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Abstract : In this research, a Bayesian hierarchical model was used to select and estimate variables. 

In the context of binary regression, existing approaches to variable selection in the context of binary classification are 

proposed. The proposed method is that the Laplace probability of the regression parameters is proposed and 

estimated with a Bayesian Markov chain Monte Carlo. The conceptual result is that by doing so, the regression model 

is transferred from a Gaussian framework to a full Laplacian framework without sacrificing With a lot of 

computational efficiency. In addition, the Gibbs sampler is effective for the Parameter estimation of the proposed 

model and is superior to the Metropolis algorithm Which has been used in previous studies on Bayesian binary 

regression. Both simulation studies and real data analysis indicate that the proposed method performs well compared 

to other binary regression methods. 
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INTRODUCTION:   Recently, applications of the binary regression model have become widely popular, and 

binary regression is one of the most well-known models that estimate the conditional mean function ((𝑌|𝑋)). This 

study discusses the binary regression model proposed by (David, H.A.2003). which explains the dependent variable 

(response variable) 𝑦 as a dichotomous variable or dummy variable, meaning that we have a binary response variable. 

When the response variable has exactly two values (𝑦= 0 𝑜𝑟 𝑦=1) we have used binary regression model analysis from 

a Bayesian point of view. (Katrina et, al. 2001) proposed binomial regression and the variable selection problem using 

the reweighted least squares method. The main objective of this research is to model binary data using the semi-

parametric model, the single index model, if the Bayesian estimation method is used to estimate the model parameters 

and the non-parametric function. The main objective of this research is to model binary data using the semi-parametric 

model, the SIM if the Bayesian estimation method is used to estimate the model parameters and the non-parametric 

function. method (adaptive Lasso) proves the performance of Bayesian techniques such as Gibbs sampling algorithm 

in the prediction accuracy of binary regression. Choosing an appropriate regression model gives more interpretability 

and more efficient estimates, and results in a full-point estimate in terms of biases and variances of the estimators.  

Thus, we can say that binary regression is appropriate for the binary response variable. Dries and Poel (2011) 

developed a Bayesian Gibbs sampling algorithm for a binary quantile regression model and defined the standard 

binary regression model as the following simple measurement equation. 

 yi =    1    if          y
*
=  

 β +  ei   ≥ 0 

            0    if         y
*
=   

   + ei < 0     ………………………………..1) 

    

The Single Index Model (SIM) offers an effective method for dealing with high-dimensional nonparametric estimation 

problems (Hardle et al ., 1993; Yu and Ruppert, 2002) and avoiding the “dimensionality curse” (Bellman et al ., 1966). 

Nonparametric problems assume that the response is associated with only one linear set of covariates. It is one of the 

most common and necessary semi-parametric models in statistics as well as applied sciences such as econometrics and 

psychology due to its ability to reduce dimensions (Ishimura, 1993). In this paper, the semi-parametric single index 

model will be used due to the importance of this model for modelling binary data and also reducing high dimensions 

and getting rid of the problem (the curse of dimensions). the Gaussian process will be set as a before the unknown link 

function and for the selected variable Laplace distribution will be set as a before the parametric index. 

Bayesian single index for binary data: 
A single index model can be defined as in Ishimura 1993. 

                              𝑦 = g (  
  )+ ∈i             i =1,2…..n …………..…………..1) 

Where 𝑦1,2…………..𝑦𝑛 are the response variables and, ∈i denote the term of the error,   
 =(𝒙𝟏,𝒙𝟐,……𝒙𝒑)′ is p-

dimensional of an independent variable, β is the coefficient vector and g (.) is unknown nonparametric function.  
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The binary single index model is one of the most important tasks to study in this paper. We suppose that the response 

variable yi ( i=1, 2 ,……,n) are observed variable and take the values (y i =0   or  1) . Whereas this variable is 

determined by the unobserved latent variable yi* so we will rewrite the model above as follows: 

