛𝑥1 + 𝑎2𝑛𝑥2 + 𝑏1𝑛𝑢𝑙 + 𝛿𝑙(𝑡) − 𝑥̈1𝑑+𝜆1𝑒̇𝑙]

}                     (18) 

After substituting the proposed controller in𝑉̇𝑙, we obtained 

𝑉̇𝑙 = 𝑠𝑔𝑛(𝑠𝑙) ∗ [𝑎1𝑛𝑥1 + 𝑎2𝑛𝑥2 + 𝑢𝑙𝑛 + 𝑢𝑙𝑠 + 𝛿𝑙(𝑡) − 𝑥̈1𝑑+𝜆1𝑒̇𝑙]

= 𝑠𝑔𝑛(𝑠𝑙) ∗ [−𝑘𝑙 ∗ 𝑠𝑙]

≤ −𝑘𝑙 ∗ |𝑠𝑙|

}               (19) 

So for𝑘𝑙 > 0, 𝑉𝑙 decays asymptotically to zero according to the following inequality; 

𝑉𝑙 ≤ 𝑉𝑙𝑜𝑒
−𝑘𝑙(𝑡−𝑡𝑜) 



 64 

Received 27 Oct 2019; Accepted 10 Dec 2019 

 

Or equivalently the sliding variable |𝑠𝑙| decays exponentially to zero according to the following 

inequality; 

|𝑠𝑙| ≤ |𝑠𝑙𝑜|𝑒
−𝑘𝑙(𝑡−𝑡𝑜) 

where 𝑠𝑙𝑜 is the initial value of𝑠𝑙. 

In a similar way, the following steps are adapted for the lower subsystem which it given in  Eq. 10.  

Let the sliding variable 𝑠𝑚be defined as 

𝑠𝑚 = 𝑒̇𝑚 + 𝜆𝑚𝑒𝑚                                                          (20) 

where 𝜆𝑚 > 0 is a design parameter, 𝑒𝑚 and 𝑒̇𝑚 are defined as 

𝑒𝑚 = 𝑥3 − 𝑢𝑙
𝑒̇𝑚 = 𝑥4 − 𝑢̇𝑙

}     (21) 

To this end, the proposed controller for the lower subsystem is given by 

𝑢𝑚 = (
1

𝑏2𝑛
) (𝑢𝑚𝑛 + 𝑢𝑚𝑠)    (22) 

where 𝑢𝑚𝑛 is the nominal control for the lower subsystem. It is selected here as follows; 

𝑢𝑚𝑛 = −𝑐1𝑛𝑥1 − 𝑐2𝑛𝑥3 − 𝑐3𝑛𝑥4 + 𝑢̈𝑙−𝜆2𝑒̇𝑚   (23) 

while the control term 𝑢𝑚𝑠 is selected as follows 

𝑢𝑚𝑠 = −𝑘𝑚 ∗ 𝑠𝑖𝑔𝑛(𝑠𝑚)        (24) 

As for the upper subsystem, the value of 𝑘𝑚, is determined using the following non-smooth 

Lyapunov function; 

𝑉𝑚 = |𝑠𝑚|     (25) 

To ensure the attractiveness of the sliding manifold (𝑠𝑚 = 0), 𝑘𝑚is selected such that the derivative 

of the Lyapunov function 𝑉𝑚 is negative definite as can be shown in the following steps; 

𝑉̇𝑚 = 𝑠𝑔𝑛(𝑠𝑚) ∗ 𝑠̇𝑚
= 𝑠𝑔𝑛(𝑠𝑚) ∗ [𝑐1𝑛𝑥1 + 𝑐2𝑛𝑥3 + 𝑐3𝑛𝑥4 + 𝑏2𝑛𝑢𝑚 + 𝛿𝑚(𝑡) − 𝑢̈𝑙+𝜆2𝑒̇𝑚]

 

