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Abstract:

The aim of this paper is to derive a posteriori error estimates for semilinear parabolic interface
problems. More specifically, optimal order a posteriori error analysis in the Lo (L,) + L,(H)- norm for
semidiscrete semilinear parabolic interface problems is derived by using elliptic reconstruction technique
introduced by Makridakis and Nochetto in (2003). A key idea for this technique is the use of error estimators
derived for elliptic interface problems to obtain parabolic estimators that are of optimal order in space and
time.
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Introduction:

Whilst the topic of a posteriori error  through semi-permeable membranes, in both the
estimation for linear and nonlinear parabolic 1 .
problems is now relatively well understood for both Loo(L2) + Lo (H ) _and L¥ (LZ_) norms. - Optimal
conforming and nonconforming methods, see, e.g., ~ Order a posteriori error estimates Lo (Lz) +
(1-15), there are comparatively few results for ssmi  L2(H')were derived for semi and fully discrete
linear parabolic interface problems (16-21).  nhonlinear parabolic interface problems.  The
Particularly, Cangiani et al (17) used a nonstandard ~ @nalysis revolved around a nonstandard elliptic
elliptic projection of Douglas and Dupont (16) to reconstruction introduced by Douglas and Dupont

derive optimal order a priori error estimates for (16). ] o ] ]
The main contribution of this paper is to

these problems in L, (L,)-norm and extended this  gyteng (21) to the case of semidiscrete semilinear
work to the fully discrete setting in (18). Metcalfe parabolic interface problems in terms of L (L,) +
(19) derived optimal order a posteriori error  L,(H')-norm. The main difficulty in constructing
estimates in the Lo, (L) + L,(H') norm for fully  an optimal order a posteriori error estimator in
discrete parabolic interface problems. Gupta and L (L,) + L,(HY)is to deal with the nonlinear
Sinha (20) used elliptic reconstruction techniques to reaction term. These challenges are addressed by
derive a posterior error estimates for semi linear  employing a continuation argument and the elliptic
parabolic interface problems with a locally-  reconstruction technique, introduced by Makridakis

Lipschtiz continuous nonlinearity in the forcing and Nochetto (12) and extended to dG methods in
term. They used a Backward-Euler-Galerkin (7).

scheme to discretise in time with a conforming It is worth noting the main reason of this
finite element method in space. technique is to lead us utilise ready elliptic interface

More recently, Sabawi (21) has derived an  a posteriori estimates that derived from elliptic
a posteriori error estimate for a class of nonlinear interface problem (22-23) to bound the main part of
parabolic interface problems involving possibly  the spatial error. There are some error estimators for

curved interfaces, with flux balancing interface  semilinear parabolic problems available in the
conditions, e.g., modelling mass transfer of solutes literature (24-30).
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The rest of this paper is structured as
follows. In Section 2, the model problem is
introduced and discontinuous Galerkin method,
with some necessary background results, are
discussed. Section 3, L, (L,) + L, (HY)error bounds
for semi discrete semilinear parabolic interface
problems, are presented. Conclusions are given in
Section 4.

Model problem

Let Q c R% d = 2,3 be a bounded open
polygonal/polyhedral domain. The interface TI''"
subdivides the domain Q into two subdomains
Q4,Q,. such that Q = Q, U Q, U I'*", with 6Q:=
(0Q, N aQ)\I'; sFig. 1 for an illustration.
Considered the semilinear parabolic interface
problem

in (Q,U Q,)x(0,T],

on 9Q x (0,T], 1)
on It x (0,1],

on I't" x (0,T],

in (Q,U Q,) x{0}.

u
i alu = f(u)
u —
aVus.n! = Cy (up — uy)
aVu,.n? = Cppr (g — uy)
u = u;
a0

Q

Ftr 'QZ

Figure 1. The interface I'*" subdivides the domain Q into two subdomains Q4,Q,.

