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Abstract:

This paper is cornered with the improvement of conjugate gradient type methods
(CG methods) to solve non-linear constrained optimization problems by using
Lagrange method. Most numerical algorithms are sensitive to error due to arithmetic
operation , therefore we suggested the self scaling conjugate Gradient method to
avoid this difficulty and to increase the ability for solving algorithms for ill- problems.
Our new modified CG method shows that , it is too effect when compared with other
established algorithms to solve standard constant optimization problems.
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1. Introduction to constrained
method
The  general  optimization
problem can be stated as follows:
h(x)=0, ke e
c, (x)=0, }
1)
where fand the functions c,,h, are
all smooth, real-valued functions on a
subset of R", and ¢ and t are two
finite sets of indices. We call f the
objective function , h,,kee are the
equality constraints and c,,k et are
the inequality constraints .We define
the feasible set y to be the set of
points x that satisfy the constraints;
ie, w={x:h(x)=0, keejwhen the
constrained IS equal zero,
¢=1{x:c (x)>0,k er}when the
constrained is grater than zero , so that
we can rewrite (1) more compactly as a
new objective function L(Xx,,4) such

that:

Minimize f(x) subject to{
xeR" kez—

L(x,,4) = f(xk)+/‘tki‘lf [h, (x )]+

23 le (x)]

i=m+1

)
where 4, are Lagrange multipliers and
the remainder of second term is the
Lagrange function , ( see [1] ).

2. The Preconditioned
Conjugate Gradient methods

In  the application of the
general method the Quasi- Newton
(QN) and Conjugate gradient (CG)
methods each has particular advantages
and disadvantages. McCormick and
Ritter ( see [2] ) showed that, in
general, the QN methods converge
faster (and require fewer function
evaluations) than the CG methods.
However, QN methods normally
construct a sequence of symmetric
positive definite matrices of order n, so
it is necessary to have n(n+1)/2
locations in a high speed computer

*College of Computer Sciences and Mathematics University of Mosul , Iraq
**College of Education, University of Mosul , Irag

249



Baghdad Science Journal

Vol.11(2)2014

storage. As n increases, n(n+1)/2 must
become too large and the variable
metric methods cannot be used
efficiently only with high memory.

For this reason a new class of
CG methods has been developed,
termed  preconditioned  conjugate
gradient method (PCG) . Its aim is to
keep the storage requirements of order
n while improving the convergence
properties, (see [3],[4]) . This method
is used for solving systems of linear
equations, (see [5]). The idea of
preconditioning has been extended
directly to nonlinear problems.

The relative advantages of
methods of this type is that they
require less storage and computation
time and they are not so sensitive to the
exactness of the line search. Recently,
several papers have been suggested to
the CG method by introducing a
preconditioned matrix H (see [6]).

3. A Scaled Preconditioned
Conjugate Gradient method

This paper is concerned with self-
scaling conjugate gradient algorithms
for finding a local minimum of the
constrained  optimization  problem,
These algorithms start with an initial
approximation X;, of a solution, X ;
and generate new approximations by
the basic iteration:

X1 =%~ HVE(X) ...(3)

where 7, is a step length (calculated

by line search), and H, is an
approximation to the inverse Hessian
matrix G . Given an initial symmetric
and positive definite H,, new Hessian

approximations are generated by the
two-parameters family of updates:
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S H,. VY,
V, = yTH y (_k_ K ],
VT sly, i HLY,

S = Vi — Vi (5)
Y =0k — 9y
where y and 6 are scaling and

updating parameters, respectively. (For
background on these updates, (see [7]).
Ify =1; eq. (4) reduces to the

classical (unscaled) Broyden family of
Hessian approximation updates. In this
case, although for 6 <[0,]; which is

called the convex class, iteration (3)
converges globally and g-super linearly
for convex objective functions under
appropriate conditions (see [8]) , only
updates with 6 =0 (which corresponds
to the BFGS update) have been shown
to be effective in practice; and the
performance of the algorithm varies as
6. increases from 0 to 1. See in

particular, [9], [10], [11], and [12].
Several attempts have been made to
improve the performance of the above
class of algorithms by choosing yand
0in such a way to improve the
conditioning of H,,, ( see [7]) . In
fact, Nocedal and Yuan [13] showed
that the best self scaling BFGS
algorithm of Oren and Luenberger [7]
performs badly compared to the BFGS
method when applied with inexact line
searches to a simple quadratic function
of two variables.

