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ABSTRACT:
In this paper we present a technique for computing the 

minimum value of an objective function in the frame of gradient 
descent methods based on combination of Barzilai and Borwein 
approximation of Hessian matrix of objective function and Lipchetz 
constant in the gradient flow algorithm which is derived from a 
system of ordinary differential equations associated to 
unconstrained optimization problem. This algorithm suitable for 
large- scale unconstrained optimization problems, computational 
results for this algorithm is given and compared with BB method 
showing a considerable improvement. 
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1- Introduction  
 A well-known algorithm for the unconstrained optimization 
of function f(x) in n variables  

f: Rn → R ; nRx∈ ………(1) 
having Lipchetz continuous first partial derivatives whose gradient 

)()( xgxf =∇ is available, is the steepest descent method first 
proposed by Cauchy in 1874. The iterations are made according to 
the following equation  
 kkkk dxx α+=+1 ………(2) 
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Where kk gd −= and αk is a step size. It’s well known that the 
negative gradient direction has the following optimal property see 
(Dai et. al. 1998)  
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Where . is Euclidean norm. In the classical steepest descent 
method, the step size is obtained by carrying out an exact line search 
namely  

 )(minarg kkkk dxf αα α += ………(4) 
However, despite the simplicity of the method and the optimal 
properties (3) and (4), the steepest descent method convergence 
slowly and is badly affected by ill-conditioning (Fletcher 1987), 
therefore not recommended for practical use. Different 
modifications are made to this method corresponding to different 
ways of choosing step size or modifying search directions.  
 The paper is organized as follows. In section 2 we review 
Barzilai and Borwein method. In section 3 steepest descent method 
with adaptive step size (SDAS). In section 4 problem reformulation 
and gradient flow algorithm are introduced. In section 5 our 
algorithm are derived and finally in section 6 numerical results are 
presented in order to compare the performance of the new 
algorithm.  
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2- Barzilai and Borwein (BB) method    
Barzilai and Borwein in 1988 proposed two point step size 

gradient (BB) method (Barzilai and Borwein, 1988) by regarding 
IH kk λ= as an approximation to the Hessian of f at  xk and imposing 

some–quasi–Newton property on Hk.

Denote 11 −− −= kkk xxv and 11 −− −= kkk ggy by minimizing           
11 −− − kkk yHv they obtained  

11
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k yy
yvλ ……(5) 

With this, the method of Barzilai and Borwein is given by the 
following iteration scheme  

kBB
k

kk gxx λ
1

1 −=+ …………….……(6) 

 The quantity given in (5) is frequently referred as a Rayleigh 
quotient. Indeed, if f is twice continuously differentiable, we have 
(Andrei 2005)  

kkkk vdttvxfy 
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Which lies between the largest and the smallest eigenvalue of the 
Hessian Average.  

∫ +∇
1

0

2 )( dttvxf kk

The scalar BB
kλ has been already used as scaling factor in the context 

of limited memory quasi Newton algorithms see for example (Liu 
and Nocedal 1989) or conjugate gradient algorithms (Shanno and 
Phua 1980) and (Andrei 2005). 
 The BB method received a great deal of attention for its 
simplicity and numerical efficiency for well-conditioned problems, 
and analyzed by Raydan (Raydan, 1993), have a number of 
interesting feature that make them attractive for the numerical 
solution of (1). The most important features of this method is that 
only gradient directions are used, that the memory requirements are 
minimal and that they do not involve a decrease in the objective 
function, which allows fast local convergence. They have been 
applied successfully to find local minimizers of large scale real 
problems (Luengo and Raydan, 2003). 
 Raydan proved that for strictly convex function with any 
variable the (BB) method is globally convergence, despite of these 
advances of (BB) method on quadratic functions, still many open 
questions about this method on non-quadratic functions although 
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Fletcher (Fletcher, 2001) show that the method may very slow on 
some problems. 
3- Steepest Descent with Adaptive Stepsize (SDAS) 

In the scheme (2) the search direction dk satisfied descent 
condition i.e  

0<k
T
k gd ………(9) 

 Which guarantees that dk is a descent direction of f(x) at xk. In 
order to guarantee the global convergence it’s usually required to 
satisfy the condition  

kk
T
k gcdg −≤  ………(10) 