Here, C;,- > 0 is the interface transmission
coefficient, and u',i=1,2 represent the
concertation of two compounds present in Q; and
Q, respectively. Let f:Q; U Q, - R be a given
data function, and letu;i=1,2 denote the
respective outward unit normal vectors of ;. This
model is presented in (17, 18) to describe the mass
transfer of solutes through semi-permeable
membranes. For simplicity in our analysis will
make some abbreviations. The standard Lebesgue
and Hilbertian Sobolev spaces are denoted by

Ly(w),0<p <o Lp(W),O£p£¥ and
H"(w),r € R, respectively. In the special case
when 7 =0, will be donated by L,(w)=

H%(w),w < Q. The norm and standard L, (w)-inner
product will be denoted byl -||=]-Ilq and
() = (-,)q respectively when w = Q. Let the
nonlinear forcing term f(u) satisfy the following
growth condition. There exist real numbers C; > 0
and o = 0 such that

If ) = f(W)] = G + |ul + [v) lu=v]. (2

Next, the definition of the norm is given by

T 1/p
- (f ||v||§dt)
0

< o for 1<p <o,
IvllL,0mx) = esssuposierllvllx <
© for p= oo

||V||LP(0,T;X)

With  this notation
{u € 12(0,T; X)

picking H(0,T; X) :=
e 12(0,T; X)}

Also, setting #* := H1(Q, U Q,), and

Hi={veHv=00nd0}.
Multiply (1) by a test function v € Hg and
integration by parts on each sub-domain and
applying the interface condition in (1), such that

f— vdx+faAu-vdx=ff(u)-v dx
Q

= —v+f aVu - Vv dx
ot Q,uQ,

—Zf nt - aVu,v; ds=ff(u)-v dx
= rer Q

— v+f aVu-Vv dx
at a

IUQZ

—f nl-aVu, ' v, ds —f n? - aVu,v, ds
rer rer

= jﬂf(u) ‘v dx

ou
= —-vdx+f aVu - Vv dx
o0t Q,UQ,

+J;trCtT[[u]] ‘vl ds = fﬂf(u)-v dx.
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In weak form, the above equation becomes the where D(u,v) is a bilinear form and [u]] = uq|g -

following: find  n2 + u,|, - n? is the jump across the interface.
u € L,(0,T,H3 )N 7—[(,1(0, T,L,(Q; UQ, )) such The Cauchy-Schwarz inequality provides the
that for almost every t €[0,T], reads coercivity and continuity of the bilinear form D
viz.
au 1 7
—,v}+D,v) = u),v
<6t > W)= {fwv) D(v,v) :=f a|Vv|2dx+f Cer|[V]|? ds

vveH,  u(.,0)=u, (3) Q100 rer
with =<||lv]|l? vveHE (B)
D(u,v) :=f aVu -Vv dx 4

oo, ) pww) <lllvlillulll Vved
+,];—-trCtr[[u]] “[v] ds, Discontinuous Galerkin method. Given a mesh
ou ou T = {K} (with K representing a generic element),
G = f 3¢V 9% the discontinuous finite element space VP s
. constructed by Fig.2
(v = | raw s, VP = {Lo(@): vl € B () ©)
l"int
0Q P 4
.Ql QZ
l"tT

Figure 2. The mesh skeleton T discretises the domain into aQ, T, T,

where P, (K) denotes the space of polynomials of  bounded throughout this work, to avoid having
total degree p on an element K. Suppose that K;and  estimation constants depend on max{1, hyqy }. To
K, are two elements sharing the same face E c introduce the interior penalty discontinuous
rmt yrtr, where E c 0K, N 0K, with ng,and ng, Galerkin method, Multiplying (1) by a test function
denoting the outward unit normal vectors on E of  in v € Hg +VF(T) and, integrate over each
dK, and JK,, respectively. Then, subdividing I' the ~ subdomain, so that

mesh skeleton into three disjoint subsets T' = dQ U a_u B Ay~ pdx = @ vd
[t YTt where Tt = T \(dQUT) is the TR R Qf u)vax.
interior points. Then, splitting the integral into element

Let v be a discontinuous function across I'. Setting  contributions and integrate by parts:

v; = v|g,and defining its jump [v,] and average ou
{v,} across E by fﬂa ‘v dx + ZKET fKa Vu-Vvdx

Vhlg, +V|
[vnl = valk, + valk, , {Uh}=%' +Z f an-Vuvds=Z ff(u)v dx.
KeT JoK KeT Jkg

Similarly, for a vector valued function wy, The next step is to decompose the face integrals:
piecewise smooth on T with w; = w|,, such that