 

                               𝑦 
 = g (  

  )+ ∈i              i=1,2…..n ………………….2) 

 

yi =g(𝑦 
 ) where     yi={

     𝑦   
 
 

     𝑦   

 

 

Error term  i  , i=1,2,…….n assumed to be iid   N(0,  
  ),where the variance    

  is unknown          

 (    
   )  ∏

 

√    

 
     exp {-

 

    (  )
2
}  ………………..…3) 

 

There for the joint likelihood function for 𝑦 
 , i=1,2,……..,n given X will be write as follows:  

 

 (𝑦          
 )  ∏

 

√    
 
  

    exp{-
 

 

(    (   ) 

   
 }…………………4) 

 

 (𝑦          
  )  (    

 ) 
 

   exp  {- 
 

 
 ∑   

   
(  

   (   ) 

  
 }………………5) 

 

Follow (chio et at,(2011)) and Gramacy and lain (2012) Gaussian process distribution is set as a prior distribution to the 

unknown link unction g( ).Therefore , g( ). function will be distributed as a Gaussian process with a mean zero and 

square exponential covariance function and can be shown as  

g(.)   (0,E(.,.))……………………………………6) 

E(x i, xj)=  exp{- 
(     )

 

 
}………………………7) 

  and c are the  hyper parameters. 

Based on this ,the prior distribution for the link function and can be written as : 

π(g/β,    )=det [       exp{- 
        

 
 …………………8) 

En is covariance matrix with dimension (n n) is given 

 

(    ,    
  )= 𝒮𝑒 𝑝 {−(  −  )′   ′ (  −  )}…………......... 9) 

 

Follow ( Gramacy and Lain (2012)) for identifiable can do by 
 

√ 
  without the condition | |  1. 

When Gausses process set as before the unknown link function. The parameter index β will be instead of  
 

√ 
  ,in the 

covariance matrix. 

E(   
  ,    

  )= 𝒮 𝑒 𝑝 {−(  
   −  

  ) }……………………….....10) 

 

To the hyper parameters   The inverse gamma distribution will be set as prior     (     ) where a and b are the 

hyper parameters. also the prior distribution for   is inverse gamma      (   ) 

Since we released that the constraint for the parameter index having a unit norm then the prior distribution for β will be 

easier. therefore, the prior distribution for the coefficient vector βj, j=1,2,……..,p is the independent Laplace prior 

distribution : 

 

( /   )= 
 

  
  exp {- 

  | |

 
}      ………………………..11) 

 

 

Where λ   is a penalty parameter. This means l1-penatly (park and Cosella 2008, Hans (2009)). There are different 

attractive methods that can be used to represent Laplace distribution, In our study scale mixture of normal distribution 

and an exponential density that introduced by  (Andrews and Mallows1974) 
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) exp {− | |}=∫

 

√   
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       ……………….…….12) 

Based on this for will, let assume   
 

 
    then 

 

π(β/γ)=∏
 

 

 
      exp{- |  | }=∏

 

√     

 
    exp{ 

  
 

   
}
  

 
 exp { 

   

 
 sj} dsj …………..13) 

 

Hierarchical model and MCMC  sampler . 

As we mentioned above and Based on that assumption about the prior distribution in the last section the hierarchical 

model for Bayesian Binary for the single index can be emulated as follows:- 

                                      𝑦 
 = g (  

  )+ ∈i                      i=1,2…..n 

 

yi = g (𝑦 
 )    where     yi={

     𝑦   
 
 

     𝑦   

 

 

 (𝑦          
  )  (    

 ) 
 

   exp {- 
 

    ∑   
   (𝑦 

   (  
  ))  } 

 

g/    N(0,E) 

    (     ) 

   IG(c  ) 

 

β,S/  ∏
 

√    

 
    exp{-

  
 

   
} 

  

 
 exp  { 

  

 
 sj} dsj 

  Gamma(a1,b2) 

 

 

 

The full conditional posterior based on the hierarchical model above can be given as follows: 

P(β,g ,    , /y*) (2   )  
 

  exp {-
 

    ∑( 𝑦 
  g(  

  )  } 

 [En]  
 

   exp {-
       

 
  ˣ ∏

 

√    

 
    exp {-

  
 

   
} .