Where c>0 is a constant  
Many procedures for step size computation αk have been proposed 
for example minimizer rule, Armijo rule, limited minimization rule, 
and strong wolf rule which states that at the k-th iteration, αk

satisfies simultaneously  
k

T
kkkkkk dgxfdxf ασα 1)()( +≤+ ………(11) 

And 
k

T
kk

T
kkk dgddxg )( 2σα ≥+ ………..……(12) 

Where )2
1,0(∈σ and )1,(σρ ∈ , and there are many other line search 

procedures for example see (Vrahatis et al 2000). 
In the recent paper of zhen, (Zhen and Jie 2005) 
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An estimation of stepsize is introduced by means of lipschitz 
constant. As follows  
For k=0 select 0L >0 and for 1≥k


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yLMaxL ………(13) 

And they proved that their algorithm is globally convergent and rate 
of convergence is linear (Zhen and Jie 2005), her we review briefly 
their algorithm.  

Algorithm (A):
Step (1): 6

00 10,0)2,0(,0 −=>∈∈= εδ LandRxchoosek n

Step (2): )3(. stepgotoelsestopthengif k ε<

Step (3): )13(fromLEstimate k

Step (4): 
k

kkkkk Lwheredxx δαα =+=+1

Step (5): )2(1 stepgotokk +=

In the above algorithm line search procedure is avoided at 
each iteration, which may reduce the cost of computation. However, 
we must estimate Lk at each iteration. Main draw back of algorithm 
(A) is, if Lk is very large then αk will be very small and will slow the 
convergence rate of the method, on the other hand if Lk is very small 
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then αk will be large and hence the method may fail to guarantee the 
global convergence. 
 

4-Problem Reformulation and Gradient Flow Algorithm  
For the unconstrained optimization problem given in equation 

(1), as we know a necessary condition for point x* be an optimal 
solution is 

0)( * =xg ………(14) 
This is a system in n Non-linear equations which must be solved to 
get the optimal solution x*. In order to fulfill this optimality 
condition the following continuous gradient flow reformulation of 
the problems is suggested (khalaf and Al-Wagih, 2001). Solve the 
following system of ordinary differential equation  

))(()( txgdt
tdx −= ………(15) 

With initial condition  
0)0( xx = ………..……(16) 

The solution of the system (15) with initial condition (16) is 
convergence to optimal solution which is minimum of the function 
given in (1) according to the following theorems, see (Andrei, 
2003)..  
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Theorem (1):  
 Consider that *x is a point satisfying (14) suppose that 

)( *2 xfG ∇= is positive definite, if x0 is close enough to *x , then x(t) 
solution of (15) tends to *x as t→∞.

Theorem (2): 
 Let x(t) be the solution of (15), for fixed t0 ≥ 0 if g(x (t)) ≠ 0 for all 

 t o>t , then f(x(t)) is strictly decreasing with respect to t for 
all  t o>t .
As we have seen solving the unconstrained optimization problem 
(1) has been reduced to that of integration of the ordinary 
differential equation (15) with initial condition (16). Andrei 
proposed an algorithm for solving the system (15) as follows  
 Let 0 = t0 < t1 < … < tk <… be sequence of time points and 
consider 
hk= tk+1-tk the sequence of time distance between two successive 
time points, consider the following (Andrei, 2003), discretization of 
(15)  

[ ]1
1 )1( +

+ +−−=
−

kk
k

kk ggh
xx θθ ………(17) 

where ]1,0[∈θ is a parameter, then  
[ ]11 )1( ++ +−−= kkkkk gghxx θθ ………(18) 
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It’s clear that when 0=θ the above discretization is the explicit 
forward Euler’s scheme. On the other hand, when 1=θ we have the 
implicit backward Euler’s scheme. But     

)( 2
1 vovGgg kkkk ++=+ ………(19) 

