Hypercyclicity and Countable Hypercyclicity for Adjoint of θ -Operators

Buthainah A. Ahmed*

Hiba F. Al-Janaby*

Date of acceptance 28/2 / 2010

Abstract

Let H be an infinite dimensional separable complex Hilbert space and let $T \in B(H)$, where B(H) is the Banach algebra of all bounded linear operators on H. In this paper we prove the following results.

If $T \in B(H)$ is a θ -operator, then

- 1. T^* is a hypercyclic operator if and only if $\sigma(T|_M) \cap D \neq \phi$ and $\sigma(T|_M) \cap (C \setminus \overline{D}) \neq \phi$ for every hyperinvariant subspace M of T.
- 2. If T is a pure, then T^* is a countably hypercyclic operator if and only if $\sigma(T|_M) \cap (C \setminus \overline{D}) \neq \phi$ and $\sigma(T) \cap D \neq \phi$ for every hyperinvariant subspace M of T.
- 3. T^* has a bounded set with dense orbit if and only if for every hyperinvariant subspace M of T, $\sigma(T|_M) \cap (C \setminus \overline{D}) \neq \emptyset$.

Keywords: θ -operator, hypercyclic, countably hypercyclic, single valued extension property (SVEP), Bishop's property (β) , decomposition property (δ) .

1. Introduction

Let H be an infinite dimensional separable complex Hilbert space, and $\mathrm{B}(H)$ be the set of all bounded linear operators on H, we denote as usual the spectrum, the point spectrum and the approximate point spectrum of T by $\sigma(T)$, $\sigma_p(T)$ and $\sigma_{ap}(T)$. Following [1], the Lat(T), where $T \in \mathrm{B}(H)$, denoted the collection of all T- invariant closed linear subspaces of H. If $T \in \mathrm{B}(H)$ and $M \in Lat(T)$, then $T|_M \in \mathrm{B}(M)$ is the restriction of T to M.

An operator $T \in B(H)$ is called θ -operator if T^*T commutes with $T + T^*$, [2]. Recall that $T \in B(H)$ is

called *normaloid* if r(T) = ||T||, where $r(T) = \sup\{|\lambda|: \lambda \in \sigma(T)\}$, [3].

It is well known [4] that θ – operator \implies normaloid

An operator $T \in B(H)$ is called *hyponormal* if $||T^*x|| \le ||Tx||$ for all $x \in H$. Campbell and Gellar [5] gave an example of a θ -operator which is not hyponormal, also Al-Sultan [6] gave an example of an operator which is hyponormal but it is not θ -operator.

If $T \in B(H)$ and $x \in H$, then the orbit of x under T is $Orb(T, x) = \{x, Tx, T^2x, ...\}$, [7]. If

^{*}Department of Mathematics - College of Science - University of Baghdad

 $E \subseteq H$, then the orbit of E under T is

 $Orb(T, E) = \bigcup \{E, T(E), T^{2}(E), \ldots\} = \bigcup_{x \in E} Orb(T, x), ([8], [9]).$

An operator $T \in B(H)$ is called *hypercyclic* if there is a vector $x \in H$ with dense orbit $\{x, Tx, T^2x, ...\}$, [7].

Following ([8], [9]), we say that an operator $T \in B(H)$ is *countably hypercyclic* if there exists a bounded, countable, separated set E with dense orbit. Recall that a set $E \subseteq H$ is *separated* if there exists an $\varepsilon > 0$ such that $||x-y|| \ge \varepsilon$ for all $x, y \in E$ with $x \ne y$.