  

 
 exp {

  

 
 sj} 

 (  )     exp (- 
 

  )  ( )     exp{- 
 

 
 }  ( )      exp {- 

  

 
 } 

 

Markov chain Mont Carlo (MCMC) algorithm will be used to derive the conditional posterior for all parameters and 

potential variables  

1. The full conditional posterior distribution of y* 

 

(y*/y, g ,β, ,   , ) { 
( (  

   )   
 ) (𝑦 

   )            𝑦   
 

     

                                  N(g(  
 
, )    

 )   I( 𝑦 
   )  if    𝑦 =  0 

  

2. The full conditional posterior distribution sampling gn 

 (g𝑛 /   ,        , , *)   p(𝑦*/x, 2
,g𝑛, ) × (g𝑛/ ,𝒮)  [det(𝐷)]

−1/2 

 
{−(𝑦    𝑛 𝐷   (𝑦    𝑛) /2}× det ( 𝑛

)−1/2
 𝑒 𝑝{-g𝑛  𝑛

-1
 g𝑛/2} 

(g𝑛/ , , *, 2
, )~𝑁(𝐴𝑛,𝐵𝑛) 

Where  

  An=E (E+D)
−1

 (Y*)  

  B𝑛=E (E+D)
−1

  (D) 

 

3. The full conditional distribution for sampling β 

π(β/gn, ,  ,𝑦 ,s, ) 𝑝(𝑦     β,  )  (   /β, )    (β/s) 
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  𝑒   ( (D+E)  
 

 ] exp[-
   (   )  

 
          

exp{- 
 

 
} 

 Metropolis algorithm will be used. 

 

4. The full conditional distribution for sampling     

 (     ,β,    𝑦 )  (𝑦  gn,β, , ) ˣ  (
 

   ) 

 (  )  
 

        ∑
(     )  

   
 
   

  (  )            
 

    

 (
 

  ) 
 

         exp[-
 

    [
 

 
∑  (yi*-gn)

2
+d] 

Which is the inverse gamma distribution is the posterior distribution for     

 

5. The full conditional distribution of sj 

 (sj/y*, gn ,β,       )  ( /sj)   ( j /  ) 

 
  

√      
 exp ( 

  
 

   
 ) exp (

   

 
  j) 

 
 

√  
  exp { - 

 

 
(        

   j) 
  } 

Generalized inverse Gaussian (GIG)is conditional posterior for    

 

6. The full conditional distribution of   

 (  gn,β,    )   (    )  ( ) 

 ∏
  

 

 
     exp {-

  

 
    }ˣ (   )      exp {-b1  } 

Then the conditional posterior for   is  (     β)   Ga (a1+2p,b1+
 

 
) 

 

7. The full conditional distribution of   

 (         𝑦
 )  (𝑦    ,  ,  )    (gn/β, )     ( ) 

  exp {
  (    )  

 
} [det (   +D)

-1/2   ( )     exp {- 
 

 
} 

Metropolis algorithm will be considered to sample  . 

Simulation Study 
This chapter part considered the simulation examples, the simulation examples conducted based on proposed method 

(𝐵𝐵  ) and compared its performance with some other methods (𝐵   𝐵    𝑛  𝐵𝐵 ) with MCMC packages and 

Bayes (  ) package . The first simulation scenario considers that we have Binary response variables in the single 

index model ,this model implemented by our code packages and the second simulation scenario is about ordinal 

response variables. 

