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Abstract: 
In the present work a numerical study for the effect of magneto-hydrodynamic (MHD) 

mixed convection flow in a vertical lid-driven square enclosure including a horizontal heat 

conducting semi circular cylinders on the upper and lower surfaces with Joule heating has been 

performed. The horizontal walls are partially insulated. The right vertical wall was maintained at 

uniform temperature higher than the left moving wall. 

The transport equations along with appropriate boundary conditions are first transformed 

into non-dimensional form. The resulting non-linear system of partial differential equations are 

solved numerically employing the finite element formulation based on the Galerkin
'
s method.  

The computation is carried out for a wide range of relevant parameters. Parametric studies of 

the fluid flow and heat transfer are performed for the effects of variation of magnetic parameter 

(Hartmann number  Ha), Joule heating parameter (J), Richardson number (Ri) and Reynolds 

number (Re). Results are presented for the above parameters effects on the contours of 

streamlines and isotherms. Besides, the heat transfer rate in terms of the local and average 

Nusselt number (Nu & Nuav.) at the hot wall and average temperature of the fluid in the 

enclosure are offered for the mentioned parametric values. A two-dimensional laminar viscous 

non-compressible fluid flow was considered. The results indicated that the Hartmann number 

(Ha), Richardson number (Ri) and Reynolds number (Re) have strong influence on the 

streamlines and isotherms. On the other hand, Joule heating parameter (J) has little effect on the 

streamlines patterns, but a significant effect on isotherms is observed. Finally, the obtained 

results demonstrate that the mentioned parameters have significant effect on the local and 

average Nusselt number at the hot wall and the average temperature of the fluid in the enclosure. 

The validity of the current numerical code used is ascertained by comparing the results with 

previously published results under the same conditions.    
 

  الخلاصة

اّداص دساست ػذدٝت ىخأثٞش اىحَو اىحشاسٛ اىَخخيظ اىََغْظ  داخو حٞض ٍشبغ رٗ خذاس ػَ٘دٛ أٝسش  اىؼَوحٌ فٜ ٕزا 

ٍخحشك ٗٝحخ٘ٛ اىحٞض  ّصف اسط٘اّت دائشٝت ٍ٘صيت حشاسٝا ػيٚ مو ٍِ سطحٞٔ اىؼي٘ٛ ٗاىسفيٜ ٗاىدذساُ الافقٞت  ىٔ 

 ئٞا. حٌ ابقاء سطح اىدذاس الأَِٝ ىيحٞض بذسخت حشاسة ٍْخظَت أػيٚ ٍِ دسخت حشاسة اىسطح  اىَخحشك  الأٝسش. ٍؼضٗىت خض

 حٌ اىخٜ اىَؼادلاث اىحامَت اىحذٗدٝت ٗ اىحالاث ِػ ىيخؼبٞش( non-dimensional form)اىلابؼذٝت  طشٝقتاىً ااسخخذحٌ 

 Galerkin's) ةدحذَاىيؼْاصش ى (Galerkin)طشٝقت  خبشٝت باسخخذاً دلاثاٍِ ٍؼادلاث حفاضيٞت إىٚ ٍؼ ٖاحح٘ٝي حيٖا بؼذ

Finite element method .) 

 حٌ إخشاء اىحساباث ىَذٙ ٗاسغ ٍِ اىؼ٘اٍو ٗثٞقت اىصيت باىَ٘ض٘ع. دساست حشمت اىَائغ ٗاّخقاه اىحشاسة حٌ اّداصٕا   

ٗػذد سْٝ٘ىذص  (Ri) خشاسدسُ٘ػذد سٝ ٗ (J)ىيخسخِٞ  ٍؼاٍو خ٘ه ٗ  Ha)ىخأثٞش حغٞٞش ٍؼاٍو اىخَغْظ )ػذد ٕاسحَِ

.(Re)  ٓػيٚ مو ٍِ ٕٞنو اىدشٝاُ ٗ ح٘صٝغ دسخت اىحشاسة بالإضافت إىٚ اّخقاه اىحشاسة قذٍج اىْخائح ىخأثٞش اىؼ٘اٍو أػلا

اىَائغ لا  ػيٚ فشض أٍُخَثلا بؼذد ّسيج اىنيٜ ٗاىَ٘ضؼٜ ػْذ اىدذاس اىساخِ ٍٗؼذه دسخت حشاسة اىَائغ داخو اىحٞض, 

ٝخأثش بَقذاس مبٞش ٕٞنو اىدشٝاُ ٗ ح٘صٝغ دسخت اىحشاسة إُ بْٞج اىْخائح اّضغاطٜ ٗىضج ٗاُ اىدشٝاُ طباقٜ ثْائٜ الأبؼاد. 