In [7], Feldman, Miller, and Miller proved that the cohyponormal operators (the adjoint of hyponormal operators) are hypercyclic if and only if $\sigma(T|_{M}) \cap D \neq \emptyset$ and $\sigma(T|_{M}) \cap (C \setminus \overline{D}) \neq \emptyset$ for every hyperinvariant subspace M of T. Recently Feldman [8] showed that countably are hypercyclic operators which are not hypercyclic. Furthermore, Feldman showed that the pure cohyponormal operators countably hypercyclic if and only if $\sigma(T|_{M}) \cap (C \setminus D) \neq \emptyset$ and $\sigma(T) \cap D \neq \phi$ for every hyperinvariant subspace M of T. In this paper we give an example of a θ -operator which is not hypercyclic and prove that adjoint θ – operator of hypercyclic if and only if $\sigma(T|_{M}) \cap D \neq \phi$ and $\sigma(T|_{M}) \cap (C \setminus D) \neq \emptyset$ for every hyperinvariant subspace M of T. We also give an example of a θ -operator which is not countably hypercyclic and prove that the adjoint of pure θ -operator is countably hypercyclic if and only if $\sigma(T|_{M}) \cap (C \setminus \overline{D}) \neq \emptyset$ and $\sigma(T) \cap D \neq \phi$ for every hyperinvariant subspace M of T. Finally we prove

the adjoint of θ -operator has bounded set with dense orbit if and only if for every hyperinvariant subspace M of T, $\sigma(T|_{M}) \cap (C \setminus \overline{D}) \neq \phi$.

2. Preliminaries

An operator $T \in B(H)$ is said to have *single valued extension property* (SVEP) *at* λ_0 if

for every open set $U \subseteq C$ containing λ_0 the only analytic solution $f: U \to H$ of the equation

$$(T - \lambda_0) f(\lambda) = 0 \qquad (\lambda_0 \in U)$$

is the zero function [1]. An operator T is said to have SVEP if T has SVEP at every $\lambda \in C$.

Given $T \in B(H)$, the *local* resolvent set $\rho_T(x)$ of T at the point $x \in H$ is defined as the union of all open subsets $U \subseteq C$ for which there is an analytic function $f: U \to H$ such that

$$(T - \lambda) f(\lambda) = x$$
 $(\lambda \in U)$

The *local spectrum* $\sigma_T(x)$ of T at x is then defined as $\sigma_T(x) = C \setminus \rho_T(T)$

For $T \in B(H)$, we define the *local* (resp. *glocal*) *spectral subspaces* of T as follows. Given a set $F \subseteq C$ (resp. a closed set $G \subseteq C$). $H_T(F) = \{x \in H : \sigma_T(x) \subseteq F\}$

$$H_T(F) = \{x \in H : \sigma_T(x) \subseteq F\}$$

resp.

 $H_T(F) = \{x \in H : \text{ there exists an analytic function } f: C \setminus G \to H \text{ such that } (T - \lambda) f(\lambda) = x \text{ for all } \lambda \in C \setminus G\}.$

Note that T has SVEP if and only if $H_T(F) = H_T(F)$ for all closed sets $F \subseteq C$, [1, Proposition (3.3.2)].

If $U\subseteq C$ is an open set, then define $H_T(U)=\bigcup\{H_T(F):F\subseteq U \text{ is compact}\}$. $H_T(U)$ contains all eigenvectors for T whose eigenvalues belong to U and that $H_T(U)$ is a hyperinvariant subspace for T, althought it is not necessarily closed, [8].

An operator $T \in B(H)$ has Dunford's property (C) if the local spectral subspace $H_{\tau}(F)$ is closed for every closed set $F \subset C$. An operator $T \in B(H)$ is said to has *Bishop's* property (β) if for every sequence $f_n: U \to H$ such that $(T-\lambda) f_{n}(\lambda) \to 0$ uniformly compact subsets in U, it follows that $f_n \to 0$ uniformly on compact subsets in U. It is well known [1] that Bishop's property $(\beta) \Rightarrow$ Dunford's property (C) \Rightarrow SVEP

Moreover, an operator $T \in B(H)$ has decomposition property (δ) if $H = H_T(\overline{U}) + H_T(\overline{V})$ for every open cover $\{U, V\}$ of C.

As shown in [1], an operator $T \in B(H)$ has property (δ) iff it is the quotient of a decomposable operator. Moreover properties (β) and (δ) are dual to each other, in the sense that an operator $T \in B(H)$ has *property* (β) iff its adjoint has property (δ) , and conversely, T has property (δ) iff its adjoint has property (δ) .

Proposition 2.1. [1] Suppose that the operator $T \in B(H)$ on the Hilbert space H has SVEP, and that $F \subseteq C$ is a closed set for which the space $H_T(F)$ is closed. Then

$$\sigma(T|_{H_T\{F)}) \subseteq F \cap \sigma_T(x)$$

The following result from Feldman, Miller and Miller [7], gives the relation between parts of the

spectrum and the local spectra of an operator with Dunford's property (C).