We generate 12000 iterations with Gibbs Sampler algorithm, the first 2000 have burned in. The methods are evaluated 

based on two measures, the first one is the MSE and the second one is  MAD, the formulas for these measures are 

defined as follows: 

 

 

   ( ̂ )    𝑟( ̂  

 
)   𝐵   ( ̂ ) 

  

and 

 𝐴𝐷  ∑
| ̂    ̅|

 

 

    

 

 

Where                 𝐵   ( ̂ 
  )    ̅̅̅        

          

with    ̂  ∑
 ̂ 

 

 
    

Where  ̂  is an estimated coefficient of β. The following simulation examples illustrate the implementation of the 

Binary SIM and ordinal SIM.  
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3.1. Example One:   

The dataset in this example is generated from the following model form:  

𝑦      (  )           𝑦  {
             𝑦 

        

          𝑜  𝑒𝑟   𝑒 
 

where   𝒙  , 𝒙 is the design matrix with dimension 5 columns, five independent variables and sample size 

n=25,50,100 and 150     𝑛       , (          ),    (         ) √ ⁄ , the quantile coefficient    will be 

estimated for the quantile levels        and the error term will be considered with a mixed distribution 

       (   )           𝑦 (   )  In each   level 10,000 iterations are run in the MCMC algorithm with 2,000 

burn-in. See (Kuruwita, 2015) for more details. Table 1-2 shows a summary of the parameter estimates for simulation 

example one. 

 

Table 3-1 the parameters optimates of simulation example one in Binary SIM 

SAMPLE SIZE METHODS  
 
                

N=25 BBSI 0.37042 0.36890 0.38545 0.29309 0.28962 

 
BLO 4.20211 -8.23000 7.37741 2.01792 -3.48984 

 
BPR 2.03037 -4.07218 3.79354 1.02767 -1.51422 

 
BBQ 3.80452 -8.19817 7.38383 3.05645 -3.57842 

N=50 BBSI 0.34708 0.28764 0.26033 0.42862 0.36808 

 
BLO -3.04967 -1.58856 -0.26717 0.06083 -2.60920 

 
BPR -1.72009 -0.89350 -0.11072 -0.04871 -1.59950 

 
BBQ -3.65181 -2.00900 -0.33803 0.38413 -2.60402 

N=100 BBSI 0.36882 0.31888 0.45667 0.52216 0.35043 

 
BLO -0.21994 -3.70091 0.44376 -0.82082 -0.76824 

 
BPR -0.12181 -2.14240 0.23770 -0.51648 -0.41051 

 
BBQ -0.48419 -4.72397 0.43861 -1.09455 -0.78586 

N=150 BBSI 0.41359 0.45278 0.47039 0.25893 0.40063 

 
BLO -1.75901 -3.32187 -0.67097 -0.22943 0.19854 

 
BPR -0.95669 -1.92003 -0.41431 -0.13456 0.14653 

 
BBQ -2.32390 -4.38509 -0.82608 -0.15068 0.39887 

The simulation results in Table (3-1) including the parameter estimate of the Binary single index model(   )across 

four sample sizes(             ). It can be observed that the proposed method (𝐵𝐵  ) performs better than other 

methods (𝐵   𝐵   𝐵𝐵 )especially when the sample size getting bigger where the true value of          and the 

parameter estimates getting closer to the true value as sample size getting larger, Look at (       ) at sample size 

(n=150)is close to the true value of (      )   as the comequently ,sample size become more larger, the parameter 

estimates are close to true values with the proposed method.  

Table( 3-2) shows  the value of estimated bias with different sample size and different method of SIM. 

