$$(NJC)$$

$$(NJC)$$

$$(NJC)$$

$$(2006 / 3 / 4) (2005 / 4 / 6)$$

$$- -\overline{4} \ 4 - -\overline{3} \ 3$$

$$(DBTBP) [-\overline{N}]$$

$$Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II).$$

$$- (C.H.N)$$

$$(k_f)$$

$$(PH)$$

$$Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II)$$

$$Cr(III), Fe(III) [M_2L_2Cl_2]$$

$$[M_2L_2Cl_4] [M_2L_2Cl_4] Cl_2$$

Abstract

This Paper includes preparation and studying of nine new complexes of some transition metals including Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) with 3,3-Di methyl-4,4-bis-[N-benzoyl thiourea]biphenyl (DBTBP) as a bidentate ligand.

The prepared complexes have been characterized by using Infrared spectra, Ultra violet–visible spectra, atomic absorption, elemental analysis (C.H.N), Molar conductivity and Magnetic susceptibility. continues variations methods are used to find structural formula and calculate the value of formation constant (k_f) and finally studying the effect of (PH) on the stability of complexes.

The preparation complexes have been found to have general structural formula $[M_2L_2\ Cl_4]$. [Where $M=Mn(II),\ Co(II),\ Ni(II),\ Zn(II),\ Cd(II),\ Hg(II)]$ and $[M_2L_2Cl_4]Cl_2$ [Where $M=Cr(III),\ Fe(III)]$ and finally $[M_2LCl_4]$ [Where M=Cu(II)].

(24,

23, 22, 20)

(E. Coli) (1,2)
(Proteus
. species)

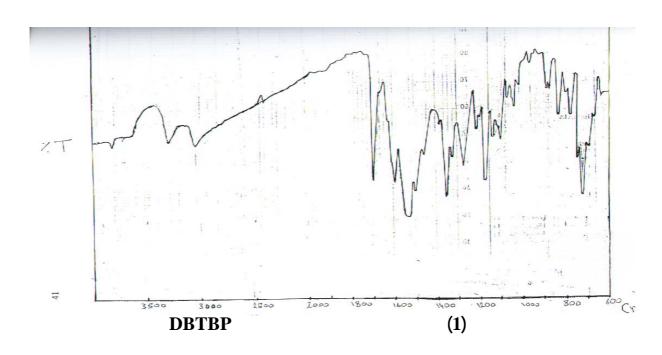
•

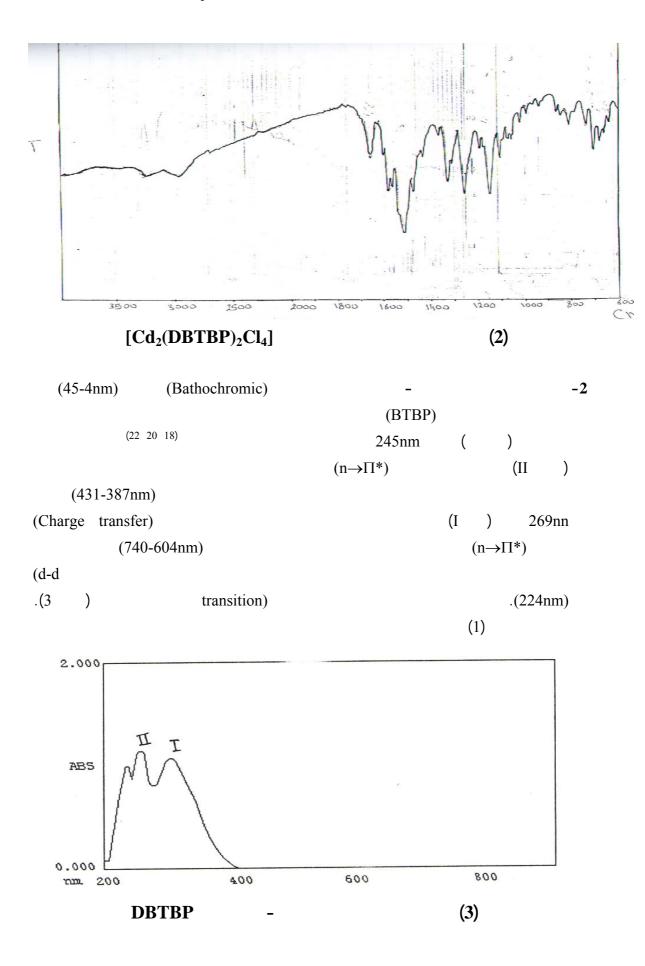
CrCl₃.6H₂O (11) -1 $MnCl_2.4H_2O$ (Coordination Polymers) (12) -2 FeCl₃.6H₂O -3 $CoCl_2.6H_2O\\$ -4 NiCl₂.6H₂O -5 $CuCl_2.2H_2O\\$ -6 $ZnCl_2$ -7 $CdCl_2.2H_2O$ (15-13) -8 $HgCl_2$ -9 (17, 16, 15, 13) (BDH) Benzoyl chloride -10 Ammonium -11 thiocyanate Benzene -12 (12,18)Benzidine -13 O-Tolidine -14 (Fluka)