Omitting the last term equation (19) and substituting in equation 
(18) we obtain  

kkkkkk gGhIhxx 1
1 ][ −

+ +−= θ ………(20) 
In fact the algorithm given in (20) introduced by Zghier but he 
derived it by using generalized trapezoidal rule with 5.0=θ see 
(Zghier 1981) or (Brown and Biggs 1989). 
 Many authors (for example Botsaris(1978), Brown(1986), and 
others solved systems(15) and (20) with initial condition (16) by 
some well known integration methods. Andrei (2003) showed if x0

as initial guss close enough to  *x and if kG is positive then the 
algorithm given in equation (20) is convergence for ]1,0[∈θ and rate 
of convergence is linear when 0=θ , super linear for 10 << θ and 
order of convergence is two if 1=θ
5-  Proposed Algorithm  (Gradient Flow Steepest Descent  
GFSD say)   
 The method based on the equation (20) has quite good 
performance if Gk is positive definite and have desirable features, 
but not recommended for practical use, the major drawback of the 
algorithm is computing 1)( −+ kGhI θ at each iteration and 
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also there is no specified value of h. However one can deduce a 
simple implementation of the algorithm given (20) with preserving 
useful theoretical features as follows:  
Let IG BB

kk λ= , where nxnI Identity matrix as an approximation of Gk

and put hk=Lk then substitute in (20) 
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Therefore one can compute the new point from the following 
algorithm 

(22) where k1
k

T
kk

T
k

k
T
k

kkkk vyvv
vvgxx θαα

+
=−=+

which is generalization of the BB method It's clear that if 0=θ the 
algorithm restarts with steepest descent direction. The convergence 
properties of the method given in (22) can be studied providing that 

kk gd −= is descent direction and using the following proposition . 
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Proposition(1) 
Assume that the step size kα satisfies wolf conditions (11) and (12) 
and that kd is descent direction then  0>k

T
k vy .

for proof see  (Barzilae  and Borwein 1988) . 
 
Theorem (3):  
Suppose that f is bounded below in nR and that f is continuously 
differentiable in neighborhood   of the level set { })()(:L 0xfxfx ≤= -
Assume also that the gradient kg is lipchitz continuous i.e there 
exists a constant 0>c s.t       ∈∀−≤− yxyxcygxg ,)()(

Consider any iteration of the form  

kkkk dxx α+=+1 where 
k
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vv
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and kk gd −= and kα satisfies 

wolf conditions then 0lim =∞→ kk
g .

proof : 
from equation (12) we have               
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)24.(..........)( 2

1 kkk
T

kk dcdgg α≤−+

from (23) and (24) we get                  

)25.....(....................1
2

2

k

k
T
k

k d
dg

c 


 −≥ σα



_______________Iraqi Journal of Statistical Science (11) 2007 
 

[39]

using equations (11) and (25) we have 
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now using the relation          
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T
kk ddg and gbetween  angle theiswherecosdg kkkk γγ −=

then equation(26) can be written as 
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summing the expression in equation (27) and recalling f bounded 

below, we obtain           ∑ ∞<22cos kk gγ (28) 

assuming that 0cos2 >> δγ k for all k , then we conclude that 
(Nocedal 1992) 
 0lim =∞→ kk

g

Out line of the algorithm (GFSD) 
Step (1): 000 ;[0,1] ,0,0 gdRxchoosek n −=∈>∈= θε
Step (2): )3(. stepgotoelsestopgif k ε<
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Step (4): kkkk gxx α−=+1

Step (5): kkk y,v,gcompute  
Step (6): )2(1 stepgotokk +=

6-Numerical Results 
 We present the numerical results for the Barzilai-Borwein method 
and proposed (GFSD) method for some well known test functions 
(Bongartz and el at,1995), these algorithms are coded in double 
precision FORTRAN 90 language. The criteria for stopping the 
iterations are 

1
-20

111
6

1 10 or10 ++++
−

+ << kk
T
kkk fggg α

For both methods initial step size are computed by using 
backtracking procedure with  0.8 and 0001.0 == ρσ . Also Wolfe 
conditions are used for accepting step size, the complete set of 
results are given (a) with 5000 n1000 ≤≤ and table (b) with 

10000 n6000 ≤≤ . In Tables (a) and (b) we present the comparison 
results of BB and GFSD methods for different dimensions with  

5000 n1000 ≤≤ consisting number of iteration (NOI), function 
gradient F&G ev evaluations (they are equal in these algorithms) 
and the execution time in nanosecond are compared it shown that 
the proposed algorithm is better than BB method in most cases. In 
Tables (a1) and (b1) we see that there is an improvement about % 5  
in NOI , % 15.14 in F&G ev and %21 in execution time for 
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dimensions  5000 n1000 ≤≤ . And %4 in NOI, %11 in F&G ev and 
%13 in execution time for dimensions with 10000 n6000 ≤≤ . These 
algorithms are not compared with algorithm (A) since it shown by 
(Andrei,2005) BB method is better than algorithm (A). 
 