Table 3.2 Estimated Bias for estimated parameters in simulation example one using different methods under 

Binary SIM 

SAMPLE SIZE METHODS Bias 1 Bias 2 Bias 3 Bias 4 Bias 5 

N=25 BBSI 0.07679 0.52553 0.38545 0.29309 0.28962 

 
BLO 3.75489 9.12443 7.37741 2.01792 3.48984 

 
BPR 1.58316 4.96661 3.79354 1.02767 1.51422 
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BBQ 3.35731 9.09260 7.38383 3.05645 3.57842 

N=50 BBSI 0.10014 0.60679 0.26033 0.42862 0.36808 

 
BLO 3.49688 2.48298 0.26717 0.06083 2.60920 

 
BPR 2.16730 1.78793 0.11072 0.04871 1.59950 

 
BBQ 4.09902 2.90343 0.33803 0.38413 2.60402 

N=100 BBSI 0.07840 0.57555 0.45667 0.52216 0.35043 

 
BLO 0.66715 4.59534 0.44376 0.82082 0.76824 

 
BPR 0.56902 3.03683 0.23770 0.51648 0.41051 

 
BBQ 0.93141 5.61840 0.43861 1.09455 0.78586 

N=150 BBSI 0.03362 0.44165 0.47039 0.25893 0.40063 

 
BLO 2.20622 4.21629 0.67097 0.22943 0.19854 

 
BPR 1.40390 2.81445 0.41431 0.13456 0.14653 

 
BBQ 2.77111 5.27952 0.82608 0.15068 0.39887 

It can be observed from table  (   ) that the obtained bias of our proposed method (𝐵𝐵  ) is much smaller at 

different sample sizes than the competing methods (𝐵   𝐵   𝐵𝐵 ) for all the five parameter estimates .Also we can 

say that the prosed method  (𝐵𝐵  ) performs better than other methods .we can see that as  the sample size become 

more larger, the proposed method (𝐵𝐵  ) yields a lower bias values, that suggesting a good performance 

of (𝐵𝐵  )  𝑒  𝑜  . 
 

Furthermore, we calculate the estimated values of the quality criteria ,MSE and MAD. To summary the values in table 

(   ) we draw the following figures 

 

Table 3-3 MSE  and MAD values of simulation example one in Binary SIM 

SAMPLE SIZE METHODS MSE MAE 

N=25 BBSI 0.38950 0.51204 

 

BLO 8.67103 2.39214 

 

BPR 1.78234 1.11809 

 

BBQ 9.74059 2.58822 

N=50 BBSI 0.46511 0.56076 

 

BLO 19.93567 4.31102 

 

BPR 8.07966 2.75938 

 

BBQ 23.89781 4.69343 

N=100 BBSI 0.68680 0.68029 

 

BLO 11.01314 3.16551 

 

BPR 4.52226 2.03575 

 

BBQ 17.56628 3.98976 

N=150 BBSI 0.61648 0.61262 

 

BLO 13.01494 3.45931 

 

BPR 5.25438 2.20713 

 

BBQ 19.57248 4.20672 
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Figure (3-1) MSE and MAD values polts of simulation example one 

 
In Figure (   )the values of MSE and MAD Criteria are plotted against the methods(𝐵𝐵   𝐵   𝐵   𝐵𝐵 ).It can 

be observed that the values of MAE criterion with different methods are better than the performance of MSE criterion 

.The closer the value to zero the better perform. 

3.2.  Example two:  

In this example, the sample size we consider n=25,50,100 and 150 observations are generated from the regression 

model: 

𝑦     (
 (   )

   
)              𝑦  {

             𝑦 
        

          𝑜  𝑒𝑟   𝑒 
 

where  𝒙   , 𝒙 is the design matrix 𝒙  (              )
     is the coefficient vector   (         ) √ ⁄ , and the 

   (           ) are i.i.d in a uniform distribution [0,1]
5
.   and   are constants that can be shown to be (

√ 

 
 

     

√  
 
√ 

 
 

     

√  
) respectively.   is the error term, and we consider   density distributions of the error term to evaluate 

the robustness of our proposed approach (Benoit et al., 2013).  

  𝑁(   )                 
  In each   level 10,000 iterations are run in the MCMC algorithm with 2,000 burn-in. 

