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Two New Approaches for PARTAN Method

Ban A. Metras Khary B. Rasheed

ABSTRACT

In This paper, we suggest two approaches for the parallel
tangent (PARTAN) method. First is to combine PARTAN
method with Perry algorithm and second is to combine PARTAN
method with Al-Bayati-Ahmed, 1996 algorithm. The new
suggested methods are tested to solve unconstrained optimization
problems by using statistical tests and the results of the new
suggested methods are better than the original PARTAN method
with respect to time and the accuracy.
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1. Introduction:

This paper 1s concerned with the unconstrained

minimization problem

Min f(x): R" - R, (1)

where f 1s a reasonably smooth function. Some of the best
methods for solving eq.(1) are the quasi-Newton methods (QN),
since they rely on matrix computations difficulties with computer
storage arise when the dimension of the problem becomes large.
A number of attempts has been made to overcome this situation
either by modifying the QN- methods themselves or by
improving conjugate gradient methods.

The advantage of conjugate gradient methods is of course,
that they depend on vector computations only (see Khoda and
Storey, 1992).

CG-algorithms are iterative techniques with generating a
sequence of approximations to the minimizer x* (of a scalar
function f{x)) of the vector variable x. The sequence x; is defined
by

Xpp =X, *A,d, (2)

di ==& + Fid, (3)
where g; is the gradient of f{x), 4, is a positive scalar chosen to
minimize f(x) along the search direction d; and B, is a

coefficient, given by one of the following expressions.

B, =248 (Hestenes-Stiefel, 1952) 4)
Vi

B, =E8t (Fletcher-Reeves, 1964) (%)
8k &k

B, =28k (Polak-Riebere, 1969) (6)
Er &k

p, =—S8 (Dixon, 1975) (7)

k%
B, = Z8in8in (Al-Assady, Al-Bayati, 1986) (8)

T
Vi
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2. Conjugate Gradient Algorithms as a Memoryless QN-
Algorithms:

This type of CG-algorithm was suggested for the first time
by Perry (1978) and further analyzed by Shanno (1978a). These
algorithms are generating descent directions even if ILS are used
since:

d,=-H,g, )
Multiplying eq.(9) by g, yields

dig, =-gH,g <0
Since Hj is positive definite and the second term is positive
implies that 4, is a descent direction. H; is updated through the

formula of BFGS update. (see Bazarra et al, 2000).
Given some approximation H, to the inverse Hessian

matrix, we compute the search direction d, =-H, g,, and we
define v, =x,,, — x, and

Vi =&k — &k = O(xy —x) =Gy

We now want to construct a matrix

Hyy = H +H (10)

where H\” is some symmetric correction matrix that ensures that
Vi, Vy ...,V are eigenvectors of H;.;G with unit eigenvalues.
Hence

Hiwye =V,
This condition translates to the requirement that

Hiny =ve —H,y,
This therefore leads to the rank-two DFP ( Dividon; Fletcher and

Reeves, 1964) update via the correction term
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Hk:vl;v/( _kakyZHk EI_[kDF‘P (11)
Vi Vi Vet yy

The Broyden updates suggest the use of the correction matrix
H, =H,; given by
T
HP =P+ OaPiPe (12)
Vi Vi

where p, =v, —(L)H .y, and where z, is chosen so that the quasi-

Ty
Newton condition holds by virtue of p; y, being zero. Then

H,fFGS :H,f(ezl): vkv,f (1+ykTHkykj_[HkkakT +ka1{Hk) (13)

T T T
Vi Vi Vi Vi Vi Vi

Also this type of algorithms does not need to update the
matrix H explicitly (i.e. this matrix reduces a vector of order »).

3. Perry’s Conjugate Gradient Algorithm:
Among the most efficient CG-algorithms was the Perry-
CG algorithm. In eq.(3) the scalar B, was chosen to make d; and

di+; conjugate using an exact line search. In general, line
searches are not exact, Perry relaxed this requirement and he
rewrote eq.(3) where g, is defined by eq.(4), but assuming

inexact line search; thus he obtained

d, ykT
dk+] :_[1_ T ]gk+1 (14)
k dk
But this matrix is not of full rank; hence he modified eq.(14) as
T T
dk+1 = _[I_VkTi + V];Vk ]gk+1 (15)
Vive Vil
= _Qk+lgk+1 (16)

the matrix Q. ; satisfies the form
O Vi =V
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Algorithm (Perry):

An algorithm based on the search direction given in
eq.(14) is as follows:
Step 1: Let x;) be an estimate of a minimizer x* of /" and let € be
a tolerance Number.
Step 2: Set k=1 and compute d, =-g, /g,

Step 3: Line search :Compute x,,, =x, +a,d,, where «, 1S a

scalar chosen in such away that f;,;<f;.
Step 4: If ||g,..| <& take xi:; as x*, and stop.