Proposition 2.2. [7] If $T \in B(H)$ has Dunford's property (C), then $\sigma_T(x) = \sigma(T|_{H_T(F)})$ whenever $F = \sigma_T(x)$ for some nonzero $x \in H$.

The following result from Feldman, Miller and Miller [7], gives sufficient condition for an operator to be hypercyclic, we denote the interior and exterior of the unit circle by $D, C \setminus \overline{D}$ respectively.

Corollary 2.3. [7] Let H be a complex Hilbert space and suppose that $T \in B(H)$ has the decomposition property (δ) . If $\sigma_{T^*}(x) \cap D \neq \phi$ and $\sigma_{T^*}(x) \cap (C \setminus \overline{D}) \neq \phi$ for every nonzero $x \in H$. Then T is hypercyclic.

The following result from Feldman [8], gives sufficient condition for an operator to be countable hypercyclic.

Theorem 2.4. [8] (The Countably Hypercyclic Criterion) Suppose that $T \in B(H)$. If there exists two subspaces Y and Z in H, where Y is infinite dimensional and Z is dense in H such that

- 1. $T^n x \to 0$ for every $x \in Y$, and
- 2. There exists functions $B_n: Z \to H$ such that $T^n B_n = I \mid_Z$ and $B_n x \to 0$ for every $x \in Z$

Then T is countably hypercyclic.

Theorem 2.5. [8] Suppose that $T \in B(H)$ If $H_T(D)$ is infinite dimensional and $H_T(C \setminus \overline{D})$ is dense, then T is countably hypercuclic.

Proposition 2.6. [8]

- a. If $T \in B(H)$ and there is a bounded set E with Orb(T, E) dense, then $\sup ||T^n|| = \infty$.
- b. If there is a set E that is bounded away from zero and Orb(T,E) is dense, then T cannot be expensive, that is there exists an $x \in H$ such that ||Tx|| < ||x||.

In what follows, B(a,r) will denote the open ball at a with radius r, where for $a \in H$ and r > 0.

Remark 2.7.

- a. Notice that if T is countably hypercuclic and $E = \{x_n\}$ a bounded separated sequence with dense orbit, then one may assume that $x_n \neq 0$ for all n, thus it follows that E is both bounded and bounded away from zero, [8].
- **b.** If an operator T has a set with dense orbit, then any non-zero multiple of that set also has dense orbit. Thus T has a bounded set with dense orbit if and only if the unit ball has dense orbit if and only if B(a,r) has dense orbit for any r > 0, [8].

3. Hypercyclicity

It is well known that the restriction of θ -operator $T|_M$ is a θ -operator for every $M \in Lat(T)$, and if T is a θ -operator and invertiable, then T^{-1} is a θ -operator, [7]. Recall that an operator $T \in B(H)$ is dominant if $(T-\lambda)H \subset (T-\lambda)^*H$ for all scalars λ , Y. kato show that every θ -operator is dominant, [10].

Before proving one of important results in this paper, we need the following.

Definition 3.1. [11] An operator $T \in B(H)$ is said to have *the property* (II) if for every $\lambda, \mu \in \sigma_{ap}(T)$ and every bounded sequences of vectors x_n and y_n such that $\lambda \neq \mu$ and $\|(T - \lambda)x_n\| \to 0$, $\|(T - \lambda)y_n\| \to 0$, the sequence $\langle x_n, y_n \rangle$ converges to 0 as $n \to \infty$.

Theorem 3.2. [11] If T has property (H), then T also has property (β) .

It is well known that dominant operator has Bishop's property (β) but couldn't find the proof, so we prove it.

Theorem 3.3. Every dominant operator has Bishop's property (β) .