Table (3-4) shows a brief summing of the parameter estimates for simulation example two. 

Table 3-4 the parameter estimates of simulation example two of Binary SIM 

SAMPLE SIZE METHODS                

N=25 BBSI 0.41886 0.33961 0.35700 0.40631 0.39127 

 

BLO 1.59318 0.63585 5.37369 -7.10044 -4.91924 

 

BPR 1.03810 0.57407 2.82198 -3.99000 -2.44667 

 

BBQ 0.29763 -0.23306 5.55800 -5.45617 -4.20753 
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N=50 BBSI 0.50271 0.35689 0.36681 0.43270 0.37720 

 

BLO 2.66201 3.18972 -2.01189 3.32282 -0.47479 

 

BPR 1.43134 1.54863 -0.75340 1.62274 -0.51376 

 

BBQ 2.95149 2.78922 -3.36864 3.34923 -0.54483 

N=100 BBSI 0.37134 0.50746 0.24619 0.43430 0.45289 

 

BLO 1.70353 1.68806 1.25671 0.89153 1.34102 

 

BPR 0.72331 0.60207 0.61526 0.26394 0.41773 

 

BBQ 3.53048 3.37654 1.48863 1.26423 2.37674 

N=150 BBSI 0.47928 0.41500 0.40537 0.32424 0.38892 

 

BLO 0.85489 1.67401 0.62735 0.30996 1.61626 

 

BPR 0.25907 0.78846 0.32277 0.16483 0.64066 

 

BBQ 1.93826 2.99887 0.50419 0.28165 3.08130 

Table (   ) including the parameter estimater of the Binary single index model (   )across four sample sizes 

(             ). Obiang that the proposed method (𝐵𝐵  )performs better than other methods 
(𝐵   𝐵   𝐵𝐵 ) especially when the sample size getting bigger, In Table (3-5) the value of estimated bias for 

different sample size with different estimation method of SIM . 

Table 3-5 Estimated Bias for simulation example one using different methods 

SAMPLE SIZE METHODS Bias 1 Bias 2 Bias 3 Bias 4 Bias 5 

N=25 BBSI 0.15849 0.23774 0.35700 0.40631 0.18608 

 

BLO 1.01583 0.05850 5.37369 7.10044 5.49659 

 

BPR 0.46075 0.00328 2.82198 3.99000 3.02402 

 

BBQ 0.27972 0.81041 5.55800 5.45617 4.78488 

N=50 BBSI 0.07464 0.22046 0.36681 0.43270 0.20015 

 

BLO 2.08466 2.61236 2.01189 3.32282 1.05214 

 

BPR 0.85399 0.97128 0.75340 1.62274 1.09111 

 

BBQ 2.37414 2.21187 3.36864 3.34923 1.12218 

N=100 BBSI 0.20601 0.06989 0.24619 0.43430 0.12446 

 

BLO 1.12617 1.11071 1.25671 0.89153 0.76367 

 

BPR 0.14596 0.02472 0.61526 0.26394 0.15962 

 

BBQ 2.95313 2.79919 1.48863 1.26423 1.79939 

N=150 BBSI 0.09807 0.16235 0.40537 0.32424 0.18843 

 

BLO 0.27754 1.09666 0.62735 0.30996 1.03891 

 

BPR 0.31828 0.21110 0.32277 0.16483 0.06331 

 

BBQ 1.36091 2.42152 0.50419 0.28165 2.50395 

 

It can be observed from table (   ) that the bias values from our proposed method ( 𝐵𝐵  ) are the smallest values 

under different sample size than the competing methods (𝐵   𝐵   𝐵𝐵 ) for all the five parameter estimates. Also, 

we can say that the proposed method (𝐵𝐵  ) performs better than other methods, more precisely we can see that as 

the sample size become larger, the proposed method(𝐵𝐵  ) yields loosest bias values, consequently that suggesting a 

good performance of (𝐵𝐵  ) method. 