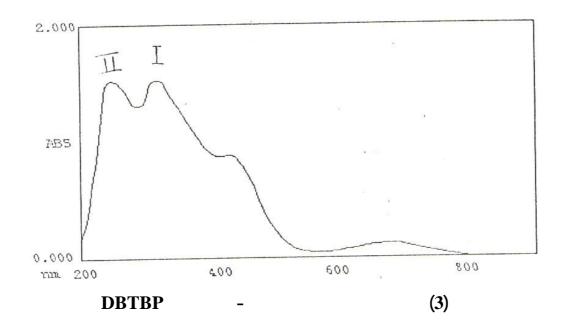
(1)

(DBTBP)

	,		、 /		
Comp. No.	Formula	Yield?	76 Time of reflux (h)	Colour	M.P(C°)
1	$\begin{split} & [Cr_2(DBTBP)_2Cl_4] \ Cl_2 \\ & [Cr_2(C_{30}H_{26}N_4S_2O_2)_2Cl_4]Cl_2 \end{split}$	36	4	Grey	248-246
2	$\begin{split} &[Mn_2(DBTBP)_2Cl_4] \\ &[Mn_2(C_{30}H_{26}N_4S_2O_2)_2Cl_4] \end{split}$	45	6	brown	234-242
3	[Fe ₂ (DBTBP) ₂ Cl ₄]Cl ₂ [Fe ₂ (C ₃₀ H ₂₆ N ₄ S ₂ O ₂) ₂ Cl ₄]Cl ₂	53	-	red-brown	228-230d
4	$\begin{split} & [Co_2(DBTBP)_2Cl_4] \\ & [Co_2(C_{30}H_{26}N_4S_2O_2)_2Cl_4] \end{split}$	49	4	Blue	265-267
5	[Ni ₂ (DBTBP) ₂ Cl ₄] [Ni(C ₃₀ H ₂₆ N ₄ S ₂ O ₂) ₂ Cl ₄]	56	4	Deep green	281-283
6	$\begin{split} & [Cu_2(DBTBP)Cl_4] \\ & [Cu_2(C_{30}H_{26}N_4S_2O_2)Cl_4] \end{split}$	73	-	green	267-270
7	$\begin{split} &[Zn_{2}(DBTBP)_{2}Cl_{4}]\\ &[Zn_{2}(C_{30}H_{26}N_{4}S_{2}O_{2})_{2}Cl_{4}] \end{split}$	45	6	white	275-277
8	$\begin{split} & [Cd_2(DBTBP)_2Cl_4] \\ & [Cd_2(C_{30}H_{26}N_4S_2O_2)_2Cl_4] \end{split}$	54	6	yellow	261-264
9	$\begin{split} &[Hg_{2}(DBTBP)_{2}Cl_{4}] \\ &[Hg_{2}(C_{30}H_{26}N_{4}S_{2}O_{2})_{2}Cl_{4}] \end{split}$	65	-	White	303-305d
(CD2	100	-4			
(SP3-	100 spectrophotometers)				
	· -	-5			: -1
(Hitao	chi U2000spectrophotometer) . 1			(Gallenkar	mp)
(farac	lv	-6		•	-2
(method)				
	.(BRUKER B.M 6) (D)		(atomic absorp	tion)	-3
			*	a A.A. 680 G, fl pectro photome	


```
(°60
                                                                                                               -7
                               DMSO
          (°225-224)
                                                                                        .(Jenway 4070)
                  .( 9.57 89%
                                                              (ORION
                                                                                              PH
                                                                                                               -8
                                                                                       model S.A 720)
                                                 (3
         - N l-
                       - 4 4-
                                            -\overline{3} 3
    4-10×5.5
                        0.3)
                                                                                                                (1
                                        (50)
                                                                                        (Ambelang) (25)
CrCl<sub>3</sub>.6H<sub>2</sub>O,MnCl<sub>3</sub>.4H<sub>2</sub>O, FeCl<sub>3</sub>.6H<sub>2</sub>O,
                                                                                             45)
CoCl<sub>2</sub>.6H<sub>2</sub>O,NiCl<sub>2</sub>.6H<sub>2</sub>O, CuCl<sub>2</sub>.2H<sub>2</sub>O,
ZnCl<sub>2</sub>, CdCl<sub>2</sub>.2H<sub>2</sub>O, HgCl<sub>2</sub>.
                                   4-10 \times 5.5
                                                                                               °110
                                                              100)
                                                              56.5)
                                                                                                         (
                                  (reflux)