, بَْٞا ماُ ْٕاك حأثٞش طفٞف ىَؼاٍو خ٘ه ىيخسخِٞ ػيٚ ػذد سٝخشاسدسُ٘ ٗػذد سْٝ٘ىذصحغٞش ػذد ٕاسحَِ ٗ مزىل  تّخٞد

اىؼ٘اٍو اىَشاس اىٖٞا اػلآ ىٖا حاثٞش  ٗخذ إُ ٗقذ شٓ ػيٚ ح٘صٝغ دسخت اىحشاسة ٝبقٚ رٗ إَٔٞت أٝضا. ٕٞنو اىدشٝاُ الا أُ حأثٞ

حٌ حأمٞذ صحت . ٍؼذه دسخت حشاسة اىَائغ داخو اىحٞض , ٗاىنيٜ ٗ اىَ٘ضؼٜ ػْذ اىدذاس اىساخِػذد ّسيج  مبٞش ٌٍٖٗ ػيٚ

   ح اىبح٘د اىسابقت )ححج ّفس اىظشٗف(. اىطشٝقت اىؼذدٝت اىَسخخذٍت بَقاسّت اىْخائح ٍغ احذ ّخائ
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1-Introduction: 
 

Mixed convection in lid-driven cavities are complex problems  due to shear flow caused by the 

movement of the moving wall and buoyancy induced flow. The influence of the magnetic field on 

the convective heat transfer and the mixed  convection flow of the fluid are of great importance in 

engineering applications. A combined free and forced convection flow of an electrically conducting 

fluid in a cavity or in the presence of magnetic field is of special technical significance  as it occur 

in many industrial applications such as cooling of nuclear reactors, electronic packages, micro- 

electronic devices, design of solar collectors, thermal design of buildings and air conditioning. 

In the last several decades, there has been considerable interest in studying the influence of 

magnetic fields on the fluid flow dynamics and performance of various processes employing 

electrically conducting fluids. Some of these studies considered hydro-magnetic flows and heat 

transfer in many different geometries, for example, Garandet et al. (1992) [1] studied natural 

convection heat transfer in a rectangular enclosure with a transverse magnetic field. Rudraiah et al 

(1995) [2] investigated the effect of surface tension on the buoyancy driven flow of an electrically 

conducting fluid in a rectangular cavity in the presence of a vertical transverse magnetic field to see 

how this force damps hydrodynamic movements. At the same time Rudraiah et al (1995) [3] also 

studied the effect of magnetic field on free convection in a rectangular enclosure, they indicate that 

the average Nusselt number decreases with an increase in the Hartmann number and the Nusselt 

number approaches unity for a strong magnetic field. This shows that the convection in the 

enclosure is suppressed due to the introduction of the magnetic field.  Khanafer and Chamkha 

(1998) [4] studied numerically hydro-magnetic natural convection heat transfer in an inclined 

square enclosure filled with a fluid saturated porous medium with heat generation. Their results 

indicate that the effects of magnetic field and the porous medium are found to reduce the heat 

transfer and fluid circulation within the cavity. Chamkha (2003) [5], made a numerical work on 

hydro-magnetic combined convection flow in a lid-driven cavity with internal heat generation using 

finite volume method. It is found that the presence of the internal heat generation leads to decreases 

the average Nusselt number significantly for aiding flow and to increase it for opposing flow. 

Kakarantzas et al. (2009) [6] studied magneto-hydrodynamic natural convection in a vertical 

cylindrical cavity with a sinusoidal upper wall temperature. Their results show that the increase of 

Rayleigh number promotes heat transfer by convection while the increase of Hartmann number 

favored heat conduction. Rahman  et al. (2009) [7], studied the effect of a heat conducting 

horizontal circular cylinder positioned at the center of a lid driven enclosure on MHD mixed 

convection a long with joule heating. The numerical results indicated that the Hartman number, 

Reynolds number and Richardson number had strong effect on the streamlines, isotherms, average 

Nusselt number at the hot wall and average temperature of the fluid in the enclosure. Recently, 

Rahman et al.(2010) [8], investigated numerically, employing Galerkin weighted residual method of 

finite element formulation, the conjugate effect of joule heating and magnato-hydrodynamics mixed 

convection in an obstructed lid-driven square cavity. They showed buoyancy-induced vortex in the 

streamlines increases and thermal layer near the cold surface become thin and concentrated with 

increasing Reynolds number. Sivasakaran et al.(2011) [9], numerically studied the mixed 

convection in a square cavity  of sinusoidal boundary temperatures at the side walls with adiabatic 

horizontal walls, in the presence of magnetic field. They found that the flow behavior and heat 

transfer rate are affected by the presence of magnetic field.     