Next ,we calculate the estimated values of the quality criteria of the parameters ,MSE and MAD. Table (    ) shows 

the values of the MSE and MAD  Criteria. 



QJAE,  Volume 25, Issue 4 (2023)                                                                           

114  

 

Table 3-6 MSE and MAD for simulation example two Binary SIM 

The results of MSE and MAD that listed in table (   ) indicates that the proposed method ( 𝐵𝐵  ) generally 

performs better than (𝐵   𝐵   𝐵𝐵 ) methods overall the different sample sizes. However, we observed that(𝐵𝐵  ) 

method tends to behove befor than other methods in terms of the values of MSE and MAD Criteria. 

 Next , we obtained the estimated values of the , MSE and MAD criteria . To summary the values of MSE and MAD 

criteria, draw the following figures. 

Figure (3-2) MSE and MAD values plots of simulation example two 
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SAMPLE SIZE METHODS MSE MAE 

N=25 BBSI 0.21454 0.33259 

 

BLO 14.83113 3.15272 

 

BPR 4.86515 1.80305 

 

BBQ 12.78830 2.93271 

N=50 BBSI 0.14627 0.24671 

 

BLO 8.65291 2.59839 

 

BPR 1.30228 0.96521 

 

BBQ 5.51465 1.99139 

N=100 BBSI 0.16588 0.26206 

 

BLO 7.07242 2.48794 

 

BPR 0.36779 0.45853 

 

BBQ 28.18380 5.03208 

N=150 BBSI 0.20045 0.30176 

 

BLO 3.36333 1.66280 

 

BPR 0.24617 0.34495 

 

BBQ 13.81898 3.43550 
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In Figure (   )the values of MSE and MAD Criteria are plotted along with the methods (𝐵𝐵   𝐵   𝐵   𝐵𝐵 )  It 
can be observed that the values of MAE criterion with different methods are better than the performance of MSE 

criterion. The closer value to zero the better performs. 

4.  Real Data Analysis: 

The simulation study has demonstrated that the proposed method has proven its ability to compute with the existing 

methods, which encouraged the use to find red data to test the performance of the proposed method. In this part of the 

chapter ,we applied the proposed method and the other existing methods to read data and then summarized the results 

to analyze it Identification and diagnosing of the real reasons behind the change in the condition of the person infected 

with COVID-19 is necessary to help the medical staff recover the infected person .Hence , we will employ the 

propped method to identify the most related predictor variable that effects the response variable (severity of covid-19) 

the data used in this part is taken from. In this study the dependent variable is binary; it either takes 'zero' in case of 

major infection or death, or 'one' in case of moderate or minor infection. The independent variables are 14 variables 

which represent the factors influencing the infection of Coronavirus.  

X1: Represents gender, male = 1, female = 2  

X2: Represents age  

X3: represents the weight  

X4: represents pressure, None = 1,Found  = 2, Decrease = 3, Medium = 4, Height = 5  

 X5: represents diabetes, None=1,Found=2,Descending=3 ,Ascending=4   

X6: Represents lung problems ,None = 1, found = 2 

X7: Represents a weak immune system, None = 1, There is = 2  

X8: Represents vitamin D deficiency, None = 1, Fond =2  

X9: represents the workplace ,Housewife or not working = 1, Employee =  

2, Wage earner = 3 ,Students = 4, Hospital and medical clinics = 5 

X10:  Represents  previous  surgical  operations,  No  operations  =  1,  

Previous operations performed = 2,   

X11: represents smoking, Non-smoker = 1, Smoker = 2  

X12:  Represents the  psychological  state,  Not  good  =  1,  Medium    =  2,  

Good =3  

    X13: represents nutrition, Not good = 1, Medium = 2, Good = 3 

  X14: living status, Poor = 1, Medium = 2, Good or Rich = 3 

 

Some people may experience worsening  symptoms  that  can  lead  to  death  Therefore, the  researcher  tried  to  shed  

light  on  the  reasons  that  lead  to  the  major cases of infections and the minor ones as well. The data was collected 

by questioning people via Google Forms to measure the impact of the virus on them and the major influencing factors 

that lead to the infection. The data represent a sample group of 130 infected persons for the summer of 2020. The 

sample was taken from people  in  the  city  of  Al-Diwaniyah  within  four  months  by using a form. 