Step 5: If k=n or [gf,,g,|>0.2¢}. 2.

. Then compute the new

search direction defined by

d, = —g,m(/%’;d" ay ). Set k=1 and go to step 3. Else k=k+1

k+1gk+1

Step 6: Compute the new search direction defined by

T T
_(Vk v Vi Eirn
T T
Vi Vi Vi Vi

), , g0 to step 2

dk+] = =8+

4. Single-Step Variable- Storage Conjugate Gradient
Algorithm:

Al-Bayati and Ahmed in 1996, developed a variable —
storage CG-algorithm as follows:
2ykTTHkJ:k }vkva_Hkka/{:kalfHk (17)
Ve i) Vi Vi
the above formula generates positive definite matrices. Now
since

Hk+l :Hk +|:

dk+1='Hk+1gk+1 (1 8)
hence
2,7 T T T
o =G0 — ka Vi Vk§k+1 _ ykTng v, + Vkrgk+1 v, (19a)
Vi Vi Vi Vi Vi Vi Vi Vi

It is clear that if v, g,,, =0and by using exact line search, then eq.
(19a) becomes
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T
dk+] = =&+ + (@)Vk (19b)
Vi Vi
which is the standard HS-CG-algorithm and therefore has n-step
convergence to the minimum of a quadratic function. Thus this
CG-algorithm as defined precisely by the new VM-update eq.(3),
where the approximate of inverse Hessian is reset to the identity

matrix at every step.

Algorithm (Al-Bayati-Ahmed, 1996):

Step 1: Let initial point x; .

Step 2: Setk=1, d, =-g,/|g,|

Step 3: Set x,,, =x, +a,d, where «, is a scalar chosen in such a
way that

S r<fx-

Step 4: Check for convergence i.e. if ||g,,| <& where ¢ is small
positive tolerance, stop.

Step 5: Otherwise. If k=n or ‘g,fﬂgk‘zo.z‘g,fﬂgkﬂ compute the

new search direction defined by

Adld
diy =—g X(——+), set k=1 and go to step (3). Else set

i1 8kn

k=k+1.

Step 6: Compute the new search direction defined by

2Vi Vi Vi&in _yl{gkﬂ +VkTgk+1

T T T v T
Vile  ViVk Vi Vi Vi Vi

and go to step (2).

Aoy ==& — k
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5. The Parallel Tangent Method (PARTAN):

This procedure proceeds to the minimum of differentiable
objective function f on successive straight lines. The path
directions are alternately determined by positions of points
already reached or by certain gradient directions. This method
does not involve the explicit construction of mutually conjugate
direction vectors although vectors can be constructed from the
direction vectors that are mutually conjugate. This property
underlies the convergence of the (PARTAN) method.

6. A General Outlines of the PARTAN Algorithm:
Starting procedure: For the first step,

Let, dy=-gy (20)
So that

X, =x, +4d, (21)

Next, choose

dr=-g> (22)

Then, the fourth point is generated by moving in direction
that is collinear with (x;-x;) so that
d3=-(x3-x) (23)
This is referred to as an acceleration step. Continuing the
procedure:
After determining x, the procedure is continued by
successively alternating gradient and acceleration steps.
Thus
d,':-g,' for i:0,2,...,2l’l-2 (24)
d,:—(x,--x,-_g) for i=3,5,...,2n—1 (25)
This method will reach the minimum of an » dimensional
quadratic surface in no more than 2n steps. The d; that are
generated are not mutually conjugate but the following properties
are true:
The search direction are descent 1.e. dl-Tgl-<0.
The vectors (x;-xy), (X4x3), ..., (X2,-X2,.2) are mutually
conjugate.
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The points x,xg,...,x;, are the minimum for the space
spanned respectively by; d; and d,, g, and g, ...(d},d>, ....d5,.5)
The gradient vectors gy,2>,...,2,, are orthogonal.
(Wilde, 1967).

PARTAN Algorithm stops when |g,.,

small and in perfect arithmetic should terminate in at most n
iterations, whatever the choice of x,. In particular, the algorithm
will converge in k (<m) iterations if the Hessian matrix of the
function f'has only k distinct eigenvalues. These properies follow
because the recurrence relation of d; is designed to ensure that the
search directions are conjugate with respect to the Hessian matrix
of /. Scalar products appear in the expressions for d; and the step
length g.