Proof. Let $\lambda, \mu \in \sigma_{ap}(T)$ $(\lambda \neq \mu)$ and sequences $\{x_n\}, \{y_n\}$ of bounded vectors in H satisfy $\|(T-\lambda)x_n\| \to 0$, $\|(T-\lambda)y_n\| \to 0$ (as $n \to 0$). Since T is dominant, then $\|(T-\lambda)^*y_n\| \to 0$ as $n \to \infty$. Hence $(\lambda - \mu)\langle x_n, y_n \rangle = \langle (\lambda - T)x_n, y_n \rangle + \langle x_n, (T-\mu)^*y_n \rangle \to 0$ as $(n \to 0)$ This implies that $\langle x_n, y_n \rangle \to 0$. Then T has the property (H) Therefore T has property (β) by **Theorem** (3.2).

Remark 3.4. Every θ -operator has Bishop's property (β) .

Now we give an example of θ -operator which is not hypercyclic, We begin with the following result.

Corollary 3.5. [12] If $T \in B(H)$ and $||T|| \le 1$, then T is not hypercyclic.

Example 3.6. Let U be the unilateral shift operator defined on $\ell^2(N)$.

$$U(x_1, x_2, x_3,...) = (0, x_1, x_2, x_3,...)$$

One can easily cheek that $((U^*U)(U+U^*))(x_1, x_2, x_3,...) = (x_2, x_1 + x_3, x_1 + x_4,...)$

$$((U+U^*)(U^*U))(x_1, x_2, x_3, ...) = (x_2, x_1 + x_3, x_1 + x_4, ...)$$

Which implies U is a θ -operator. Since U is not hypercyclic by

Corollary (3.5). \Box Now we give our Theorem.

Theorem 3.7. If T is a θ -operator on a separable Hilbert space H, then T^* is hypercyclic if and only if $\sigma_T(x) \cap D \neq \phi$ and $\sigma_T(x) \cap (C \setminus \overline{D}) \neq \phi$ for every nonzero $x \in H$.

Proof. If T is a θ -operator on H, then T has property (β) by **Remark** (3.4). Thus T has property (C), and so T^* has property (δ) . If the local spectra $\sigma_T(x) \cap D \neq \phi$ and $\sigma_T(x) \cap (C \setminus \overline{D}) \neq \phi$ for every nonzero $x \in H$, then T^* is hypercyclic by **Corollary** (2.3).

Conversely, suppose that T^* is hypercyclic. First we prove that every part of the spectrum of T meets both D and $C \setminus \overline{D}$, i.e., $\sigma(T|_M) \cap D \neq \emptyset$ and $\sigma(T|_M) \cap (C \setminus \overline{D}) \neq \emptyset$.

Let $S = T|_M$ for some $M \in Lat(T) \setminus \{0\}$. If x is a hypercyclic vector for T^* , then by the definition of hypercyclic vector $Orb(T^*, x) = \{x, T^*x, (T^*)^2x, \ldots\}$ is dence in H.

We claim the projection $P_M x$ is hypercyclic for $S^* = P_M T^* \mid_M$. Since $M \in Lat(T) \setminus \{0\}$, then by **Corollary of Theorem 2, [3, P.39]**, $P_M TP_M = TP_M$. Consequently

$$P_{M}T^{*}P_{M} = P_{M}T^{*},$$
 and $S^{*}(P_{M}x) = (P_{M}T^{*}|_{M})(P_{M}x) = P_{M}T^{*}(P_{M}x)$ = $(P_{M}T^{*}P_{M})(x) = P_{M}T^{*}(x) = P_{M}(T^{*}x)$ New a little bit calculation

show that

$$\overline{Orb(S^*, P_M(x))} = \overline{\{P_M(x), S^*(P_M x), (S^*)^2(P_M x), ...\}}$$

$$= \{\overline{P_M(x), P_M(T^* x), S^*(P_M T^* x), ...}\}$$

$$= \{\overline{P_M(x), P_M T^*(x), P_M(T^*)^2(x), ...}\}$$

$$= P_M\{\overline{x, T^* x, (T^*)^2 x, ...}\} = \overline{P_M(H)} = M$$

i.e., the projection $P_M x$ is hypercyclic for $S^* = P_M T^* \mid_M$. Since S is a θ -operator, then $r(S) = \parallel S \parallel = \parallel S^* \parallel > 1$ [If $\parallel S^* \parallel \leq 1$, then S^* is not hypercyclic this is impossible].