4.1-Real Data Results: 

The following tables summaries the results that have been obtained after we employed the proposed method and the 

other method based on real data. Table (4-1) shows the parameter estimates of the binary SIM . 

Table 4-1 parameter estimates of different method 

Methods BBSI BLO BPR BBQ 

B1 0.29014 0.31998 0.18506 0.40531 

B2 0.04263 0.12657 0.07744 0.16299 

B3 0.25911 -0.20632 -0.11840 -0.29304 

B4 0.38520 0.05389 0.02654 0.06903 

B5 0.33637 -0.15886 -0.10208 -0.19213 

B6 0.34137 -0.07436 -0.04022 -0.08723 

B7 0.15425 -0.27680 -0.15812 -0.35888 

B8 0.44312 0.01050 0.01533 0.03763 

B9 0.29485 -0.13840 -0.07825 -0.22383 

B10 0.06082 -0.25585 -0.14421 -0.33602 
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B11 0.32639 -0.06998 -0.05657 -0.12639 

B12 0.41848 -0.23281 -0.14321 -0.37000 

B13 0.28595 0.09066 0.06703 0.11334 

B14 0.26776 0.43562 0.24214 0.69945 

 

It can be observed from table (4-1) that the most related predictor variable which affects the response variable 

according to the proposed method (𝐵𝐵  ) is X8 (vitamin D deficiency) with  

 (β=0.443),While the variable X12 (psychological state) is the second most related pred But  variable x10 chor variable 

with (β12=0.418) (previous surgical operator) is the less related predictor variable in response variable with 

(β10=0.060) Followed by variable x2 (age)   

with (β=0.04).The results of(𝐵   𝐵   𝐵𝐵 ) are closer to each other , for example , we can see at the variable X3 

(weight) have negative sign which indicates  logic result. 

Also, the other method indicates y-hat the variables (X5,X6,X7,X9,X10,X11,X12) are negatively effects on the response 

variable which is logic results .Furthermore, the variable X13 has fewer effects or response variables. 

Next table(   ) shows the values of MSD  and  MAD for the real data results. 

Table 4-2  shows  the values of MSE and MAD for the real data results. 

Methods MSE MAE 

BBSI 0.70552 0.71607 

BLO 1.88586 1.12075 

BPR 1.04015 0.82519 

BBQ 1.64210 1.00833 

  

Obviously, from table ( 4-2  ) the proposed method ( 𝐵𝐵  ) gives the less values of both MSE and MAD criteria 

(MSE=0,705 ,MAD=0.71) that indicates the high efficiency of the proposed method in terms of MSE less variance 

and less bias  for estimated parameters . the of MSE and MAD that obtained by BBSI method are the less (closer to 

zero) compared to the other method. 

Figures (4-1) MSE and MAD Valens plot clearly from table ( 4-2) 

 
 

In the next figure (   ), we plotted values of MSE and MAD criterim that illustrated in table(   ). To summary 

values of MSE and MAD draw the following figures. 

BBSI BLO BPR BBQ
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4. Conclusions: 
Based on both theoretical, simulation and applied data, we write the following conclusions: 

1. A simulation study was conducted for each of the binary chips. 

2. We compared the proposed method (BBSI) with other methods (BLO, BPR, BBQ). 

3. Real data analysis was used based on the proposed dual SIM methods 

4. Based on (2), we find that the (BBSI) method is better than other methods in terms of MSE and MAE values.  
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