After substituting the proposed controller in𝑉̇𝑚, we obtained 

𝑉̇𝑚 = 𝑠𝑔𝑛(𝑠𝑚) ∗ [𝑐1𝑛𝑥1 + 𝑐2𝑛𝑥3 + 𝑐3𝑛𝑥4 + 𝑢𝑚𝑛 + 𝑢𝑚𝑠 + 𝛿𝑚(𝑡) − 𝑢̈𝑙+𝜆2𝑒̇𝑚]

 =  𝑠𝑔𝑛(𝑠𝑚) ∗ [−𝑘𝑚 ∗ 𝑠𝑖𝑔𝑛(𝑠𝑚) + 𝛿𝑚(𝑡)]

= −𝑘𝑚 + 𝑠𝑖𝑔𝑛(𝑠𝑚) ∗ 𝛿𝑚(𝑡)

≤ −𝑘𝑚 + |𝛿𝑚(𝑡)| }
 

 

  (26) 

Then,𝑉̇𝑚 is negative definite if 𝑘𝑚 satisfies the following inequality; 

𝑘𝑚 > 𝑚𝑎𝑥|𝛿𝑚(𝑡, 𝑥)| = ℎ    (27) 

When the inequality (27) is satisfied, the error state(𝑒𝑚, 𝑒̇𝑚),reaches 𝑠𝑚 = 0 in a finite time. The 

chattering behavior will appear as a result of using discontinuous control law in Eq. (21).Moreover, the 

chattering amplitude is related directly to the value of𝑘𝑚. So, one solution which used to attenuate 

chattering is by replacing the discontinuous term in Eq. (21) by a continuous function. In the present 

work, the discontinuous term𝑠𝑔𝑛(𝑠𝑚) is replaced by: 

𝑠𝑔𝑛(𝑠𝑚) =
2

𝜋
𝑡𝑎𝑛−1(𝑞𝑚𝑠𝑚),     𝑞𝑚 > 1    (28) 

Remark 1: the nominal control term for the upper subsystem 𝑢𝑙𝑛 contains the estimation for the 

perturbation term𝛿𝑙. The used estimator for 𝛿𝑙 is the sliding mode estimator, which implemented in 

section (4). As a result, the derivative of the sliding variable 𝑠̇𝑙 will consist of the control term 𝑢𝑙𝑠 only. 
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For this case, 𝑢𝑙𝑠 is selected as a linear proportional to the sliding variable 𝑠𝑙 instead of a discontinuous 

relation as in the classical SMC. The linear selection leads to an asymptotic reaching to the sliding 

manifold (𝑠𝑙 = 0).  

Remark 2: the control law contains the virtual control 𝑢𝑙 and its first and second derivative 𝑢̇𝑙 and 

𝑢̈𝑙 respectively. To provide the control law with 𝑢̇𝑙and 𝑢̈𝑙, one can compute the first and the second 

derivatives with time for𝑢𝑙. Getting these derivatives will lead to the so-called explosion of terms and 

make the control law huge[28]. Alternatively, 𝑢̇𝑙 and 𝑢̈𝑙 can be estimated by using an observer such as 

a sliding mode differentiator (SMD) which proposed in [29]. The details of designing the SMD are in 

section 4. 

Remark 3: Since the virtual control 𝑢𝑙𝑠  is smooth enough, i.e., differentiable, the control law for 

the lower subsystem uses its first and second derivatives in Eq. (20)  and in Eq. (23) for the sliding 

variable 𝑠𝑚 and for the nominal control term 𝑢𝑚𝑛 respectively 

IV. SLIDING MODE PERTURBATION ESTIMATOR (SMPE) AND SLIDING MODE 

DIFFERENTIATOR (SMD) 

In this section, a SMO based on reference [29], is utilized to estimate the perturbation 𝛿𝑙(𝑡), via the 

SMPE, that acts on the first subsystem; also it is used here to estimate the first and the second derivatives 

of  𝑢𝑙 (𝑢̇𝑙 and 𝑢̈𝑙) via SMD. The estimated perturbation 𝛿𝑙(𝑡) and the first and the second derivatives of  

𝑢𝑙 are used in the proposed control law in Eq. (22). 