In the light of the above literature, it has been pointed out that  there is no significant attention 

has been paid to the hydro-magnetic combined convection flow in a lid driven enclosures in 

presence of an obstacles like semi circular cylinders. The objective of the present study is to analyze 

the effect of magneto-hydrodynamic mixed convection flow in a vertical lid-driven square 

enclosure including a heat conducting horizontal semi circular cylinders on the upper and lower 

surfaces a long with joule heating using finite element method. In the current investigation, the 

transport phenomena will be explored by utilizing several dimensionless parameters. These 

parameters are the Hartmann number (Ha), Richardson number (Ri), Reynolds number (Re), Joule 
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heating parameter (J) and solid to fluid thermal conductivity ratio (K). The Hartmann numbers are 

considered from (0.0 to 40.0), Richardson number is varied from (0.0 to 91.0) to simulate forced 

and mixed convection dominated flow in the enclosure, while the values of Reynolds number and 

Joule heating parameter varied from (911 to 500) and (0.0 to 2.5) respectively. The study was 

achieved at constant solid to fluid thermal conductivity ratio (K=5.0) and Prandtl number (Pr=0.71). 

Detailed results are presented in the form of stream-lines, isotherms, local Nusselt number (Nu), 

average Nusselt number (Nuav.) and average temperature in the enclosure (ζav.).  
 

2- Analysis 
 

The physical model and co-ordinate system considered in this study is illustrated in figure (1a). 

It is a two-dimensional square lid-driven enclosure of length (L), filled with an electrically 

conducting fluid with a heat conducting horizontal semi circular solid cylinders of diameter 

(D=0.2), placed somewhere (Lx/2) on the upper and lower surfaces of the enclosure. The left wall of 

the enclosure is allowed to move upward in its own plane at a constant velocity (Uo). Horizontal 

walls of the enclosure are partially insulated while the vertical walls are isothermal but the 

temperature of the right wall is higher than that of the left wall. The fluid is permeated by a uniform 

external magnetic field (Bo), the resulting convective flow is governed  by the combined mechanism 

of driven (shear and buoyancy) force and the electromagnetic retarding force. All the physical 

properties of the fluid are assumed to be constant except density variation in the body force term of 

the momentum equation according to the Boussinesq approximation. Further, attention is focused 

on the effect of Hartmann number (Ha), Richardson number (Ri), Reynolds number (Re) and Joule 

heating parameter (J) on the flow and thermal fields as well as heat transfer of the system. 

Rradiation and viscous dissipation are assumed to be negligible. All solid boundaries are assumed 

to be rigid (i.e. no-slip walls).  
 

2.1-Mathematical formulation 
The governing equations is considered to be two-dimensional laminar, incompressible and 

steady state. The electrically conducting fluid is assumed to be Newtonian fluid with constant fluid 

properties except for the density in the buoyancy force term (i.e Boussinesq approximation). In 

magneto fluid mechanics, the motion of fluid is governed by the conservation equations of mass, 

momentum and energy. The continuity and u-momentum equations remain unchanged, but the 

equation of v-momentum is modified from Maxwell
'
s field equation and Ohm

'
s law. Also, the 

energy equation is modified due to the joule heating considered in the enclosure [7].      

The governing equations in dimensionless form can be obtained via introducing the 

dimensionless variables as follows: 
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The non-dimensional parameters in the preceding equations are the Reynolds number, Grashof 

number, Prandtl number, Richardson number , square of the Hartmann number, the Joule heating 

parameter and solid fluid thermal conductivity ratio which are defined respectively  as follows: 

 

Re = 
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 ,     
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  . 

 

2.2 Boundary Conditions 
      The dimensionless form of the boundary conditions can be written as: 

                                     at the left vertical wall. 

                                       at the right vertical wall. 

 
                                      at the semi cylinders surface.   

                
   

  
                  at the top and bottom walls except that for the semi circular      

                                                     cylinders parts. 

(
   

   
)       (

    

   
)                        at the fluid-solid interface. 

     Where (n) is the non-dimensional distances either along X or Y direction acting normal to the 

surface.                       
      

2.3- Numerical Solution 

The governing differential equations along with the boundary conditions has been solved by the 

Galerkin finite element method. The continuity equation (1) will be used as a constraint due to 

satisfy the mass conservation and this restriction can be used to compute the pressure distribution. 