                                                                                                         .(
                                                                               6
                                                                                                °120-110
                 - 1.4
                          (1)
                                                              -133
                                                                          (
                                                                                           18
                                                                                                       °137
                                                                      )
                                                 -1
                                                                                  .(%64 =
                                                                      -\overline{4} \ 4- \ -\overline{3} \ 3 \ (2
                                                                                                       - N1
                                                                                   [
                                                                                       (C_{30}H_{26}N_4O_2S_2)
                                                              3, \overline{3} - Di methyl - 4, \overline{4} - bis - [\overline{N} -
                                                              benzoyl thiourea] biphenyl (DBTBP)
                                      (2)
                                                                   4.24) (O-Tolidine)
1.1-
                                      (C=S) -:
                                                                                               30
                                                                                                       (0.02)
                 (<sup>1-</sup> 715_
                                                                     6.52)
                                                                                                             0.04
                                                              24
                  45-15)
                                                                                 )
                                                              -40
```


45-15)


(¹⁻ 1175)

(27-26) (28-26) -:(C(O)N) -1.4 -: (C=O) -1.2 (1-(¹⁻ 1690) 1530) (¹⁻ 40-10) (¹⁻ 10-5) (28) 22 4) .(29 -1.5 -:(N-H) -:(C(S)N)-1.3 (1-3020) (1- 3260)

.

17) -3 (31-30 Cr(III) (Atomic (3.89-Absorption) [(C.H.N) Micro Analysis] Mn(II) 3.67B.M) Fe(III) (5) Co(II) (5.99-5.87B.M) -4 (4.83-4.61B.M)(3.21-3.13B.M) (Ni(II) (DMF) Cu(II) (1.62-13-.37B.M)

(3 1) -**6**

(Continous Variation) . $(K_f) \qquad \qquad (\text{Magnetic} \qquad \qquad -5 \\ \qquad \qquad \qquad \text{Suscebtibility})$ (2:2)

$$(K_{\rm f}) \quad (1:2) \quad Cu(II) \\ .(1.56 \times 103 - 7.8 \times 102) \\ (\textbf{PH Effect} \quad \textbf{-7} \\ \textbf{Study}) \\ (\text{Octahedral}) \quad (\text{PH}) \\ Mn(II), Co(II), Ni(II), \\ Zn(II), Cd(II), Hg(II) \\ [M_2L_2Cl_4] \quad (\text{hypso chromic shift}) \\ Cr(III), Fe(III) \\ [M_2L_2Cl_4]Cl_2 \quad) \text{ PH} \\ (M_2L_2Cl_4]Cl_2 \quad (\text{Tetrahedral}) \\ .(3 \ 2 \ 1) \quad \textbf{-8} \\ \end{cases}$$