Now, we construct the SMPE to estimate 𝛿𝑙 is in Eq. (29): 

𝑠𝑜1 = 𝑥2 − 𝑥2
𝜂1 = 𝑘𝑜1 ∗ 𝑡𝑎𝑛

−1(𝛾1𝑠𝑜1)

𝑥̇2 = 𝑎1𝑛𝑥1 + 𝑎2𝑛𝑥2 + 𝑏1𝑛𝑥3 + 𝜂1

𝜈̇1 =
1

𝜏1
(−𝜈1 + 𝑘𝑜1 ∗ 𝑡𝑎𝑛

−1(𝛾1𝑠𝑜1))}
 
 

 
 

                                          (29) 

where 𝑠𝑜1 is the SMPE variable, and 𝑘𝑜1 and 𝛾1 are the estimator parameter. The SMPE dynamic is 

proposed in the third line in Eq. (29), and𝜂1represents the estimator input. Thus, 𝜈1 = 𝛿𝑙 is the estimated 

value of the perturbation𝛿𝑙. 

 The SMD which are used to obtain the estimation to the first and the second derivatives of 𝑢𝑙(𝑢̇𝑙 

and𝑢̈𝑙) are presented in Eq. (30) and (31) below respectively 

𝑠𝑜2 = 𝑢𝑙 − 𝜂2
𝜂̇2 = 𝑘𝑜2 ∗ 𝑡𝑎𝑛

−1(𝛾2𝑠𝑜2)

𝜈̇2 =
1

𝜏2
(−𝜈2 + 𝑘𝑜2 ∗ 𝑡𝑎𝑛

−1(𝛾2𝑠𝑜2))
}    (30) 

and 

𝑠𝑜3 = 𝜈2 − 𝜂3
𝜂̇3 = 𝑘𝑜3 ∗ 𝑡𝑎𝑛

−1(𝛾3𝑠𝑜3)

𝜈̇3 =
1

𝜏3
(−𝜈3 + 𝑘𝑜3 ∗ 𝑡𝑎𝑛

−1(𝛾3𝑠𝑜3))
}    (31) 

where𝑠𝑜2 and 𝑠𝑜3 are the sliding mode differentiator variables, and𝑘𝑜2, 𝑘𝑜3, 𝛾2 and 𝛾3 are the 

differentiator parameters. The second line in Eq. (30) and Eq. (31) are the SMD dynamics, while the 

third lines in Eq. (30) and Eq. (31) are the low pass filters with time constants𝜏2 and 𝜏3 respectively. 

The outputs of the low pass filters 𝜈2 and 𝜈3 are the first and second estimation for the first and second 

derivatives for𝑢𝑙, respectively.  

Remark 4: In Eq. (30) and Eq. (31), the SMD parameters are taken as follows; 

𝜏3 = 𝜏2  and   𝛾3 = 𝛾2 
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V. SIMULATIONS RESULT AND DISCUSSIONS 

In this section the results of the numerical simulations for the two mass system connected by flexible 

joint are presented. The parameters that were used in the simulations are shown in Table 2, while the 

parameters of SMC and the observers (SMD, SMPE), which are needed in Eq. (19), Eq. (28), Eq. (29), 

Eq. (30) and Eq. (31) are given in Table 3. 

TABLE 2: NOMINAL PARAMETERS OF THE TWO-MASS SYSTEM[4]. 

Symbol Quantity Values Unit 

𝐾𝑠 shaft stiffness 30 Nm/rad 

𝐽𝑚 motor inertia 0.02 Kg.m2 

𝐽𝑙  load inertia 0.165 Kg.m2 

𝐵𝑚 coefficient of motor viscosity 0.002 Nm/rad/s 

𝐵𝑙 coefficient of load viscosity 0.007 Nm/rad/s 

TABLE 3: CONTROLLER AND OBSERVER PARAMETERS 

SMC 

parameters 
Value 

SMPE 

parameters 
Value 

SMD 

parameters 
Value 

𝑘𝑙 1 𝑘𝑜1 150 𝑘𝑜2 = 𝑘𝑜3 100 

𝜆𝑙 = 𝜆𝑚 25 𝛾1 50 𝛾2, 𝛾3 50 

𝑞𝑚 34 𝜏1 0.001 𝜏2 = 𝜏3 0.001 

 