To solve equations (2) - (5), the Penalty finite element method is used where the pressure P is 

eliminated by a penalty parameter (γ) [10]. The method under study here employ penalty schemes 

to handle the incompressibility condition, (div u=0). Such methods have received considerable 

attention in the engineering literature as it provide a manner for eliminating the pressure term from 

the formulation and reducing the number of unknowns [11]. So, the incompressibility criteria given 

by equation (1) results in: 
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The continuity equation is fulfilled for large values of (γ) using equation (6) the momentum 

equations (2-3) become: 
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Approximating the unknown variables, velocity (U, V) and temperature, (ζ,   ) using basis set 

*  +   
  as: 
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Then the Galerkin finite element method yields the following non-linear residual corresponding to 

the equations (4,5,7 and 8) respectively at nodes of internal domain A. 
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Bi-quadratic basis functions has been used to approximate the unknown field variables and the 

integration done by the three point Gaussian in the residual equations. The matrix vector notation of 

the residuals, i.e., Equations (10)-(13) can be written as: 

,      -                                                                  ……………………….(14) 

Where (w & F) denotes the unknown vector and known vector respectively, (C1 & C2) are the 

coefficient matrices obtained from the Jacobian of the residuals. The value of the penalty parameter 

(γ) is taken (10
8
) [12] and [13]. To solve the sets of the nonlinear equations in the form of a matrix, 

the Newton-Raphson method has been used to solve the non-linear residual equations (10-13) and 

obtaining the coefficients of the expansion in equation (9). At each iteration, the linear system of 

equations of the order (3N   3N):     

    (  ),       -   (  )   …...…(15) 

Is solved, where (n) is the iterative index, J(a
n
)  Jacobian matrix contains the derivatives of the 

residual equations and  (  ) is the vector of residuals. The iterative process is finished with the 

convergence criterion [∑.  
( )
/
 

]
   

  10
-5

. 

A nine node bi-quadratic elements with each element mapped using iso-parametric mapping from 

(X-Y) to a unit square (ξ-ε) domain has been used, (see figure 1b and Appendix A) [13]. 

Subsequently, the domain integrals in the residual equations are obtained using nine node bi-

quadratic basis functions in (ξ-ε) as: 

  ∑     
 
   (   )     and      ∑     

 
   (   )    ……………..(16) . 

Where Фi(ξ,ε) are the local bi-quadratic basis functions on the (ξ,ε) domain and (Xi ,Yi) are the 

(X,Y) coordinates of the (i) nodal points, (see Appendix A). The integrals in equations (10-13) were 

obtained in (ξ-ε) domain using the following transformation: 
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where:           
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2.4 The stream function 

     The stream function () for two dimensional flows is obtained from velocity components (U and 

V). The relationships between stream function () and velocity components are: 

  
  

   
                        and                     

  

   
 ………………………..(20) 

Differentiate  the above two relations with respect to Y and X respectively and add both sides, the 

following relation can be obtained: 
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Approximate the stream function () using the basis function set (Ф) as   ∑ 
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the relation for U and V from equation (9), the Galerkin finite element method yields the following 

residual equation for eq. (21): 
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Since, the no slip condition is valid at all boundaries of the enclosure, hence  will be zero at all 

grid points on boundaries. The bi-quadratics basis function is used to evaluate the  integrals in 

equation (22) and then, the stream functions are obtained by solving the (N) linear residual equation 

(22). 
 

2.5 Nusselt number and average temperature 

      The local Nusselt number is defined by: 

     
   

   
                                                    …………………………..(23) 

Where (n) denotes the normal direction on a plane. The normal derivative is obtained by the bi-

quadratics basis set in (ξ-ε) domain with the help of using equations (16,17 and 18). The local 

Nusselt number at the right side wall is defined as: 

    ∑   
    

   

 
                                           …………………………….(24) 

The average Nusselt number (  av.) at the right side wall is: 

      ∫      
 

 
                                            ……………………………(25) 

     The average temperature of the fluid in the enclosure is defined by 

 (     ∫
 

 ̅
 d ̅)                                                …………………………….(26) 

where ( ̅) is the enclosure volume. 
 

3-Numerical Test: 
     The computational domain in (ξ-ε) coordinates (see Appendix A) consist of 25 25 bi-quadratic 

elements which correspond to 51 51 grid points which are selected after performing several tests 

using successively sized grids, 41 41 to 81 81 to see the effect of grid size on the accuracy of 

results. It is seen that the bi-quadratic elements with lesser number of nodes easily capture the 

variations of the field variables. The computational grid in the main domain is generated by 

mapping the non-uniform domain elements into a square domain elements in (ξ-ε) coordinate 

system as shown in fig. 1b and the procedure is illustrated in Appendix A. A program in Fortran 

language was built to find the results.     
 