(DBTBP) (2)

NO.	COMPOUND	VC=S cm ⁻¹	VC -N cm ⁻¹	$\stackrel{\circ}{\mathcal{V}}{\overset{\circ}{C}}$ -N cm ⁻¹	VC=O cm ⁻¹
	[DBTBP]	715(s)	1175(s)	1530(s)	1690(s)
1	[Cr ₂ (DBTBP) ₂ Cl ₄]Cl ₂	680(m)	1150(s)	1510(b,m)	1670(s) 1700(w)
2	[Mn ₂ (DBTBP) ₂ Cl ₄]	690(m)	1155(s)	1520(b,s)	1670(s)
3	[Fe ₂ (DBTBP) ₂ Cl ₄]Cl ₂	680(w)	1160(s)	1515(b,m)	1660(s)
4	[Co ₂ (DBTBP) ₂ Cl ₄]	690(m)	1160(s)	1525(b,s)	1660(s) 1680(w)
5	[Ni ₂ (DBTBP) ₂ Cl ₄]	690(m)	1170(m)	1540(b,s)	1680(s) 1700(s)
6	[Cu ₂ (DBTBP)Cl ₄]	680(w)	1150(s)	1520(b,m)	1670(m)
7	[Zn ₂ (DBTBP) ₂ Cl ₄]	675(m)	1170(s)	1540(b,s)	1670(s)
8	[Cd ₂ (DBTBP) ₂ Cl ₄]	690(m)	1150(s)	1525(s)	1660(m)
9	[Hg ₂ (DBTBP) ₂ Cl ₄]	680(w)	1155(s)	1520(b,s)	1655(s)

(DBTBP) – (3)

No.	Compound	λ _{max} nm	E _{max} -1 L.mol -1 cm	λ _{max} Nm	ε _{max} -1 L.mol -1 cm	λ _{max} nm	€ _{max} -1 L.mol -1 cm	λ _{max} nm	ε _{max} -1 L.mol -1 cm
	[DBTBP]	245	1159	269	1106				
1	$[Cr_2(DBTBP)_2Cl_4]Cl_2$	244	1272	279	1275	398	274	604	93
2	$[Mn_2(DBTBP)_2Cl_4]$	244	1340	290	1156	402	395		
3	[Fe ₂ (DBTBP) ₂ Cl ₄]Cl ₂	246	1417	299	1290	412	859	669	104
4	$[Co_2(DBTBP)_2Cl_4]$	249	1340	294	1309	419	748	740	429
5	$[Ni_2(DBTBP)_2Cl_4]$	248	1389	294	1370	431	583	628	128
6	[Cu ₂ (DBTBP)Cl ₄]	244	1102	295	1447	408	416		
7	[Zn ₂ (DBTBP) ₂ Cl ₄]	238	1040	294	1192	397	176		
8	[Cd ₂ (DBTBP) ₂ Cl ₄]	246	1046	307	1186	387	107		
9	[Hg ₂ (DBTBP) ₂ Cl ₄]	246	1441	293	1370				

% (%). (DBTBR) (4)

