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Abstract: 
      This paper is cornered with the improvement of conjugate gradient type methods 

(CG methods) to solve non-linear constrained optimization problems by using 

Lagrange method. Most numerical algorithms are sensitive to error due to arithmetic 

operation , therefore we suggested the self scaling conjugate Gradient method to 

avoid this difficulty and to increase the ability for solving algorithms for ill- problems. 

Our new modified  CG method shows that , it is too effect when compared with other 

established algorithms to solve standard constant optimization problems.    
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1. Introduction to constrained 

method 
   The general optimization 

problem can be stated as follows: 
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where f and the functions kk h,c  are 

all smooth, real-valued functions on a 

subset of 
nR , and   and   are two 

finite sets of indices. We call f  the 

objective function ,  k ,h k  are the 

equality constraints and k ,ck  are 

the inequality constraints .We define 

the feasible set   to be the set of 

points x  that satisfy the constraints; 

i.e.,    k  ,0)(: xhx k when the 

constrained is equal zero, 

   k, 0)(  : xcx k when the 

constrained is grater than zero  , so that 

we can rewrite (1) more compactly as a 

new objective function ),( kxL  such 

that:
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where k are Lagrange multipliers and 

the remainder of second term is the 

Lagrange function , ( see [1] ). 

2. The Preconditioned 

Conjugate Gradient methods 

 In  the application of the 

general method the Quasi- Newton 

(QN) and Conjugate gradient (CG) 

methods each has particular advantages 

and disadvantages. McCormick and 

Ritter ( see [2] ) showed that, in 

general, the QN methods converge 

faster (and require fewer function 

evaluations) than the CG methods. 

However, QN methods normally 

construct a sequence of symmetric 

positive definite matrices of order n, so 

it is necessary to have n(n+1)/2 

locations in a high speed computer 
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storage. As n increases, n(n+1)/2 must 

become too large and the variable 

metric methods cannot be used 

efficiently only with high memory. 

 For this reason a new class of 

CG methods has been developed, 

termed preconditioned conjugate 

gradient method (PCG) . Its aim is to 

keep the storage requirements of order 

n while improving the convergence 

properties, (see [3],[4]) . This method 

is used for solving  systems of linear 

equations, (see [5]). The idea of 

preconditioning has been extended 

directly to nonlinear problems. 

 The relative advantages of  

methods of this type is that they 

require less storage and computation 

time and they are not so sensitive to the 

exactness of the line search. Recently, 

several papers have been suggested to 

the CG method by introducing  a 

preconditioned matrix H (see [6]).  

3.  A Scaled  Preconditioned 

Conjugate Gradient method 

This paper is concerned with self-

scaling conjugate gradient algorithms 

for finding a local minimum of the 

constrained optimization problem, 

These algorithms start with an initial 

approximation 1x , of a solution,
*x ; 

and generate new approximations by 

the basic iteration:   

)(1 kkkkk xfHxx   …(3) 

 

where k  is a step length (calculated 

by line search), and kH  is an 

approximation to the inverse Hessian 

matrix 1G . Given an initial symmetric 

and positive definite 1H , new Hessian 

approximations are generated by the 

two-parameters family of updates: 
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  ,

…(5) 

where   and   are scaling and 

updating parameters, respectively. (For 

background on these updates, (see [7]). 

If 1 ; eq. (4) reduces to the 

classical (unscaled) Broyden family of  

Hessian approximation updates. In this 

case, although for ]1,0[   ; which is 

called the convex class, iteration (3) 

converges globally and q-super linearly 

for convex objective functions under 

appropriate conditions (see [8]) , only 

updates with 0  (which corresponds 

to the BFGS update) have been shown 

to be effective in practice; and the 

performance of the algorithm varies as 

i  increases from 0 to 1. See in 

particular, [9], [10], [11], and [12]. 

Several attempts have been made to 

improve the performance of the above 

class of algorithms by choosing  and 

 in such a way to improve the 

conditioning of 1kH   ( see [7]) . In 

fact, Nocedal and Yuan [13] showed 

that the best self scaling BFGS 

algorithm of Oren and Luenberger [7] 

performs badly compared to the BFGS 

method when applied with inexact line 

searches to a simple quadratic function 

of two variables. 

