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Abstract

Let H be an infinite dimensional separable complex Hilbert space and let
T € B(H), where B(H) is the Banach algebra of all bounded linear operators on H .

In this paper we prove the following results.

If T eB(H)isa @—operator, then
1. T® is a hypercyclic operator if and only if o(|,)ND=¢ and
o(T |M)ﬂ(C\5)¢¢ for every hyperinvariant subspace M of T.

2. If T is a pure, then T~ is a countably hypercyclic operator if and only if

o(T |M)ﬂ(C\[_))¢¢ and o(T)ND = ¢ for every hyperinvariant subspace M of
T.

3. T* has a bounded set with dense orbit if and only if for every hyperinvariant
subspace M of T, o(T |,,)N(C\D) # ¢.

Keywords: @ —operator, hypercyclic, countably hypercyclic, single valued
extension property (SVEP), Bishop's property (), decomposition property (9).

1. Introduction

Let H be an infinite dimensional called normaloid if r(T) =[| T ||, where

separable complex Hilbert space, and r(T) =sup{| A|: 2 € o(T)}, [3]-

B(H) be the set of all bounded linear

operators on H, we denote as usual It is well known [4] that

the spectrum, the point spectrum and @ —operator => normaloid

the approximate point spectrum of T

by o(), o,(T) and o,(T). An operator T € B(H) is called

Following [1], the Lat(T), where hyponormal if || T x||<|| Tx| for all

T € B(H), denoted the collection of all X € H . Campbell and Gellar [5] gave

T — invariant closed linear subspaces an example of a @ —operator which is

of H. If TeB(H) and M e Lat(T), not hyponormal, also Al-Sultan [6]

then T|,eB(M) is the restriction of gave an example of an operator which

TtoM. is hyponormal but it is not
6 —operator.

An operator T € B(H) is called

@ —operator if T'T commutes with
T+T7, [2]. Recall that T eB(H) is

If TeB(H) and xeH, then
the orbit of x under T s
orb(T,x) ={x,Tx,T°x,..}, [7]. If
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E < H, then the orbit of E under T
is
Orb(T,E)=W{E,T(E),T*(E),..}=
U._.orb(r,x)» (8], [9).

An operator T € B(H) is called
hypercyclic if there is a vector xe H
with dense orbit {x,Tx,T?x,..}, [7].

Following ([8], [9]), we say
that an operator T € B(H) is countably
hypercyclic if there exists a bounded,
countable, separated set E with dense
orbit. Recall that a set EcH is
separated if there exists an ¢ >0 such
that || x—y|>¢& for all x,yeE with
X#Y.

In [7], Feldman, Miller, and
Miller proved that the cohyponormal
operators (the adjoint of hyponormal
operators) are hypercyclic if and only

if o |,)ND=¢ and
o(T],)N(C\D)=¢ for every
hyperinvariant subspace M of T.

Recently Feldman [8] showed that
there are countably hypercyclic
operators which are not hypercyclic.
Furthermore, Feldman showed that the
pure cohyponormal operators are
countably hypercyclic if and only if

o(Ty)N(C\D) = ¢ and
o(T)ND = ¢ for every hyperinvariant
subspace M of T. In this paper we

give an example of a @—operator
which is not hypercyclic and prove that

the adjoint of @—operator is
hypercyclic if and only if
o(T [w)ND# ¢ and
o(T],)N(C\D)=¢ for every

hyperinvariant subspace M of T. We
also give an example of a & —operator
which is not countably hypercyclic and
prove that the adjoint of pure
6 —operator is countably hypercyclic if

and only if o(T |,,)N(C\D)#¢ and
o(T)ND = ¢ for every hyperinvariant
subspace M of T. Finally we prove
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the adjoint of @ —operator has bounded
set with dense orbit if and only if for
every hyperinvariant subspace M of

T, o(T|,)N(C\D)=4.