				· · ·			
NO.	COMPOUND	M%	C%	Н%	N%	Cl%	
	$[C_{30}H_{26}N_4S_2O_2]$		66.6 (66.9)	4.5 (4.8)	9.9 (10.9)		
1	$[Cr_2(C_{30}H_{26}N_4S_2O_2)_2Cl_4]Cl_2$	7.1 (7.4)	3.1(3.7)	3.1(3.7)	7.4(8.0)	19.2 (19.5)	
2	$[Mn_2(C_{30}H_{26}N_4S_2O_2)_2Cl_4]$	7.9 (8.3)	54.1(54.3)	3.5(3.9)	8.0(8.4)	10.3(10.7)	
3	[Fe ₂ (C ₃₀ H ₂₆ N ₄ S ₂ O ₂) ₂ Cl ₄]Cl ₂	8.6 (8.0)	51.7 (51.5)	3.2 (3.7)	7.1 (8.0)	15.0 (15.0)	
4	[Co ₂ (C ₃₀ H ₂₆ N ₄ S ₂ O ₂) ₂ Cl ₄]	8.3 (8.8)	53.2(53.7)	3.4(3.8)	8.0(8.3)	10.2(10.6)	
5	[Ni ₂ (C ₃₀ H ₂₆ N ₄ S ₂ O ₂) ₂ Cl ₄]	8.7 (8.8)	51.7 (53.9)	3.4 (3.9)	8.6 (8.4)	9.8 (10.5)	
6	$[Cu_{2}(C_{30}H_{26}N_{4}S_{2}O_{2})Cl_{4}]$	14.8 (15.7)	43.6 (44.7)	3.3 (3.2)	6.5 (6.9)	16.9 (17.3)	
7	$[Zn_{2}(C_{30}H_{26}N_{4}S_{2}O_{2})_{2}Cl_{4}]$	10.2 (9.6)	52.7(53.1)	3.2(3.8)	8.8(8.3)	10.0(10.5)	
8	$[Cd_{2}(C_{30}H_{26}N_{4}S_{2}O_{2})_{2}Cl_{4}] \\$	15.1 (15.6)	48.2(49.9)	3.3(3.6)	7.0(7.7)	9.3(9.8)	
9	[Hg ₂ (C ₃₀ H ₂₆ N ₄ S ₂ O ₂) ₂ Cl ₄]	24.5 (24.7)	44.2 (44.5)	3.0 (3.2)	6.5 (6.9)	8.9 (8.6)	

 $DMF DBTBP 10^{-3}M (5)$

No.	Compound	ΔM (s cm ² mol ⁻¹)
1	[Cr ₂ (DBTBP) ₂ Cl ₄]Cl ₂	98
2	$[Mn_2(DBTBP)_2Cl_4]$	42
3	[Fe ₂ (DBTBP) ₂ Cl ₄]Cl ₂	95
4	[Co ₂ (DBTBP) ₂ Cl ₄]	39
5	[Ni ₂ (DBTBP) ₂ Cl ₄]	44
6	[Cu ₂ (DBTBP)Cl ₄]	19
7	$[Zn_2(DBTBP)_2Cl_4]$	17
8	[Cd ₂ (DBTBP) ₂ Cl ₄]	25
9	[Hg ₂ (DBTBP) ₂ Cl ₄]	31

(DBTBP) (6)

No.	Compound	$\chi_{\rm g} \times 10^{-6}$ c.g.s.u	(D)×10 ⁻⁶ c.g.s.u	$\chi_{A} \times 10^{-6}$ c.g.s.u	μ _{eff} Β.Μ
1	[Cr ₂ (DBTBP) ₂ Cl ₄]Cl ₂	4.27367	745.4	6685.8	3.89
2	$[Mn_2(DBTBP)_2Cl_4]$	11.10532	706.6	15432.2	5.91
3	[Fe ₂ (DBTBP) ₂ Cl ₄]Cl ₂	10.54158	747.4	15484.5	5.92
4	$[Co_2(DBTBP)_2Cl_4]$	7.19879	704.2	10307.3	4.83
5	[Ni ₂ (DBTBP) ₂ Cl ₄]	2.716911	704.2	4328.5	3.13
6	[Cu ₂ (DBTBP)Cl ₄]	0.51807	411.7	829.2	1.37

M = Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Hg(II)

(3)