[wnl = wlg, + wrlk, , {va} = w ZKET (an-Vu,v)
Thus, setting {v,}=v, [v,] = vnand ZEEr\m(a n - Vu, v)ag,ne
wr]l = wy, - n with n denoting the outward unit
normal on the boundary 0Q. For the mesh size, +Z (an'Vu;U)axan>
using the function h: Q —» R, where h|x = hy, K € Eemre
T and h = {h} on each (d — 1) dimensional open
face E cT. Further, assuming that h,,,:=
max,eqh and hp,,: = min,eqh. Without loss of
generality, assuming that h,,,, remains uniformly
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+ (Z (an-Vu,v)a0 np
EETtr

+ (an-Vu, U)aglnE)
EETtr

{aVu} - [v] ds
F\Ftr

+ f {aVu} - [v] ds
Fint\rtr

- | o] [oad s

where K; andK, € T, for E € 0K; N 9K, n is a
corresponding unit normal on E (exterior to K,).
Finally,

it is ready to introduce the interior penalty
discontinuous Galerkin method for (3), which reads:
find w, € ;¥ such that

Jduy,
(S8 o) + Dalts wnvn) = (fun), o), ()

ot ’
forall v, € V7P,

where
auh auh
(o) = ot o

Dy (t; up,vp ) = ZKGT jﬂa Vuy, - Vv, dx
=) e Tl + V) D ds

* Jl-"\[*tr? [[uh]] [[vh]]ds + .fl'*trCtr [[uh]] ' [[vh]]dS;

where y, and (. donate by the discontinuity
penalization parameter and permeability coefficient,
respectively. Here, y, has to be chosen large enough
to ensure the stability of the discontinuous Galerkin
scheme.

Then, extending the norm ||| v ||| to functions in
v € Hg + VP (T) by setting

oit=(>.  IWavell
KeT

1
+ 5 VaZRIonlllpypor

1/2

+3 Vel

(Lo (L) + Ly(HY))-norm a posteriori error
bounds

The aim of this section is to derive an a posteriori
error estimate for the (Lo, (L,) + Ly (H')) norm

525

llell. = lle(®ll.

2
— 2 2
= | el gy * [ NI ds
0

The estimator is derived using the elliptic
reconstruction techniques in (2003). For each

€ [0,T] the elliptic reconstruction Ry, (uy) € Hg
to be the unique solution of the problem

DR (), $) = (f (un) — %2, ) v € 36
€))
Lemma 3.1. Let R,(u,) € HS be the exact

solution of elliptic problem (8). Then, the following
a posteriori bound holds:

1R () = a1l < € (mseCun) +mga(un)),

where
nse(up) = (ZKET ( \/g(f(uh) -
+

2
) + H\/é (aVuy, + C [upl - ng
K oKNTIt"

1
2
\f [[uh]] )
aKnr\r”

Sd(uh) = (Cl ”\/_[[uh]]”r\r")

Proof. See (21, Lemma 6.2).

u
_h_|_

2
aluy

L VaRtvunl ]

KN Flnt

Lemma 3.2. (Error relation) Let wand u,; are the
exact and approximate solutions defined by (3) and
(7) respectively, and let Rj (uy) be given by (8),
and set

e=p+e  p=u—Ruy(up), &=Rp(up) -
up, e:i=u—uf, €€ =Ry(up) —us, ud:=ug —

Up.

So that, the identity

<%”>+D<ec v) = (fun) = f(un),v) +
D(¢t,e° v)+<auh,v>. 9)

Proof: Going back in the definition (8), lead to

(a;‘h o)+ D& R (), v) = (F (), v),
Vv eEHS. (20)

Subtracting (3) from above equation, gives
du, OJu
v> + D(t; Ry, (up) — u, )

<W_E’
= {(f(up) — f(W),v)
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duj, du
at ot ot at’'"
+D(t; Rp(up) — uj, + uj, —u, v)

= {(f(up) = f(w),v)

ou, Ouj,

ouj Ou c
5t _E'U + D(t;u, —u,v)
= (f(up) — f(w),v) + D(t; Rp,(up) — up, v)
ou, Ouj,
+ —,v).
<6t ot '’
Using %-—%—g—?' e€=Rp(up) —up,
duj,_ dun _ duj
50 o o the result follows.