We prove $\sigma(S) \cap (C \setminus \overline{D}) \neq \emptyset$. Since $r(S) = \sup\{|\lambda| : \lambda \in \sigma(S)\} > 1$, this means that $\sigma(S)$ contains a complex number λ such that $|\lambda| > 1$ and since $C \setminus \overline{D} = \{\lambda : |\lambda| > 1\}$. Consequently $\sigma(S) \cap (C \setminus \overline{D}) \neq \emptyset$.

Now to show that $\sigma(S) \cap D \neq \phi$. If $\sigma(S) \subset (C \setminus \overline{D})$. i.e, $\sigma(S) \cap D = \phi$, then for all λ in $\sigma(S)$ is nonzero and hence $0 \in \rho(S)$, thus S is an invertiable and therefore S^{-1} is a θ -operator.

Since $\sigma(S)$ contains a complex number λ such that $|\lambda| > 1$, then by [3, P.171], $\sigma(S^{-1})$ contains a complex number λ^{-1} such that $|\lambda| \le 1$. Thus $r(S^{-1}) = \inf\{|\lambda| : \lambda^{-1} \in \sigma(S)\} \le 1$.

Consequently $||S^{-1}|| \le 1$. But S^* hypercyclic and invertiable, which implies that $(S^*)^{-1}$ is hypercyclic and thus $||(S^*)^{-1}|| > 1$ by **Corollary** (3.5).

Notice that $||S^{-1}|| = ||(S^{-1})^*|| = ||(S^*)^{-1}|| > 1$, this is a contradiction since $||S^{-1}|| \le 1$, it follows that $\sigma(S) \cap D \ne \emptyset$.

Since T is a θ -operator, then T has property (β) by **Remark** (3.4) and hence T has property (C). Thus by **Proposition** (2.2), $\sigma_T(x) = \sigma(T|_{H_{\sigma}(F)})$ whenever $F = \sigma_T(x)$ for nonzero x and as in the previous paragraph, it follows that $\sigma_{T}(x) \cap D \neq \phi$ and $\sigma_T(x) \cap (C \setminus \overline{D}) \neq \phi$ for every nonzero $x \in H$.

 $\hfill\Box$ view of **Proposition** (2.2), an

view of **Proposition** (2.2), an equivalent way to state **Theorem** (3.1) is as follows.

Theorem 3.8. If T is a θ -operator on a separable Hilbert space H, then T^* is hypercyclic if and only if $\sigma(T|_M) \cap D \neq \phi$ and $\sigma(T|_M) \cap (C \setminus \overline{D}) \neq \phi$ for every hyperinvariant subspace M of T.

4. Countably Hypercyclicity

It was shown in [6] that if T is a θ -operator, then for fixed scalar, $\ker(T-\lambda)$ reduces T and $T|_{\ker(T-\lambda)}$ is normal. Recall that an operator $T \in \mathcal{B}(H)$ is called pure if there is no reducing subspace M such that $T|_M$ is normal.

Proposition 4.1. If T is a pure θ -operator, then T has no eigenvalues.

Proof. If $\lambda \in \sigma_p(T)$, then $T|_{\ker(T-\lambda)}$ is normal, it is a contradiction to definition of pure. Therefore $\sigma_p(T) = \phi$.

Now we give an example of θ -operator which is not countably hypercyclic.

Example 4.2. Let U be the unilateral shift operator defined on $\ell^2(N)$

$$U(x_1, x_2, x_3...) = (0, x_1, x_2, x_3,...)$$

U is a θ -operator by **Example (3.6)**. since ||U||=1, then $||U^n|| \le ||U||^n = 1$ and hence $\sup ||U^n|| < \infty$. Thus can not exists a bounded set E with Orb(U,E) dence by **part (a)** of **Proposition (2.6)**. Therefore U is not countably hypercyclic. \square

Lemma 4.3.

- a. If T is a θ -operator on a Hilbert space H, then for any open set $U \subseteq C$, we have $H_{T^*}(U)^{\perp} = H_T(C \setminus U)$.
- b. If T is a pure θ -operator for which $H_{T^*}(D)$ is finite dimensional, then $H_{T^*}(D) = \{0\}$.

Proof.