4-Numerical Code Validation: 
     The computational model is verified by comparison with the results of the numerical solution 

reported by Chamkhia [5], which is based on finite volume scheme. The results of the comparisons 

are listed in the table below for the average Nusselt number (Nuav.). The comparisons show close 

proximity in the predictions made between the two different solutions. These validation cases 

ascertain the confidence in the numerical results of the present work, so it can be decided that the 

current code can be used to predict the flow characteristics of the present study. 
 

The effect of (Ha) on (Nuav). for Gr=100, Pr=0.71 and Re=1000. 

Parameter (Ha) Present study-(Nuav.) Chamkhia [5]-(Nuav.) Error(%) 

0.0 2.2071 2.2692 2.73 

10.0 2.1992 2.1050 4.47 

20.0 1.7171 1.6472 4.24 

50.0 1.0013 0.9164 9.26 
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5-Results and Discussion: 
     The results are carried out for a steady-state mixed convection in a square enclosure with 

horizontal semi circular cylinders on the upper and lower surfaces. In all cases the working fluid is 

air, the Prandtl number has been taken as (Pr=0.71). The variation of Hartmann number (Ha), Joule 

heating parameter (J), Reynolds number (Re) and Richardson number (Ri) on the fluid flow and 

heat transfer characteristics have been studied. The results are presented in terms of streamlines and 

isotherm patterns. The variation of local and average Nusselt number (Nu and Nuav.) on the hot 

wall, and average temperature (ζav.) in the enclosure are also studied. 
 

5.1-The effect of Hartmann number     
     Fig. (2) depicts the effect of Hartmann number (Ha) on the flow and temperature pattern at 

Re=100, Ri=1.0 and J=1.0. In figs. (2) (a1 to e1), an intrinsic effect here is that the streamlines are 

interrupted by the left driven lid. It can be observed that the streamlines values decreases with 

increasing Hartmann number which means that the electromagnetic retarding force resulting from 

the magnetic field strongly affect the flow field, and there developed one vortex. The vortex with 

clockwise direction has developed near the left surface, since the left lid is driven from the bottom 

to the top. In the right part of the enclosure the streamlines are deflected downward due to effect of 

increasing Hartmann number despite of presence of shear and buoyancy forces which causes the 

vortices to rise up. The effects of Hartmann number (Ha) on the isotherms are shown in                        

figs. 2 (a2-e2). From these figures it can be seen that the isotherms are concentrated near the lower 

half of the right vertical hot wall and become nearly parallel to its surface at that part forming a 

thermal boundary layer, which means that most of heat transfer process is carried out by conduction 

at this part. Also it can be seen that a plume starts to appear on the top side in the enclosure. The 

plume near the right side of the upper semi circular cylinder gradually increases forming another 

thermal boundary layer and near the left side gradually decreases. Generally, significant deviations 

of isothermal lines are observed around the semi circular cylinder that mounted at the top surface in 

the enclosure due to the buoyancy induced vortex.  

     In order to evaluate the effect of the magnetic fields on the heat transfer rate along the hot 

vertical right wall, local and average Nusselt number are plotted as a function of (Y) and 

Richardson number (Ri), respectively as shown in Fig. (3) (a & b). In Fig. (3-a), it is observed that 

local Nusselt number decreases with increasing of (Ha), indicating that with increasing the 

Hartmann number the heat transfer rate decreases.  

     The maximum local Nusselt number distribution occur nearly at the midpoint of the lower half  

of the right vertical hot wall due to high heat transfer rate at this portion, as the thermal boundary 

layer thickness decreases, and this is revealed by the denser concentration of isotherms near this 

portion as shown in figure 2 (a2-e2). While the local Nusselt number decreases  at the upper half  

due to low heat transfer rate as the isotherm lines deviate away from the surface. In Fig. (3-b), it is 

observed that average Nusselt number increases with increasing of Richardson number (Ri) and it is 

always smaller for bigger values of Hartmann number (Ha). 

    Another evaluation is that of Fig. (3-c), which reveal that average fluid temperature in the 

enclosure is lower for large values of Hartmann number (Ha). It is observed that for Ha=0.0 and 10, 

the average temperature increases with the increase of (Ri), but for Ha=20,30 and 40 it shows an 

oscillatory behavior . 
 