Theorem 3.3. (Ly(H") + Lo, (L,))-norm. For each

t € [0,T], letr be as in, (17, lemma 5.1), with hmax

small enough. Then, the error bound is
1/2

€l gy * [ N1 11 s
0

< 462(g)eM T
+ 2||VrIw]|| boosnian)’
where

62(e) = (lluo — u (O]

+ CollVR T O )
T

+ Cf (U?C(uh) + Ufa(uh)) dt
0

+ (B2 (wy) + 0% () ) dt
2

L )
F\Ftr
2 2+2
+ ||\/E[[uh]]||1—~\1—~tr + ”\/E[[uh]]”2+2:

Proof. Testing with v = e€ in (9), gives
de®
e®)+ D(e‘e)

ot ’
= (f(up) — f(up), €°) + D(t, &% €°)
+<6uﬁ

ot
To simplify the left-hand side and using the identity

c

c

de¢ Jde ¢ (j(c)2d>
—,e = rerdx = ——— e X
ot q dt
1d
— cl|12
= o —llecll2
Therefore,

526

——|le€ 2 + e€ 2
el + 111 €11

= (f(up) = f(up), e€) + D(t,£% )

oud
+ —52— e

Applying Cauchy-Schwarz inequality on the right-
hand side of above equation, this becomes

N2+ 111 ec 1112
)II el

(11)

The first term on the right-hand side of (11) can be
handled using (2) as follows

c

EE”G
d

ouy
S<I|f(uh)—f(uh)ll+‘7
+HI1 £ {11 e II.

1f ) — Fun)lI? = fﬂ 1 Cup) — f(u)IIPdx
< c2(0) fn (1 +llull+lun D27 | = 12

< C2(0) f A +llpll+lell + 2lunlD? (pl?
Q
+ | £|®)dx
< max{1,167} C2(t) f (1 +llollZ" + llel2rhp
Q

— adaptive discontinuous Galerkin methods for non
— stationary convection- diffusion problems. Comput
+ 47 [up 27 + (Ipl? +1pl?) dx

< a’(t) [IIPII2 + ol

2427
242r

; f & [un 2" (llpl? + lolI?
Q

242r

+ llell? + llll3327

+ lell?llpll® + llell®"lipll | dx

242r
242r

< a?(t) [(1 + 47 un el + ol
+ (L + 47 [unlZ)Nell® + llell

; f & [un 2" (llpl? + lolI?
Q

2+2r
2+2r

+ el llpll® + llell* llpll| dx,
where a?(t) = max{1,16"} C;(t), having used the

2421 2427
inequality, [ |al?"|B]2dx < lellzsdr | TUBN5+Z
from [17]. Therefore,

r+1 r+1
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f lelplP™ + Nell* ol
Q

< (g4 g ) II3EEF

1
# (g + ) el
= ||p||zi%$+|| 13457
< C(lle“N333r + Ilufl133))
+lell3tr.
Applylng the Hélders
T 1

on=5 —+—— 1, along with the Sobolev

imbedding |nequaI|ty llpllL,,, < Celll o lll, on the
first term on the above equation, which gives

leel3135 = | lecler+2dx = [ lecPriee ?dx
Q Q

() ()™
() (i)

= llelI*" lle

+

r+1

inequality with m =

c
”L4/<z—r)
< Celle“lI* [l eI

Hence,
j(||€||2||P||2r+ llell*"llpll) dx
’ = CCplle“lI*"[I] eI
+Clld 7 + lell3i3,
valld br al ZQﬁrc<%for d =2and 0£r£ﬂ for
£||€ #7111 e€|[[* ds 3

Substituting this into our earlier inequality
(12), this leads to

fﬂllf(uh) — flup)lldx
< a@( 1+ 4 2 ()1 €11+ (]

+ ﬁllfll%i%)

+ 1+ 47wy |2 llell + V2CCollec ||| e€1] +
1+r
Clluill,, (13)
Now, putting 8(t) = /1 + 47 |uy |,

jﬂnf(uh) — Fup)Pdx

this becomes

< a?(®) (BNl eIl + B2 Jug |’
+ 2lll313)
Jollf ) — f )l dx
< a?(®) (BNl eIl + B2 Jug |
+ 2lll313)
+HB2@ell” + 202 CElle ||l e“IIf? +

o 17 g (14)