Al-Baali [14], however, used the 

theory of Byrd, Liu and Nocedal [8] 

for unscaled methods to determine 

conditions on   and   that ensure 

global and superlinear convergence for 

scaling algorithms with inexact line 

searches under the additional 

restriction that: 



Baghdad Science Journal   Vol.11(2)2014 
 

952 

  1  …(6) 

Using these conditions, Al-Baali [1] 

and [2] showed that the performance of 

some members of the Broyden family, 

including the BFGS update, was 

improved substantially. 

Condition (6) is motivated by the fact 

that the eigenvalues of the bracketed 

matrix in (4) can be reduced if 

1 (even for 0 ) and, hence, 

smaller eigenvalues are introduced into 

1k  if the eigenvalues of kH  are 

large. On the other hand, since the 

BFGS update corrects small 

eigenvalues   of  iH  (see e.g. [8], [6] 

and [11]), it is sensible to use 1k   if 

0k . 

Oren and Spedicato [15] considered 

minimizing the condition number of 

1k

1

k HH 

  with respect to  , and derives 

the relationship: 
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     Shanno (1978) showed that one can 

generate a class of CG-algorithms from 

Broydens class , the step size still has 

no relation to the actual step size of the 

minimum, an addition truncation error 

can be added. In order to develop 

conjugate gradient method to solve (ill 

–problems)which is less sensitive to 

the rounding off error and truncation 

off error, we have suggested in this 

paper a self–scaling conjugate gradient  

method based on shanno   ( see [16]) . 

 

4. The derivation of A Scaled 

Preconditioned Conjugate Gradient 

method in equality constrained 

optimization  

           In this section we present a 

modified conjugate gradient method by 

employing scaling parameter in order 

to play an important rule in the 

convergence behavior of conjugate 

gradient method. The scalar   is 

chosen so that to reduce sensitivity of 

the step sizes of the line search. 

   Now we derive self- scaling 

conjugate gradient algorithm as 

follows: 
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                1122 dgd     …(10)    

Choose 1  which satisfiyes the 

conjugacy condition 

( ji  ,0Gdd  .e.i j

T

i  ) where G is the 

Hessian matrix,  and the matrix H  in 

the constrained problem is define by: 
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Where )(BFGSkH  is defined in equations 

(4-5), in such a way 1d  and 2d are 

conjugate so we have:                  

0  211  dHd k

T              

   (12) 

Substitute   d2  which defined above in 

(10) and put it in (12) then we get: 

      

0    1111211   dHdgHd k
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So we have: 
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Since kg  is the gradient of constrained 

problem, then: 
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Let k=3 

                2233 dgd      …(16) 

For the conjugacy 2d  and 3d we get 

                0d H d 3

T

2    …(17) 

Substitute   d  3 which defined above in 

eq.(16) and put it in (17) then: 

                0     22232  dHdgHd TT   

…(18)    

From conjugacy condition 
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In general for all k  we have the 

relation 
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T
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     The gradient 0g   at  0x  and the  

gradient at the minimum x  is 1g , Will 

be orthogonal to 0g .Then 

                           

1-km                 0, jkl       …(23) 

Therefore 

   kk1k1k dgd     …(24) 

  

5. The derivation of a new 

Scaled PCG method: 
   In this section we modify the 

direction in eq.(24) by multiplying it 

with several values of scaling 

parameter which is based on Oren and 

Spedicato (1976) idea as follows: 
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to derive those scalar we depend on 

the following properties (orthogonal, 

exact line  search ) and noting 

that kkk ggy  1  : 

 

 

A- from eq.(8) and where  1kH   is 

defined by eq.(11) we get: 
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The above direction was obtained 

when we use all of the above 

properties and define 

 0)(:  xhiI i ,  0)(:  xhiN i  

and the cone 0)(,0{  dxhdC i  

for Ii and 0)(  dxhi for all 

} Ni . 