5.2-The effect of Joule heating parameter 

     Fig. 4 (a1-e1) and (a2-e2) show the distribution of the streamlines and isotherms respectively, for 

(J=0,1,1.5,2 &2.5)  at Ri=1.0, Re=100 and Ha=10. It can be observed that the circulation of the 

flow in the enclosure shows one overall clockwise rotating vortex as shown in fig. 4 (a1-e1). For 

(J=0 and 1.0) the pattern of the streamlines are nearly identical and show a small downward 

deviation at the right part of the enclosure, while for (J=1.5, 2 and 2.5) the pattern still identical 
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with an increasing values of streamlines as (J) increases. Also, a careful observation indicates that 

the core of the vortices increases with increasing value of the Joule heating parameter (J). 

   Corresponding temperature distribution can be seen in figs. 4 (a2-e2). From these figures it can be 

seen that the isotherms are nearly parallel to the lower part of the vertical hot wall and start to 

deviate away at the upper part with increasing (J), (i.e J >1) and its distribution become more spread 

inside the enclosure at (J=2.5). Also we can observe that the isotherm lines near the right lower 

corner gradually decreases with increasing values of (J) ,as it spread away from the hot wall to 

affect a large area and a thick thermal boundary is seen near this corner of the enclosure for the 

large value of (J=2.5). 

    The local Nusselt number (Nu) at the vertical hot wall of the enclosure as a function of (Y) for 

the five different Joule heating parameters is shown in fig. 5 (a). it is shown that the local Nusselt 

number increases with increment of (Y) up to nearly the midpoint of the lower half of the vertical 

hot wall (except that for j=0.0,  as it precede further), then it will steep to a lower value with 

increasing of (Y). This behavior is related to the distribution of isotherm lines at the vertical right 

wall. It is also noted that local Nusselt number is always higher for smaller Joule heating parameter 

(J). Another examination of  fig. 5 (a) does reveal that up to (Y=0.2), local Nusselt number is lower 

for (J=0.0), except that for( j=2.5).  

    The average Nusselt number at the hot wall as a function of Richardson number (Ri) is plotted in 

fig. 5 (b). it is observed that for (J=0.0 and 1.0) the average Nusselt number shows a little 

oscillatory behavior. It is also noted that its value increases with (Ri) and is also higher for smaller 

Joule heating parameter (J). 

   Fig. 5 (c) illustrates the average temperature of the fluid in the enclosure as a function of 

Richardson number (Ri). It is observed that for J=0.0, the average temperature decreases with 

increasing of (Ri) , but for J=1.0 and 1.5 increases and for J=2.0 and 2.5 it shows a small oscillatory 

behavior with the increase of (Ri) and it is always high for higher Joule heating parameter (J). 
 

5.3-The effect of Reynolds number  

     Fig. 6 (a1-e1) and (a2-e2) illustrates the distribution of the streamlines and isotherms for (Re=100, 

200, 300, 400 and 500)  at Ri=1.0, J=1.0 and Ha=10, respectively. For a small Reynolds number, 

(Re=100), there exists one clockwise vortex occupying the enclosure, as shown in fig. 6 (a1). When 

Reynolds number increases (i.e. Re=200), a small clockwise cell  

start to develop near the right vertical hot wall as shown in fig. 6 (b1), and this cell is fully 

developed for bigger values of Reynolds number (i.e, Re>200), as illustrated in fig. 6 (c1-e1). This 

implies that fluid is well mixed in the enclosure at high Reynolds number. With the increasing 

values of Reynolds number, (Re=300, 400 and 500) the size of the clockwise cell adjacent to the 

right vertical hot wall gradually increases and pushing up the main clockwise vortex to the upper 

left corner of the enclosure and that is due to increase of shear force at the driven lid.  

     Corresponding temperature distributions are seen in figs. 6 (a2-e2), from these figures it can be 

seen that isothermal lines adjacent to the hot right vertical wall are nearly parallel to this wall at the 

lower half which is similar to conduction-like distribution. Then, isothermal lines start to turn back 

from the hot wall at the upper half due to the effect of the convective current. A way from the hot 

wall, convective distribution of the isothermal lines occurs throughout the enclosure mostly at the 

upper half due to the strong influence of the convective currents.   

     The effect of Reynolds number on the local and average Nusselt number as a function of (Y) and 

Richardson number (Ri), respectively, at the right hot wall for the studied values of Reynolds 

numbers are displayed in figure (7- a & b). From these figures, it is seen that, as we have mentioned 

previously, the local Nusselt number increases with (Y) up to nearly the midpoint of the lower half 

of the vertical hot wall, then it will steep to a lower value. The average Nusselt number is highly 

increases with Richardson number up to (Ri=4.0), but then it will continue with a lower rate .It is 

also noting that local and average Nusselt number are always upper for higher values of Reynolds 

number. Fig. (7-c) shows the average temperature in the enclosure as a function of Richardson 

number for the specified Reynolds numbers. It is observed that the average temperature for different 
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Reynolds number shows a higher rate of increment with increasing of Richardson number. On the 

other hand,  the average temperature is higher  for bigger values of Reynolds number.  
  