- a. Since T is θ -operator, then T has property (β) by **Remark** (3.4), and hence T^* has property (δ) . Therefore by [1, **Proposition** (2.5.14)], for any open set $U \subseteq C$, we have $H_{T^*}(U)^{\perp} = H_T(C \setminus U)$.
- Suppose that $H_{r^*}(D)$ is a b. nonzero and finite dimensional. Since $H_{r^*}(D)$ is finite dimensional invariant subspace for T^* , it follows that T^* has eigenvectors with eigenvalues in D. Let λ be such an eigenvalue, then since $\ker(T^* - \lambda) \subseteq H_{T^*}(D)$, it follows that $\ker(T^* - \lambda)$ is finite dimensional. Thus by [1, Lemma (3.1.2)], $(T - \lambda)$ has closed range. T is pure, then by **Proposition (4.1)**, $T - \lambda$ is one to

one with closed range, hence $\overline{\lambda} \in [\sigma(T) \setminus \sigma_{ap}(T)].$ However, $[\sigma(T) \setminus \sigma_{an}(T)]$ is an open set and since $\lambda \in D \cap [\sigma(T) \setminus \sigma_{ap}(T)]$, it follows that $D \cap [\sigma(T) \setminus \sigma_{ap}(T)]$ is a non-empty open set. Hence for each $\mu \in D \cap [\sigma(T) \setminus \sigma_a p(T)]$ we $\ker(T^* - \overline{\mu}) \neq \{0\}$ have $\ker(T^* - \overline{\mu}) \subseteq H_{T^*}(D)$. It follows $H_{r^*}(D)$ is infinite dimensional, a contradiction.

Theorem 4.2. If T is a pure θ -operator on a separable Hilbert space H, then T^* is countably hypercyclic if and only if for every hyperinvariant subspace M of T, $\sigma(T|_M)\cap (C\setminus \overline{D})\neq \phi$ and $\sigma(T)\cap D\neq \phi$

Proof. Suppose the spectral conditions are satisfied. We want to apply **Theorem** (2.5). So, suppose that $H_{T^*}(D) = \{0\}$. Since T is θ -operator, then by part (a) of Lemma (4.1), $H_{T^*}(D)^{\perp} = H_T(C \setminus D)$, it follows that $H_T(C \setminus D) = H$. Thus by **Proposition** (2.1), $\sigma(T) = \sigma(T|_{H_T(C \setminus D)}) \subseteq (C \setminus D)$ a contradiction. So, $H_{r^*}(D) \neq \{0\}$, now by part (b) of Lemma (4.1) $H_{r^*}(D)$ is infinite dimensional. Now, suppose that $H_{\tau^*}(C \setminus \overline{D})$ is not dense in H, i.e., $\overline{H_{r^*}(C \setminus \overline{D})} \neq H$, then $H_{r^*}(C \setminus \overline{D}) \neq H$. Thus $H_{\tau}(\overline{D})$ is a nonzero [If $H_T(\overline{D}) = 0$, then by **part** (a) of $H_{T^*}(C \setminus \overline{D})^{\perp} = H_T(\overline{D}) = 0$, and hence $H_{\tau^*}(C\setminus \overline{D})^{\perp\perp}=H\ .$ So $H_{T^*}(C \setminus \overline{D}) = H$. contradicting our

assumption]. Therefore $H_T(\overline{D})$ is a nonzero hyperinvariant subspace for T. Furthermore $\sigma(T|_{H_T(\overline{D})}) \subseteq \overline{D}$ contradicting our assumption. Thus it follows that $H_{T^*}(C \setminus \overline{D})$ is dense. So, by **Theorem (2.5)**, T^* is countably hypercyclic.

Conversely, suppose T^* is countably hypercyclic. Let E be a bounded set, that is bounded away from zero, with dense orbit by **part** (a) of **Remark** (2.7). Let M be an invariant subspace for T and let P_M be the projection onto M. It is easy to prove $(T|_M)^*P_M = P_MT^*$ and $P_M(E)$ is bounded set.