B- Using the properties of CG-method 

(the orthogonally property  0gg k

T

1k  , 

and exact search property 01  k

T

k dg ) 

we get: 
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taking   0)(:  xhiI i  then: 
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6. Outline of the new Scaled 

PCG algorithm: 
step (1): Choose an initial point 0x  in 

the interior of the feasible region for 

the equality constraint and use an 

initial positive definite matrix IH1  . 

step (2): set 1k  . 

step (3): solve 111 gHd  . 

step (4):  compute   where   is a step 

length ( calculated by line search) and 

then compute  kkkk dxx 1 . 

step (5): check for convergence if 
5

1 101 

 kg is satisfied then stop, 

else, continue. 

step (6): compute the new search 

direction : 

 kkkk dgd    11  , where   is 

define by (25 or 26 or 27) and k  is 

defined by (
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i.e. if 
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7- Numerical Results and 

Conclusion: 
The basic idea of the new 

proposed algorithm is to combine the 

scaled   memory less BFGS method 

and the preconditioning technique. The 

preconditioned, which is also a scaled 

BFGS matrix, is reset when a restart 

criterion holds. Therefore , we get a 

preconditioned and scaled BFGS 

algorithm of constrained optimization 

problem. 

We compare the performance 

of the several new proposed scaled 

PCG algorithm with the original CG 

algorithm on a set of constrained 

optimization problem. 

     All programs are written in 

FORTRAN language and for all cases 

the stopping criterion taken to be 
5

1 101 

 kg  

    All the algorithms in this paper use 

the same ELS strategy which is the 

quadratic interpolation technique 

directly adapted from Bunday [ 17] . 

 The comparative performance 

for all of these algorithms are 

evaluated by considering numbers 

NOF, NOI, and NOC where NOF is 

the number of function evaluations, 

NOI is the number of iterations and  

NOC is the number of constrained  

evaluations, is  considered as the 

comparative performance of the 

following algorithms: 

1- standard CG-algorithms 

2- self -scaling CG-algorithms(New 

1) defined in equation (25) 

3- self -scaling CG-algorithms(New 

2) defined in equation (26) 

4- self -scaling CG-algorithms(New 

3) defined in equation (27) 

    Our numerical results were 

presented in the following table (1) 

which confirms that the self-scaling  

CG-algorithm was superior to standard 

CG-algorithm with respect to the total 

of NOF , NOI  and NOC.  

We conclude that our new method is 

too effect when it compared with other 

established algorithms  , In general ,  as 

well as the standard algorithm used so 

far showed superiority on problem of 

high dimensional and constrained. 
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Table (1)Comparison of CG-algorithm  with Self-Scaling algorithm 

Test Fn. 
CG-methods 

NOF(NOI)NOC 

New(1) 

NOF(NOI)NOC 

New(2) 

NOF(NOI)NOC 

New(3) 

NOF(NOI)NOC 

1- 661(222)431 660(224)434 642(220)429 654(220)431 

2- 12(4)52 10(6)38 10(6)38 166(80)97 

3- 83(33)66 55(23)32 51(21)26 51(21)26 

4- 44(19)21 59(24)36 34(18)20 32(3)819 

5- 585(40)46 161(30)38 66(16)20 110(32)67 

6- 55(21)25 46(21)23 81(18)21 45(17)22 

7- 96(21)9 76(26)7 94(16)9 56(22)6 

8- 38(17)24 38(18)23 41(19)33 80(35)112 

9- 43(21)29 64(24)146 53(19)134 52(18)149 

Tot. 1617(398)703 1169(396)777 1072(353)730 1246(448)1729 

 

8.Appendix: 

The text functions in table (1) are [18]: 
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 لجامعة الموص،كلية التربية  ،قسم الرياضيات **

 

 

 الخلاصة:
( لحل مسائل الامثلية المقيدة غير الخطية باستخدام CGبتطوير طرائق التدرج المترافق )   اهتم البحث          

معظم الخوارزميات العددية تكون حساسة للخطا الناتج من العمليات الحسابية لذلك اقترحنا طريقة لاكرانج . 

طريقة تدرج مترافق ذاتية التقييس لتجاوز هذه الصعوبة و لزيادة قابلية الخوارزميات لحل المسائل العليلة 

قارن بالخوارزميات السابقة تبين ذلك وهي فعالة جدا عندما ت  CGوخوارزميتنا  الجديدة المطورة  لطريقة ال 

 لحل مسائل الامثلية الثابتة القياسية. 

 

 