5.4-The effect of Richardson number 

     The response of the streamlines and isotherms patterns to the variation of Richardson number is 

explained in fig. (8), for Re=100, J=1.0 and Ha=10.0. It is seen in fig. (8-a1) that for Ri=0.0 (pure 

forced convection), there exists only one clockwise vortex interrupted by the driven lid, leading to a 

core of half an egg shape located near the centre of the left driven wall of the enclosure. From the 

fig. (8-b1) it can be seen easily that for (Ri=1.0), the clockwise vortex becomes large in size and 

occupying the maximum part of the enclosure and its core is shifted up and away from the left 

driven wall due to the dominating influence of the buoyancy force. From figs. (8-c1, d1 and e1) it 

can observe that the core of the clockwise vortex becomes wider and a small cell starts to grow 

slowly near the right hot wall and becomes fully developed with further increasing values of the 

Richardson number, which leads also to increase the strength of these eddies. These effects of 

Richardson number on the flow field are reasonable since increasing values of (Ri) assists buoyancy 

forces. 

    The influence of Richardson number on the isothermal lines patterns are presented in                          

fig. 8 (a2-e2). From the fig. 8 (a2) it can be seen that the isothermal lines are nearly parallel to the 

right vertical heated surface for Ri=0.0, whereas for further change of Ri to (1.0, 4.0, 8.0 and 10.0), 

it can be seen from figs. 8 (b2- e2) that the isothermal lines starts to deviate from the right surface on 

its upper part and become parabolic in shape. From these figures it can ascertain that increasing the 

buoyancy force as a result of increasing Richardson number, causes the isothermal lines to deform 

increasingly and a thermal boundary layer form near the hot surface.  
 

5.5-Horizontal and Vertical Velocity Components at the mid section of the Enclosure: 

      Figures 9(a-h), display the effect of Hartmann number (Ha), Joule heating parameter (J), 

Reynolds number (Re) and Richardson number (Ri) on the horizontal and vertical velocity 

components at the enclosure-mid section. It is clear that the horizontal and vertical velocity 

components depends strongly on the studied parameters and its variation affect the streamlines 

pattern. The vertical velocity component (V) vary with (Y) and approach its maximum value at 

nearly the mid-point of the upper half of the enclosure leading to lift and condense the streamlines 

at the upper half and that is reveals clearly from the dense concentration of the streamlines at that 

part as shown in figures (2, 4, 6 & 8). In addition, increase in both Ha and Re (at Ha=10) lead to 

decrease in the vertical velocity component (V) due to the dominating effect of Hartmann  number 

(Ha). The results also show that the vertical velocity component increases with increasing values of 

J and Ri. The horizontal velocity component (U) show the same trend of variation  as above at the 

lower part of the enclosure but there is a reverse trend of variation with (Y) starts nearly at (Y=0.6) 

where the main vortex exist, except that for the effect of Ri as it occur at nearly (Y=0.7) due to the 

effect of buoyancy force. At (Ri=0.), the values of (U&V≈0) are nearly zero at the mid section of 

the enclosure and that leads to fix the position of the main vortex as shown in figure (8-a). 
 

6- Conclusions: 
     In the present numerical study the effect of magnetic parameter Hartmann number (Ha), Joule 

heating parameter (J), Richardson number (Ri) and Reynolds number (Re) on mixed convection 

flow in a vertical lid-driven square enclosure with a heat conducting horizontal semi circular 

cylinders has been performed. From the present investigations we may conclude that the heat 

transfer and the flow characteristics depend strongly upon the strength of the magnetic field. A 

significant effect of Hartmann number on the stream lines and isotherms is observed. The overall 

heat transfer decreases with the increasing of (Ha) and the lowest average temperature in the 

enclosure is found for Ha=40.0. 

      A little effect of the joule heating parameter (J) on the stream lines is observed, but significant 

effect on isotherms is noticed. The overall heat transfer decreases with the increase of (J) and the 

lowest average temperature in the enclosure is found for J=0.0. 
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      Reynolds number strongly affects the stream lines and isotherms patterns. Higher heat transfer 

rates is observed for large Reynolds number, and average temperature in the enclosure become also 

higher with increment of (Re). 

      Buoyancy effect parameter (Ri) significantly affects the flow structure and heat transfer rates 

inside the enclosure.  

      The horizontal and vertical velocity components strongly affected by the above mentioned  

parameters and its variation affect the streamlines pattern and vortex position. 