Now

$$\overline{Orb((T|_{M})^{*}, P_{M}(E))} = \bigcup_{P_{M}} \overline{\{P_{M}(x), (T|_{M})^{*}(P_{M}(x)), ((T|_{M})^{*})^{2}(P_{M}(x)), \dots\}} \\
= \bigcup_{P_{M}} \overline{\{P_{M}(x), ((T|_{M})^{*}P_{M})(x), ((T|_{M})^{*}(T|_{M})^{*}P_{M})(x), \dots\}} \\
= \bigcup_{P_{M}} \overline{\{P_{M}(x), (P_{M}T^{*})(x), ((T|_{M})^{*}(P_{M}T^{*})(x)), \dots\}} \\
= \bigcup_{P_{M}} \overline{\{P_{M}(x), (P_{M}T^{*})(x), ((T|_{M})^{*}((P_{M}T^{*})(x)), \dots\}} \\
= \bigcup_{P_{M}} \overline{\{P_{M}(x), P_{M}(T^{*}x), ((P_{M}T^{*})T^{*})(x), \dots\}} \\
= \bigcup_{P_{M}} \overline{\{P_{M}(x), P_{M}(T^{*}x), ((P_{M}T^{*})^{2})(x), \dots\}} \\
= P_{M}(\bigcup_{x \in E} \overline{\{x, T^{*}x, (T^{*})^{2}x, \dots\}}) = \overline{P_{M}(H)} = M$$

Therefore $P_M(E)$ whose orbit under $(T|_M)^*$ is dense in M. Thus, we must have $||T|_M||=||(T|_M)^*||>1$ [If $||(T|_M)^*||\leq 1$, then $||((T|_M)^*)^n||\leq 1$, $n=0,1,2,\ldots$ and hence

 $\sup \|((T|_M)^*)^n\| < \infty$. This is impossible by **part** (a) of **Proposition** (2.6)].

Since T is θ -operator, then $T\mid_M$ is θ -operator and hence $T\mid_M$ is normaliad. Thus $r(T\mid_M) = ||T\mid_M|| > 1$. Since $r(T\mid_M) = \sup\{|\lambda|: \lambda \in \sigma(T\mid_M)\} > 1$, then there is $\lambda \in \sigma(T\mid_M)$ such that $|\lambda| > 1$, also since $C \setminus \overline{D} = \{\lambda: |\lambda| > 1\}$. So $\sigma(T\mid_M) \cap (C \setminus \overline{D}) \neq \emptyset$.

Now, if $\sigma(S) \cap D = \phi$, i.e., $\sigma(S) \subset (C \setminus D)$, then for all λ in $\sigma(T)$ is nonzero and hence $0 \in \rho(T)$, thus T is an invertiable and therefore T^{-1} is θ -operator. Since $\sigma(T)$ contains a complex number λ such that $|\lambda| > 1$, then by $[\mathbf{3}, \mathbf{P.171}]$, $\sigma(T^{-1})$ contains a complex number λ^{-1} such that $|\lambda| \le 1$. Thus $r(T^{-1}) = \inf\{|\lambda|: \lambda^{-1} \in \sigma(T)\} \le 1$. Consequently $||(T^*)^{-1}|| = ||T^{-1}|| \le 1$, hence $||T^*x|| \ge ||x||$ for all $x \in H$, contradicting **part** (b) of **Proposition** (2.6)

Proposition 4.3. If T is a θ -operator, then T^* has a bounded set with dense orbit if and only if for every hyperinvariant subspace M of T, $\sigma(T|_M) \cap (C \setminus \overline{D}) \neq \phi$.

Proof. Suppose that every hyperinvariant subspace M of T, $\sigma(T|_M) \cap (C \setminus \overline{D}) \neq \phi$, we want to show $H_{T^*}(C \setminus \overline{D})$ is dense in H. So, suppose that $H_{T^*}(C \setminus \overline{D})$ is not dense in H, i.e., $\overline{H_{T^*}(C \setminus \overline{D})} \neq H$, then $H_{T^*}(C \setminus \overline{D}) \neq H$ and hence $H_T(\overline{D})$ is a nonzero hyperinvariant subspace for