Al-Baali [14], however, used the
theory of Byrd, Liu and Nocedal [8]
for unscaled methods to determine
conditions on y and 6 that ensure
global and superlinear convergence for
scaling algorithms with inexact line
searches  under the  additional
restriction that:
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y<1 ...(6)
Using these conditions, Al-Baali [1]
and [2] showed that the performance of
some members of the Broyden family,
including the BFGS update, was
improved substantially.
Condition (6) is motivated by the fact
that the eigenvalues of the bracketed
matrix in (4) can be reduced if
y<1l(even for@d=0) and, hence,
smaller eigenvalues are introduced into
p.., If the eigenvalues of H, are
large. On the other hand, since the
BFGS  update  corrects  small
eigenvalues of H. (see e.g. [8], [6]
and [11]), it is sensible to use y, =1 if
6, <0.
Oren and Spedicato [15] considered
minimizing the condition number of
H.'H,,, with respect to 0, and derives
the relationship:

p=2C=bn) 2
y(ac—b?)
where
a=yH Y,
b= SI Yis
c=s, H,s,.
Now substituting 6 =1 in (7) yields
Sy Vi
Y HieYi )

Shanno (1978) showed that one can
generate a class of CG-algorithms from
Broydens class , the step size still has
no relation to the actual step size of the
minimum, an addition truncation error
can be added. In order to develop
conjugate gradient method to solve (ill
—problems)which is less sensitive to
the rounding off error and truncation
off error, we have suggested in this
paper a self-scaling conjugate gradient
method based on shanno ( see [16]) .
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4. The derivation of A Scaled
Preconditioned Conjugate Gradient
method in equality constrained
optimization

In this section we present a
modified conjugate gradient method by
employing scaling parameter in order
to play an important rule in the
convergence behavior of conjugate
gradient method. The scalar y is

chosen so that to reduce sensitivity of
the step sizes of the line search.

Now we derive self- scaling
conjugate  gradient algorithm as
follows:
Let k=23..,n
k-1
d, =-9, +Zaidi - (9)
i=1
Set
d,=-0, +ad, ...(10)
Choose «a, which satisfiyes the
conjugacy condition

(ie. d{Gd; =0, i j) where G is the

Hessian matrix, and the matrix H in
the constrained problem is define by:

He.= Hk(BFGS) + Zﬂ’k¢”[hi (X)]
i1

Vh, ()Vh/ (%)
Where H, g5, IS defined in equations

..(10)

(4-5), in such a way d, and d,are
conjugate S0 we have:
le ﬁk+1 d2 =0

(12)
Substitute d, which defined above in
(10) and put it in (12) then we get:

~d; H, 9, +a,d) H,,,d; =0...(13)
So we have:
g,Hd
o =—2——> ... (14)
d,H d;
Since @, is the gradient of constrained
problem, then:

_ gg(gz _gl)

=222 S (15
dl(gz_gl) ( )
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Let k=3

d, =—g,+a,d, ...(16)
For the conjugacy d, and d,we get

d; Hd, =0 ...(17)
Substitute d, which defined above in
eq.(16) and put it in (17) then:

~d; Hg,+a,d] Hd, =0
...(18)

From conjugacy condition
a. = g; (g:a B gz)
2 — —
dzT (ga - gz)
In general for all

...(19)

k we have the

relation
k—j-1
Ay = =G T 0y + Zlk,jdk—l,j—l
j=1
...(20)
We must prove
l.; =0 m<k-1 ...(21)
From d, ;, <d,, we suppose
k—j—1=m
9y Vi
Then I === ...(22)
Ydey,
9eYm =0 e g (Gn—Ogni)=0

For m<k-1 then we have g,g,, and
g-krgm—l =0

The gradient g, at x, and the
gradient at the minimum x is g,, Will
be orthogonal to g,.Then

l,, =0 m<k-1 ..(23)

Therefore
ey =—0pq +ao, dy ...(24)

5. The derivation of a new
Scaled PCG method:

In this section we modify the
direction in eq.(24) by multiplying it
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with  several values of scaling
parameter which is based on Oren and
Spedicato (1976) idea as follows:

S Vi
1- 9 T H. . ...(25)
2y o %O .(26)
@,,HG)+ (@ H Gy )
3-
P _SIGk_T _
(9 v Hiceros) Jv.a) +(T « Hiros) 9v)

...(27)
to derive those scalar we depend on
the following properties (orthogonal,
exact line search ) and noting

thaty, =g, — 0, :

A- from eq.(8) and where
defined by eq.(11) we get:
S Vi

H,, is

: yI[Hk(BFGs,+iw"[hi(x)]vn(x)Vhi(xijk
, S0 the direction is define by:

Oy = 7(_ O + akdk)

— g;—ﬂ(gkﬂ — Qk)

where === =
dk (gk+1_gk)

ay

...(29)

The above direction was obtained
when we use all of the above
properties and define
1=f:h()=0}, N=fi:h(x) <0}
and the cone C={d #0,Vh.(x)d =0
for ieland Vh (x)d > 0for all
ieN}.