In this work, the main source for the uncertainty is due to the shaft stiffness value, which is ranging 

from (21-39) Nm/rad. Accordingly, the only uncertain terms are those coefficients in the system model, 

which contains𝐾𝑠. In addition, the external torque that was considered here is𝑇𝐿 = 0.35 ∗ sin (2𝜋 ∗ 𝑡). 

Table 4 presents the system model coefficients, the maximum bound on their uncertainties, and the 

maximum bound on the external torque. 

TABLE 4: NOMINAL PARAMETERS OF THE TWO-MASS SYSTEM 

Symbol Nominal Uncertainty Bound 

𝑎1 181.81 |∆𝑎1| < 55 

𝑎2 0.04242 - 

𝑐1 1500 |∆𝑐1| < 450 

𝑐2 1500 |∆𝑐1| < 450 

𝑐3 0.1 - 

𝑏1  181.81 |∆𝑎1| < 55 

𝑏2 50 - 

𝑑 - |𝑑| < 3.03 

The gain 𝑘𝑚 in Eq. (24), which was used in the numerical simulation in this work, is given by  

𝑘𝑚 = 450|𝑥1| + 450|𝑥3| 

Three numerical simulations were done for different desired reference position to the upper 

subsystem positionx_1d. In the first numerical simulation,K_s=22Nm/rad, and the desired reference 

position is taken as x_1d=sin⁡(t). The proposed sliding mode controller for the lower subsystems u_m 

will regulate the sliding variable  s_m  to the origin after less than 0.06 sec. as shown in Fig. (4). After 
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that e_m→0 asymptotically, and that enforces x_3 to become equal to the virtual controller u_l as shown 

in Fig. (5). As a result, the upper subsystem is began actuated by the designed sliding mode controller 

and that through the state x_3. After that, x_3 will regulate the sliding variable s_l asymptotically as 

shown in Fig. (6), and also can be seen in the error phase plot in Fig. (7). For implementing the virtual 

control in Eq. (15), it required to estimate the perturbation δ_l.  Figure (8), shows that the estimation to 

δ_l follows the actual value, which also clarifies the performance of the SMPE. Additionally, the SMD 

was used to estimate the first and the second derivatives of the virtual controlleru_l. The result of the 

SMD is shown in Fig. (9), where the output of the SMD was used in obtaining the derivative to the error 

function for the lower subsystem (e ̇_m=x_4-u ̇_l).  To this end, the first subsystem position x_1 tracks 

the desired position x_1d as shown in Fig. (10), where the proposed controller needs to less than 0.3 sec 

to make x_1 follows the desired position and to be very closed to it after that where the error bound is 

less than 2×〖10〗^(-4). Additionally, a small control effort, which is represented by the torque inputT_m 

(t), was required for the tracking process as is demonstrated in Fig. (11). The plotted result in this figure 

is smooth due to using (arctan) function instead of the signum function; this leads to eliminate the 

chattering, which it the undesirable behavior in SMC. 

 

FIG. 4: SWITCHING FUNCTION FOR LOWER SUBSYSTEM VS. TIME (𝑲𝒔 = 𝟐𝟐𝑵𝒎/𝒓𝒂𝒅) 

 

FIG. 5: POSITION OF THE LOAD 𝒙𝟑(𝒕)AND DESIRED INPUT𝒖𝒍 (𝒌𝒔 = 𝟐𝟐𝑵𝒎/𝒓𝒂𝒅) 
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FIG. 6: SWITCHING FUNCTION FOR UPPER SUBSYSTEM VS. TIME (𝒌𝒔 = 𝟐𝟐𝑵𝒎/𝒓𝒂𝒅) 

 