     The result of the present work for the particular case (of changing average Nusselt number with 

Ha) at a specified boundary conditions is in excellent agreement with those of the already published 

work by ref. [5] at the same boundary conditions. 
 

 

Nomenclature: 
 

Bo Magnetic induction (Wb/m
2
). Cp Specific heat at constant pressure 

(kJ/kg.
o
K). 

c,h

,s 

Subscripts denotes cold, hot and 

solid. 

D Dimensionless diameter of the semi 

cylinder. 

g Gravitational acceleration, (m/s
2
). Gr Grashof number (gβe(Th-Tc)  H

3
/ν

2
). 

Ha Hartmann number. h Convection heat transfer coefficient 

(W/m
2
.
o
K). 

J Joule heating parameter. K Solid fluid  thermal conductivity ratio. 

kf Thermal conductivity of fluid 

(W/m.
o
K). 

ks Thermal conductivity of semi cylinder 

(W/m.
o
K). 

L Enclosure length.(m) Nu Nusselt number. 

P Dimensionless pressure. Pr Prandtl number (ν/αe). 

Re Reynolds number (UoH/ν). Ri Richardson number (Gr/Re
2
). 

U,

V 

Dimensionless velocities in X &Y-

directions.   

Uo Dimensionless lid velocity. 

u,v Velocities in x & y-directions, (m/s).  ̅ Enclosure volume (m
3
). 

x,y Cartesian coordinates. X,Y Dimensionless Cartesian coordinates. 

α Effective thermal diffusivity of fluid. 

(m
2
/s). 

β Coefficient of thermal expansion of 

fluid (K
-1

). 

 ,  Kinematic and dynamic viscosity of 

fluid (m
2
/s). 

ρ Fluid density (kg/m
3
). 

 Dimensionless temperature         

[(T-Tc)/(Th-Tc)]. 
  Fluid electrical thermal conductivity  

(Ω
-1

m
-1

). 

 

Appendix A 

    The name iso-parametric derives from the fact that the same parametric function describing the 

geometry may be used for interpolating spatial variable within an element. Fig. 1b shows an 

element with non-uniform shape mapped to a square one. The transformations between (X,Y) and 

(δ,ε) coordinates were defined by equation (16). The nine basis functions are: 

 

Ф1=(1-3δ+2δ
2
)(1-3ε+2ε

2
) Ф2=(1-3δ+2δ

2
)(4ε-4ε

2
) 

Ф3=(1-3δ+2δ
2
)(-ε+2ε

2
) Ф4=(-δ+2δ

2
)(1-3ε+2ε

2
) 

Ф5=(-δ+2δ
2
)(4ε-4ε

2
) Ф6=(-δ+2δ

2
)(-ε+2ε

2
) 

Ф7=(4δ-4δ
2
)(1-3ε+2ε

2
) Ф8=(4δ-4δ

2
)(4ε-4ε

2
) 

Ф9=(4δ-4δ
2
)(-ε+2ε

2
)  

 

The above basis functions are used for mapping the non-uniform domain or elements within the 

domain into square domain and also used for the evaluation of the integrals of residuals. 
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Fig.(1b): The mapping of an individual element to a single element in (δ-ε) 

                 coordinate system.            
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.Fig.(2): Streamlines on the left and isotherms on the right for (Ha=0,10,20,30 & 40) 
               while Ri=1.0, Pr=0.71, Re=100 and J=1.0.  
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Fig. (3) : The effect of Hartmann number (Ha) on local, average Nusselt number 

               and average temperature at Pr=0.71, Re=100 & J=1.0.
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.Fig.(4): Streamlines on the left and isotherms on the right for (J=0,1,1.5, 2 & 2.5) 
               while Ri=1.0, Pr=0.71, Re=100 and Ha=10.  
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Fig. (5) : The effect of Joule heating parameter (J) on local, average Nusselt number 
             and average temperature at Pr=0.71, Re=100 & Ha=10. 
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.Fig.(6): Streamlines on the left and isotherms on the right for (Re=100,200,300,400 & 500) 
               while Pr=0.71, Ri=1.0 , J=1.0, and Ha=10.  
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Fig. (7) : The effect of Reynolds number on local, average Nusselt number 
              and average temperature at Pr=0.71, Ha=10 & J=1.0.
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.Fig.(8): Streamlines on the left and isotherms on the right for (Ri=0, 1, 4, 8 & 10) 
               while Pr=0.71, Re=100 , J=1.0, and Ha=10.  
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 Figure (9): Horizontal and Vertical velocity components at the enclosure mid  

                    section (X=0.5) for different values of dimensionless parameters. 
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