B- Using the properties of CG-method
(the orthogonally property g.,,9, =0,
and exact search property g,.,d, =0)

we get:

_ S 9,
V2 = T T ~ — T = !
(@,.,H90)+ (@, HG )
C- Using the properties of (B) and
taking | = {i h(x) = 0} then:



Baghdad Science Journal

Vol.11(2)2014

(iw”[hi ORIV, (x)Tj= 0.

SO we

Ti
9,

get:

V3 =—""— — — —
(@ . Hieros) T ) + (@, Hieros) T )

6. Outline of the new Scaled
PCG algorithm:

step (1): Choose an initial point X, in
the interior of the feasible region for
the equality constraint and use an
initial positive definite matrix H, = 1.
step (2): set k =1.

step (3): solve d;, =—H,0,.

step (4): compute r where 7 is a step
length ( calculated by line search) and
then compute x,,, =X, +7,d, .

step (5): check for convergence if
|9 <1x10°is satisfied then stop,
else, continue.

step (6): compute the new search
direction :

dk+1:7(_gk+1+akdk)v where y s
define by (25 or 26 or 27) and «, is

T /= =
defined by (a, = Jc1(Tca=0d) )
dk (gk+l_gk)

Step (7): check for restarting criterion,
ie if d,0,,> —O.8||gk+1||2is satisfied
go to

step 2 else, set

Ay = Ay + Zm:‘P [h. (x,)] go to step 4.

i=1

k=k+1,

7- Numerical Results and

Conclusion:

The basic idea of the new
proposed algorithm is to combine the
scaled memory less BFGS method
and the preconditioning technique. The
preconditioned, which is also a scaled
BFGS matrix, is reset when a restart
criterion holds. Therefore , we get a

253

preconditioned and scaled BFGS
algorithm of constrained optimization
problem.

We compare the performance
of the several new proposed scaled
PCG algorithm with the original CG
algorithm on a set of constrained
optimization problem.

All  programs are written in
FORTRAN language and for all cases
the stopping criterion taken to be

|9 <1x10°

All the algorithms in this paper use
the same ELS strategy which is the
quadratic  interpolation  technique
directly adapted from Bunday [ 17] .

The comparative performance
for all of these algorithms are
evaluated by considering numbers
NOF, NOI, and NOC where NOF is
the number of function evaluations,
NOI is the number of iterations and
NOC is the number of constrained
evaluations, is  considered as the
comparative performance of the
following algorithms:

1- standard CG-algorithms

2- self -scaling CG-algorithms(New
1) defined in equation (25)

3- self -scaling CG-algorithms(New
2) defined in equation (26)

4- self -scaling CG-algorithms(New
3) defined in equation (27)

Our  numerical  results  were
presented in the following table (1)
which confirms that the self-scaling
CG-algorithm was superior to standard
CG-algorithm with respect to the total
of NOF , NOI and NOC.

We conclude that our new method is
too effect when it compared with other
established algorithms , In general , as
well as the standard algorithm used so
far showed superiority on problem of
high dimensional and constrained.
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Table (1)Comparison of CG-algorithm with Self-Scaling algorithm

Test Fn CG-methods New(1) New(2) New(3)
" | NOF(NOI)NOC | NOF(NOI)NOC | NOF(NOI)NOC | NOF(NOI)NOC
1- 661(222)431 660(224)434 642(220)429 654(220)431
2- 12(4)52 10(6)38 10(6)38 166(80)97
3- 83(33)66 55(23)32 51(21)26 51(21)26
4- 44(19)21 59(24)36 34(18)20 32(3)819
5- 585(40)46 161(30)38 66(16)20 110(32)67
6- 55(21)25 46(21)23 81(18)21 45(17)22
7- 96(21)9 76(26)7 94(16)9 56(22)6
8- 38(17)24 38(18)23 41(19)33 80(35)112
9- 43(21)29 64(24)146 53(19)134 52(18)149
Tot. 1617(398)703 | 1169(396)777 | 1072(353)730 | 1246(448)1729
_ 28.jkcray.math.ul.ie/msu327/slides.
8.Appendix: pdf.
The text functions in table (1) are [18]: McCormick, G. and Ritter, K.

1-min f(X) = (X, - 2)® + (X, - 2X,)°
st x2-x,=0
2. min f(X) = x,x5+2
st x2-x5=-2
3-min f(x) = (X, -2)® + (X, - 2X,)°
st X -xo=4

4-min f(x) = X12 2

+X5
st x2-x3=-1

5-min f(X) = (X, -X,)? + (X, - X;)*
S.tX +XXo+X;=3

6-min f (x) = x> +x2
st (X, -1)?+x2=0

7-min

2

f(x):4x12 +2X5 +2x§ —33x1 +18x,, —24x

2 3

2 _
st 2x2 —3x1 =7

x; —33x, =11
8-min f(x)=x+x3
st 1-x2—-x2=0
9-min f(x)=x>+x3
st (X -1D*-x+4=0
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