Table(a) Comparison of BB method and GFSD with 5000 n1000 ≤≤

Barzilai-Bowein 
Algorithm 

GFSD Algorithm 
Test Fun. 

 

N
NOI 

 
F&Gev 

 
Time 

 
NOI 

 
F&G 

ev 

 
Time 

Freudenstein & Roth 1000 218 1615 58 130 941 45 

Extended Trigonometric 1000 44 148 25 48 147 26 
Extended Rosenbrock 1000 248 1981 57 310 2435 65 
Beal Fun. 2000 153 614 31 82 612 27 
Penalty Fun. 1000 54 232 26 45 187 22 
Raydan 1 1000 1134 5631 350 1130 4570 290 
Raydan 2 2000 21 44 11 13 30 11 
Ge. Tridigonal 1 1000 29 90 13 29 88 13 
Extended Wood F 1000 1043 7083 201 1004 6251 181 
DIXMAAN (cute) 2000 425 2335 297 381 2066 187 
Freudenstein & Roth 3000 190 1410 70 128 932 45 
Extended Trigonometric 4000 30 124 55 33 130 59 
Extended Rosenbrock 5000 703 5544 491 473 3261 223 
Beal Fun. 3000 152 614 79 83 612 39 
Penalty Fun. 3000 46 219 12 46 207 10 
Raydan 1 2000 1832 9419 1082 1913 8424 980 
Raydan 2 5000 21 44 11 12 31 11 
Ge. Tridigonal 1 3000 31 94 17 32 97 17 
Extended Wood F 3000 1126 7545 511 994 6258 298 
Dixmaan (cute) 4000 641 3499 701 642 3456 675 
Total  8109 48285 68.3 

sec 
7719 40735 53.73 sec 
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Table(a1) Percentage of improving  the GFSD with  5000 n1000 ≤≤
Tools    BB method    GFSD method 
NOI       %100        %95.19 
F&G EV       %100        %84.36 
Time       %100         %78.62 

Table(b) Comparison of BB method and GFSD with     10000 n6000 ≤≤
Barzilai-Bowein Algorithm GFSD Algorithm 

Test Fun. 
 

N
NOI 

 
FGEV 

 
Time 

 
NOI 
 

F&G EV 
 
Time 

Freudenstein & Roth  6000   270     1995     197   130 935  92 

Extended Trigonometric  7000     32       133     115     34        137    106 
Extended Rosenbrock  9000   408     3183     391   450      3134    380 
Beal Fun.  7000    46       608     137   108         301      91 
Penalty Fun.  8000     55       241       30     56         237      29 
Raydan 1  6000 4345   23262   8016 4561     21591  7478 
Raydan 2  7000     20         38       07     21          44      06 
Ge. Tridigonal 1  8000     37       102       22     30          85      16 
Extended Wood F  9000 1094     7388   1238   932      5694      839    
DIXMAAN (cute)  6000   697     3594   1772   614      3201  1650 
Freudenstein & Roth  8000  295     2173     203   125        901    120 
Extended Trigonometric 10000    32       137     148     33        138     150 
Extended Rosenbrock 10000  527     4193     620   549      3742     507 
Beal Fun. 10000  152       612     142   102        597     128 
Penalty Fun.  9000    58       255       39     55        248       36 
Raydan 1 10000 6301   33159   1732 6148    31082 17761
Raydan 2 10000     22        44       29     23          45       31 
Ge. Tridigonal 1 10000     39      115       33     29          84       22 
Extended Wood F 10000 1052    6978    1172    983      6052     983 
Dixmaan (cute)  7000   624    3609   1796   512      3466   1730 
Total  16206  91821 297.316 

sec 
15555  81714 257.58 

sec 
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Table(b1) Percentage of improving  the GFSD with  10000 n6000 ≤≤
Tools    BB method    GFSD method 
NOI       %100        %95.8 
F&G EV       %100        %88.9 
Time       %100         %86.6 

Conclusion 
 These types of algorithms are suitable for large-scale 
unconstrained optimization problems. Our numerical results 
indicates that there are an improvements of proposed algorithm 
especially on F&G EV  I think which means that step size given by 
BB method is ether typically large or small and hence it require 
more functions and gradient evolutions to accept the step size to 
reduce in function value.       
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