- 8- Shunske Ide, Makoto Takogi, *Ana. Sci.*, 1990, **6(4)**, 599.
- 9- Z. A. Ryspekova and Z. Kh. Azimova, *Industrial Laboratory* (USSR0 (English translation of Zovodskaya Laboratoriya), 1986, **52**, 523.
- R. G. Sandberg and J. L. Huiatt, *J. of Metals*, 1986,
 38, 18.
- 11- Michael Schuster, Koenig, Ger. Offer., 4P.P.
- 12- S. M. Sayyah, S. S. H. EL-Hamouly, M. A. AbdEL-Gaffar, *J. Applied Polymer Science*, 1989, **37**, 65.
- 13- O. Piovesane and C. Furlani.,*J. Inorg. Nucl. Chem.*, 1968,30, 249.
- 14- R. Rivest, *Can. J. Chem.*, 1962, **40**, 2234.
- T. J. Lane, et al., J. Am.
 Chem. Soc., 1959, 81, 3824.

References

- 1- V. K. Swami, S. P. Mathur, *Asian J. Chem.*, 1993, **5(1)**, 7.
- Kumar Atul, S. K. Arora, S. P. Mathur, *J. Inst. Chem.*, 1997, 69(4), 127.
- 3- M. Quamrul Islam, A. B. M. Mizanur Rahman Ansary, M. Umar Ali, *Pak. J. Sci, Ind. Res.*, 1995, **38**(7), 233.
- 4- C. S. G. Prasad and Samir K. Ban enji., *J. Inorg. Mucl. Chem.*, 1967, 38, 1387.
- 5- A. Chatlerjee, B. Das, N. Adityachau duru and S. D. Kirtaniya, *Indian J. Chem.*, 1980, **19**, 163.
- 6- Okamato, Toshihito, et al, Eur. Pat. APPl., 10, 770 (1980); C. A.., 93, 220598m(1980).
- 7- J. Josef, Czeck. CS., 1, 3 (1985). C. A., 110, 7876. P. (1989).

- Johnson, *J. Am. Chem. Soc.*,
 1939, 632.
- 26- M. M. Mostafa, A. M. Shallaby and A. A. EL-Asmy, *J. Indian Chem. Soc.*, 1983, 70, 109.
- 27- D. X. West, S.A. Van Rockel and R. K. Buntiry., *Transition Met. Chem.*, 1988, **13**, 53.
- 28- You-feng Yaun, Suming, *Tansition Met. Chem.*, 1997, 22, 561.
- 29- L. Grehn and H. Lindberg,*Chemica Scripta*, 1977, 11,199.
- 30- D. Nicholls, "The Chemistry of Iron, Cobalt and Nickel", pergamon press, Oxford, 1048, 1087, 1093 and 1152 (1975).
- 31- R. N. Murty, R. N. Dash andD. V. Raman Rao., *J. IndianChem. Soc.*, 1984, 61, 943.
- 32- A. Syamal, S. Ahmed and M.A. Bari Niazi, *J. IndianChem. Soc.*, 1983, 70, 493.

- 16- S. R. Michael Schofen and C.Curran., *J. Chem*, 1966, 5, 265.
- 17- D. Nicholls, 'The chemistry of Iron, Cobalt and Nickel" Pergamon press, Oxford, 1st Ed., 1087, 1090, 1151, 1152, 1155 and 1156, (1973).
- 18- Dutta Ahmed And P. K. Mandal, J. Inorg. Nucl. Chem., 1967, 29, 2347.
- Dutta Ahmed and S. N. Bose,
 J. Inorg. Nuch. Chem.,
 1969, 31, 2883.
- 20- B.C. Kashyap. A. D. Taneja and S. M. Ban erji, *J. inorg. Nucl. Chem.*, 1975, 37, 612, 1542.
- 21- K. A. Mohamed *et al.*, *Indian Chem. Soc.*, 1993, **70(8)**, 4.
- 22- B. G. Saha. R. P. Shatnagan and K. Banerji, *J. Indian Chem. Soc. Lix*, 1982, 927.
- 23- M. S. Saleh, Z. A. Khafagy,Afinidad, 1997, 54 (468),147.
- 24- K. Afkar. Abdel-Hadi, Afaf Abdel-Razik, M. M. Shoukry, Shaheria M. Shoheib, *Egypt J/ Chem.*, 1996, 39(2), 179.