FIG. 7: THE ERROR PHASE PLOT (𝒆𝟏𝒂𝒏𝒅𝒆̇𝟏), (𝒌𝒔 = 𝟐𝟐𝑵𝒎/𝒓𝒂𝒅) 

 

FIG. 8: ACTUAL AND ESTIMATED PERTURBATION(𝜹𝒂𝒏𝒅𝜹̂),(𝒌𝒔 = 𝟐𝟐𝑵𝒎/𝒓𝒂𝒅) 
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FIG. 9: ESTIMATED DERIVATIVE OF 𝑢𝑙(𝒌𝒔 = 𝟐𝟐𝑵𝒎/𝒓𝒂𝒅) 

 

FIG. 10: POSITION OF THE SYSTEM𝒙𝟏(𝒕)AND DESIRED POAITION  (𝒌𝒔 = 𝟐𝟐𝑵𝒎/𝒓𝒂𝒅) 

 

FIG. 11: CONTROL ACTION 𝑻𝒎(𝒕) VS. TIME 

The ability and the robustness of the proposed controller are tested for the case where 𝐾𝑠 = 26, 36, 

and for the same desired reference position. The simulation results are plotted in Figs. (12, 13, 14, and 

15) for the tracking position of 𝑥1 and perturbation estimation 𝛿 respectively. 
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FIG. 12: POSITION OF THE SYSTEM𝒙𝟏(𝒕)AND DESIRED POSITION (𝒌𝒔 = 𝟐𝟔𝑵𝒎/𝒓𝒂𝒅) 

 

FIG. 13: ACTUAL AND ESTIMATED PERTURBATION  (𝜹𝒂𝒏𝒅𝜹̂)(𝒌𝒔 = 𝟐𝟔𝑵𝒎/𝒓𝒂𝒅) 

 

FIG. 14: POSITION OF THE SYSTEM𝒙𝟏(𝒕)AND DESIRED POSITION (𝒌𝒔 = 𝟑𝟔𝑵𝒎/𝒓𝒂𝒅) 
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FIG. 15: ACTUAL AND ESTIMATED PERTURBATION  (𝜹𝒂𝒏𝒅𝜹̂)(𝒌𝒔 = 𝟑𝟔𝑵𝒎/𝒓𝒂𝒅) 

The ability of the proposed sliding mode controller is again tested for the piecewise constant desired 

position with 𝐾𝑠 = 22. Figure (16) show the ability of the SMC in forcing 𝑥1 to track the desired 

position. 

 

FIG. 16: POSITION OF THE SYSTEM𝒙𝟏(𝒕)AND PIECEWISE CONSTANT DESIRED POSITION (𝒌𝒔 = 𝟐𝟐𝑵𝒎/𝒓𝒂𝒅) 

VI. CONCLUSIONS 

In this paper, a sliding mode control for two mass systems connected by a flexible joint was 

proposed. Results exhibit that the proposed control method improves the performance of systems 

compared to conventional control methods.  

 The proposed scheme consists of separating the system into upper and lower subsystems, with 

estimating the perturbation δ_l for the upper subsystem via SMPE. This step makes the desired position 

for the lower subsystem a differentiable function. The desired position was taken as a virtual controller 

to the upper subsystem. The sliding mode controllers for each subsystem were designed and their 

stability was proved using Lyapunov functions. The connection between the two subsystem controller 

was then made using the backstepping approach. The backstepping approach enables us to design a 

robust controller for the load mass using the electromagnetic torque T_m. In addition, the present work 

used the sliding mode perturbation estimator and differentiator (SMPE and SMD) to estimate the 

perturbation (δ_l ) ̂ and the first and second derivative of the virtual controller u_l. 

 The numerical simulation results demonstrated first the robustness and effectiveness of the 

proposed controller for the two mass system with bounded uncertainty in system parameters and in the 
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presence of external disturbance. Secondly, the simulation results show high precision and fast-tracking 

for the load position to the desired reference for different shaft stiffness and desired references. Finally, 

the control action response is smooth because of using the arctan approximation function to the signum 

function, in addition, the chattering is eliminated with smaller control efforts by T_m. 
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