The behavior of PARTAN algorithm in finite precision
arithmetic will depend on how accurately these scalar products
are computed.

is sufficiently

7. The Outlines of the Modified (PARTAN) Algorithm (1):
Step (1): Set the initial point x,
Step (2): Let dy =—g, /|0
Step (3): Compute x, =x, + 1,d,, next, choose
dr=-g;
Then, the fourth point d;=-(x;-x,)
Step (4): Check if ||g,.,| < &, then stop. Otherwise go to step (5)

Step (5): Compute:
d, =-g, 1f k iseven
d, =—(x, -x,,) if k isodd,
d,., =-g..,+B.d,,where g, is the conjugancy coefficient.
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. Then compute the new
//Lkdl{dk

T
k+1gk+1

Ahmad 1996) Set k=1 and go to step 2. Else k=k+1
Step 7: Compute the new search direction defined by

T T
Y8t _ y"Tg"” yv, and go to step 3

T
Vi Vi Vi Vi

Step 6: If k=n or ‘ngﬂgk‘ZO-z‘ngﬂgkﬂ

search direction defined by d,,, =-g,.( ).(AL-Bayati &

dk+1 =8 —(

Computational cost appears at each iteration of the new
algorithm with accurate scalar products is approximately ten
times as expensive as one without, i.e. if the cost of a “normal”
iteration is sn> the cost of one with accurate scalar products is
about 10sn”. This penalty should be set against the fact that
accurate scalar products will sometimes allow less iteration to be
taken.

8. The Outlines of the Modified (PARTAN) Algorithm (2):
Step (1): Set the initial point x,
Step (2): Let dy = =g, /&
Step (3): Compute x, = x, + 1,d, , next, choose
dr=-g;
Then, the fourth point d;=-(x;-x)
Step (4): Check if ||g,., | < &, then stops. Otherwise go to step (5)

Step (5): Compute:
d,=-g, 1if k iseven
d, =—(x, —x,,) 1if k isodd,

d,., =-g.,+B.d,,where g, is the conjugancy coefficient.

Step 6: If k=n or |g],,g,|>02

direction defined by

T
din ==& ><(M) (AL-Bayati & Ahmad 1996), set k=1 and

k+18 k+1

g,..2..| compute the new search

go to step (2).
Else set k=k+1.
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Step 7: Compute the new search direction defined by

T T T T
d, =—g. - 2ka Vi Vk§k+1 _ ykrgk+1 v+ VkTgk+1
Vile  ViVk Vi Vi Vi Vi

and go to step (3).

9. Duncan Test:
We used Duncan test to compare the difference between the
means and depending on the value of Least Significant Range
(L.S.R.) (Ronald , 1971), by:

Estimate the scalar error value for any coefficient 1.e.:

§ = /Mse
yi. r

where:
Mse: is the mean of square error.
r: 1s the number of iterations.
2.Findout SSR from Duncan’s table under significant level {0.05
oro.ol}.
3. Compute L.S.R by:

LSR=S_ =SSR

yi.
4. Arrangement efficient means decreasing or increasing.
5. Compared differences means with L.S.R value to discaste it is
significant or not. If the difference is less than L.S.R, we say it is
significant and the reverse is true.

10. Results and Conclusions:

In order to asses the performance of the new proposed
algorithm NEW, three algorithms are tested over 8 generalized
selected well-known test functions with different dimensions
where 100 <7 <1000
1-CG- algorithm
2- PARTAN algorithm.

3- New algorithm (1).
4- New algorithm (2).
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All the algorithms in this paper use the same exact line
search strategy which is the cubic fitting technique directly

adapted from Bunday (1984).

Also all the algorithms have convergence when |g,.,[|<& where

e=1x10".

The numerical results are presented in the following two
tables. In table (1), we have compared all our CG-algorithms by
using eight well-known test functions and for dimensions n=100.
In table (2) we have compared all our CG-algorithms by using

Iraqi Journal of Statistical Science (9) 2006

eight well-known test functions and for dimensions n=1000.