 $\sigma(T|_{H_{\pi}(\overline{D})}) \subseteq \overline{D}$ T. Furthermore contradicting our assumption. Thus $H_{r^*}(C \setminus \overline{D})$ is dense in H. It follows $Z=H_{\tau^*}(C\setminus \overline{D}),$ that then condition(2) of the Countably Hypercyclic Criterion is satisfied, see [7, Theorem 3.2]. However, condition (2) of the Countably Hypercyclic Criterion easily implies that the unit ball has dense orbit, then by **part** (b) of Remark (2.7) has a bounded set with dense orbit. The converse is similar to the proof of **Theorem (4.2)**

References

- 1. Laursen, K.B. and Neumann. M.M., 2000. An Introduction to Local Spectral Theory, Mathematical Society Monographs New Series, 20, Clarendon Press, Oxford, London, pp (14-222).
- **2.** Campbell, S.L. 1975. *Linear operators for which* T^*T *and* $T+T^*$ *commute*, Pacific. J. Math., 61: 53–57.
- **3.** Conway, 1985. *A course in functional analysis*, Springer–Verlage, Berlin Heidelberg, New York, pp (39–197).
- **4.** Campbell, S.L. and Gellar. R.1976. *Spectral properties of linear operators for which* T^*T *and* $T+T^*$ *commute*, Proc. Amer. Math. Soc., 60: 197-202.
- **5.** Campbell, S.L. and R. Gellar. 1977. *linear operators for which* T^*T *and* $T+T^*$ *commute II*, Trans. Amer. Math. Soc., 226: 305-319.
- 6. Al-Saltan, R. E. 2000. Some generalizations of normal operators, M. Sc. Thesis, College of Science, University of Baghdad, pp (46-48).
- **7.** Feldman, N.S., T.L. Miller, and V.G. Miller. 2002. *Hypercyclic and*

- Supercyclic Cohyponormal Operators, Acta Sci. Math. (Szeged), 68: 303–328.
- **8.** Feldman, N.S. 2003. *Countably Hypercyclic Operators*, J. Operator Theory, 50: 107-117.
- **9.** Feldman, N.S.2002. ,The dynamics of cohyponormal operators, Contemp. Math. 321, Amer. Math. Soc.: 71-82.
- **10.** Y. Kato. 1994. Some examples of θ -operators, Kyushu Journal of Mathematics, 48: 101-109.
- **11.** Uchiyama, A. and Tanahashi, K. 2007. *Some spectral properties which imply Bishop's property* (β), RIMS Kokyuroku, 1535: 143-148.
- **12.** Shaakir. L.K. 1999. *Cyclic operators on Hilbert spaces*, M. Sc. Thesis, College of Science, University of Baghdad, pp (57).

$\theta-$ فوق الدائرية وفوق الدائرية المعدودة لمرافق المؤثر من النمط $\theta-$ بثينة عبد الحسن احمد $\theta-$

*قسم الرياضيات /كلية العلوم/جامعة بغداد.

الخلاصة

B(H) ليكن H فضاء هلبرت قابلا للفصل وغير منتهي البعد على حقل الأعداد العقدية وليكن H, حيث H هو جبر بناخ لكافة المؤثرات الخطية المقيدة على H في هذا البحث نبر هن انه

اذا كان H في B(H) هو مؤثر من النمط B فان

- ا. $\sigma(T|_M)\bigcap(C\setminus\overline{D})\neq \phi$ و $\sigma(T|_M)\bigcap D\neq \phi$ لكل فضاء $\sigma(T|_M)\bigcap(C\setminus\overline{D})\neq \phi$ و $\sigma(T|_M)\bigcap(C\setminus\overline{D})\neq \phi$ لكل فضاء جزئى عالى الثبوتية $\sigma(T|_M)\bigcap(C\setminus\overline{D})\neq \phi$.
- و. اذا كان T هو صرف, فان T^* هومؤثر فوق الدائرية والقابل للعد اذا كان T هو مؤثر فوق الدائرية والقابل للعد اذا كان T كان فضاء جزئى عالى الثبوتية T لا T لكل فضاء جزئى عالى الثبوتية T
- H ل M الثبوتية هقيدة ذات مدار كثيف اذا وفقط اذا كان لكل فضاء جزئي عالى الثبوتية T^* . $\sigma(T|_M)\cap(C\setminus\overline{D})\neq\phi$