24271

Refuring (11) and Young’s inequality, so that
HE€ 11T e 111

<CllleII?
+1I|Iec 117
2 )
Setting
F(t) = 2C[|| e[| + 222 (®)B*®|ell* +
2
4a®Ollell33r + 22 @B O|Juft]|” +

(15)

24+2r 6uh 2

2C?||u .5, +2
M(t) = 2a?(t)p? (t) + % and, by combining these

terms together, implies that
d
—lle€lI> + 2[|] e 1|7

dt
< F@) + M@ e |||?
+2a2()C2CElleC NI ||] e€|II>.  (16)
Integrating the time variable over s € (0, t), and set
C, = 2a?(t)C?C3, to give

t
S +2f Il e [112ds
0

t t
Sf?—”(s)ds++]vf(t)f [l e€ |||%ds
0 0

t t

< f ?(s)ds+]\/[(t)f [l e€ |||?ds
0 0
t

+C sup | e%s)ﬂzrf Il e]112ds
selo,t] 0
t t

< f ?(s)ds+]\/[(t)f [I| e€ |||%ds
0 0

t 1+r
+C, (sup el + | |||eC|||2ds>
selo,t] 0
t

< j ?(s)ds+M(t)j [I| e€ |||%ds

0 0
+C, (|l e€ ()M
Letting 8(£°)? = fOtT(s)ds, and implies that

t
lec|1? +2f 1l €€ [112ds < 6(e°)?
0
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t
+M(t)f 1l e€ [1]2ds
0

+ G (eI A7)

To deal with final term on the right-hand side of

1
(17), applying the inequality zI'z, < (27 + z,)**r
and assume that the mesh-size h,,,, is small
enough that

6(ec) < —
(AT

1
(4eM(t)T)_(1+7) = 0(e)"
1
<
- CZ (4eM(t)T)(1+r)
> C,0(e°)" (4eMOT) " < 1

= C,(40(9)2eM O™ < ()2,

Since the left-hand side of (17) depends
continuously on t, which implies that the set

A={t€[0,T]: |l eI < 46()?eMOT} is

non-empty and closed. Therefore, setting t* =
max A and assuming that t* < T, so that
leS(OIIZ +2 f; I1] €€ [1[2ds < 260(e)? +
t
M) fy 11 e€ |17ds, (18)

and using Gronwall’s inequality, such that
t
llec®I* + ZJ Il €€ [|[*ds < 20(e)2eM®"
0

< 460(£)2eMOT, (19)

This leads to contradiction with hypothesis t* < T
because of the continuity of the left-hand side of
(19). Hence, t* = T. Setting t* = t, and |le(t")]|| =

c - - .
lle“l| Los(0:1(00) due to the continuity with respect

tot, (19) implies
lle¢(®)IIf

t*

< C(+* 2 c 2
rtonnmy S 15 +f0 1] e 1l12ds

< 20(e€)2eMEDT

< 26(£)2eMOT,
With T being the final time. Combining this with
(19) fort =T, to arrive

T
le€lZ = 11ellZ ., +f €€ [1]2ds
" 0

< 20(e€)2eM®OT

The triangle inequality along with Lemma 3.1, now
implies

lell? < 21l €112 + 2[Ju||” < 46(c€)2eXOT +

2| ]|,

528

where

2 T
anz _1..d d
e S WA
Loo(o,t:L(0)) 0
The result therefore, follows from the last three
inequalities.

Conclusion:

This paper aims to derive an optimal order a
posteriori error estimates in the Lo, (L,) + L, (HY)-
norm for semdiscrete semilinear parabolic interface
problems. An important factor in our analysis to
derive this estimator is to use the elliptic
reconstruction framework of Makridakis and
Nochetto (12) although, crucially, a number of
challenges have to be overcome due to non-linearity
on the forcing term depending on Gronwall’s
Lemma and Sobolev embedding through
continuation argument. The main use for these
bounds is in designing an efficient adaptive scheme,
and consequently leading to a reduction in the
computational cost of the scheme. In the future,
This work can be extended to the fully discrete case
for semilinear parabolic interface problems in

L,(L)and L,(H") norms.
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