Table (1)
Comparisons of all CG-algorithms for test functions with
n=100.
Test function | CG PARTAN New (1) New (2)
algorithm algorithm
NOI (NOF) | NOI (NOF) NOI (NOF) | NOI (NOF)
Himmel 24 (104) 22 (100) 22 (98) 19 (88)
Powell 93 (201) 87 (122) 83 (130) 77 (110)
Shallow 25 (43) 25 (39) 21 (35) 21 (28)
Tri-diagonal | 37 (50) 32 (45) 30 (39) 28 (32)
Dixon 24 (83) 20 (71) 20 (67) 16 (55)
Wood 88 (176) 79 (168) 72 (157) 68 (110)
Rosen 32 (78) 28 (77) 27 (69) 22 (57)
Sum 22 (65) 19 (57) 19 (55) 17 (49)
Total 345(800) 312(679) 294(650) 268(529)
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Table (2)
Comparisons of all CG- algorithm for test functions with
n=1000.
Test function | CG PARTAN New (1) | New (2)
algorithm | algorithm
NOI NOI (NOF) |NOI NOI (NOF)
(NOF) (NOF)
Himmel 26 (112) |24 (100) 23 (98) 19 (92)
Powell 90 (197) |86 (138) 84 (141) |72(99)
Shallow 24 (45) 21 (33) 21 (31) 18 (24)
Tri-diagonal | 45 (58) 39 (53) 38 (53) 30 (47)
Dixon 27 (99) 25 (78) 21 (66) 18 (57)
Wood 92 (178) |79 (169) 74 (159) |69 (114)
Rosen 32 (82) 30 (78) 30 (69) 25 (60)
Sum 26 (71) 24 (69) 21 (66) 18 (61)
Total 362(842) | 328(718) 312(683) | 287(554)

Table (3) represents Duncan test to NOI for Table (1)

Subset for alfa=0.5
T Sample size=38 1
" (d) 8 69.2500

Duncan®™ 7 ) 8 85.3750
(b) 8 89.7500
(a) 8 105.2500
Significant 0.149

Where:

NOI for NEW(2) algorithm when n=100
(b) NOI for NEW(1) algorithm when n=100
(c) NOI for PARTAN algorithm when n=100
(d) NOI for CG algorithm when n=100
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Table (4) represents Duncan test to NOF for Table (1)

Subset for alfa=0.05
T Sample size=38 1
d) 8 33.6250
Duncan® L
uneant o) 8 39.0000
(b) 8 41.0000
(a) 8 45.2500
Significant 0.424
Where:

(a) NOF for NEW(2) algorithm when n=100
(b) NOF for NEW(1) algorithm when n=100
(c) NOF for PARTAN algorithm when n=100
(d) NOF for CG algorithm when n=100

Table (5) represents Duncan test to NOI for Table (2)

Duncan*

Subset for alfa=0.05

T Sample size=38 1

d |8 66.1250
©) |8 81.2500
(b) 8 84.8750
(a) 8 100.000
Signif 184
icant

Where:

(One) NOI for NEW(2) algorithm when n=1000

(b) NOI for NEW(1) algorithm when n=1000
(c) NOI for PARTAN algorithm when n=1000
(d) NOI for CG algorithm when n=1000
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Table (6) represents Duncan test to NOF for Table (2)

Subset for alfa=0.05
T Sample size=8 1
% (d) 8 33.5000
Duncan © 8 36.7500
(b) 8 39.0000
(a) 8 43.1250
Significant 521

Where:

(One) NOF for NEW(2) algorithm when n=1000
(b) NOF for NEW(1) algorithm when n=1000
(c) NOF for PARTAN algorithm when n=1000
(d) NOF for CG algorithm when n=1000

110

100 1

90 9

80 4

70 o

Mean NOF 1

60 |

1.00 2.00

3.00 4.00

Figure (1) represents Table (3)
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44

42 4

40 4

38 1

36 4

34 4

Mean NOF4

32 )

Figure (2) represents Table (4)

Mean NOF2
®

Figure (3) represents Table (5)
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Figure (4) represent Table (6)
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11. Appendix:
The unconstrained problems used are the following:
1- Generalized Edgar of Himmel function:

£ =S My~ 2)* +(yy — 2222 +(xy, +1)%]

x=(1,0;...)".
2-Generalized Powell function:

nl4

f= Z[‘x4i—3 _10)(41'—2)2 +5(x,;, _x41')2 + (X4, _2x4i—1)4 +10(x,; 5 _x41')4]
i=1

x=(3,-1,0,1;...)"
3- Generalized Shallow function:

£ = 00—+ (-0
x=(-2;...)"

4- Generalized Tri-diagonal function:
f= Z[i(zxi - xi—l)z]
i=2

X():(l o .)T
5- Generalized Wood function:
nl4

S = 2[100()%72 - XZH ) +(1- X4i3 )’ + 90(x,; — xii—l ) +(1- xi‘—l )* +10.1
i=2

xe=(-3,-1,-3,-1;..)"
6- Generalized Dixon function:
n n—1
f= Z,[(l—xl)2 +(1-x,)° +Z[(xf -x)’]

i=1
xe=(-1;...)"
7- Generalized Rosenbrock function:
nl2

/= Z[IOO(XZI‘ - x22i—1)2 +(1+ x2i71)2
i=2

xe=(-1.2,1;..)"
8- Sum of quartics function:

f= i[zxi _xi—]]2
xe=(1;...)"
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