2. Preliminaries

An operator T € B(H) is said to have
single valued extension property
(SVEP) at 4, if

for every open set U < C containing
A, the only analytic solution
f :U — H of the equation

T-4)f(A)=0 (4 eU)

is the zero function [1]. An operator T
is said to have SVEP if T has SVEP
atevery 1eC.

Given T eB(H), the local
resolvent set p;(x) of T at the point
xeH is defined as the union of all
open subsets U < C for which there is
an analytic function f:U — H such
that

T-A)f(A)=x (1e€U)
The local spectrum o (x) of T at X
is then defined as o, (X) =C\ o (T)

For T e B(H), we define the
local ( resp. glocal ) spectral
subspaces of T as follows. Given a set
F cC (resp.aclosedset G C).
H.(F)={xeH 0y (x) c F}

(‘resp.

H;(F)={xeH: there exists an
analytic function f:C\G — H such
that (T-A)f(1)=x for all
A eC\G}).

Note that T has SVEP if and
only if H,(F)=H,(F) for all closed
sets F < C, [1, Proposition (3.3.2)].
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If UcC is an open set, then
define H,U)=U{H,(F):FcU is
compact}. H;(U) contains all
eigenvectors for T whose eigenvalues
belong to U and that H,(U) is a

hyperinvariant  subspace for T,
althought it is not necessarily closed,

[8].
An operator T eB(H) has

Dunford's property (C) if the local
spectral subspace H; (F) is closed for
every closed set F < C. An operator
TeB(H) is said to has Bishop's
property (B) if for every sequence
f.:U—->H such that
T-2)f,)—>0 uniformly  on
compact subsets in U, it follows that
f, — 0 uniformly on compact subsets
in U . It is well known [1] that

Bishop's property (#) = Dunford's

property (C) = SVEP
Moreover, an operator
T € B(H) has decomposition property

(6) if H=H,(U)+H, (V) for every
open cover {U,V} of C.

As shown in [1], an operator
T € B(H) has property (o) iff it is the
quotient of a decomposable operator.
Moreover properties (£) and (o) are
dual to each other, in the sense that an
operator T € B(H) has property (5)

iff its adjoint has property (J), and
conversely, T has property (o) iff its
adjoint has property (/).

Proposition 2.1. [1] Suppose that the
operator T e B(H) on the Hilbert
space H has SVEP, and that F cC
is a closed set for which the space
H, (F) is closed. Then

o(T |HT{F)) cF no—T (x)

The following result from
Feldman, Miller and Miller [7], gives
the relation between parts of the
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spectrum and the local spectra of an
operator with Dunford's property (C).

Proposition 2.2. [7] If T e B(H) has
Dunford's  property (C), then
or (X) =0 (T |, &) whenever
F = o, (x) for some nonzero xe H .
The following result from
Feldman, Miller and Miller [7], gives
sufficient condition for an operator to
be hypercyclic, we denote the interior
and exterior of the unit circle by

D,C\D respectively.

Corollary 2.3. [7] Let H be a complex
Hilbert space and suppose that
TeB(H) has the decomposition

property (8). If on.(X)(N\D=#¢ and

o7 (X)N(C\D) # ¢
nonzero xeH.
hypercyclic.

The following result from
Feldman [8], gives sufficient condition
for an operator to be countable
hypercyclic.

for  every
Then T s

Theorem 2.4. [8] (The Countably
Hypercyclic Criterion) Suppose that
TeB(H). |If there exists two

subspaces Y and Z in H,where Y is
infinite dimensional and Z is dense in
H such that

1. T"x— 0 forevery xeY ,and
2. There exists functions
B,:Z—>H such that
T'B,=1|, and B, x—>0 for
every xeZ
Then T is countably hypercyclic.

Theorem 2.5. [8] Suppose that
TeB(H) If H,(D) is infinite

dimensional and H,(C\D) is dense,
then T is countably hypercuclic.
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Proposition 2.6. [8]
a. If TeB(H) and there is a

bounded set E with Orb(T,E)

dense, then sup || T" ||= .

b. If there is a set E that is
bounded away from zero and
Orb(T,E) is dense, then T
cannot be expensive, that is
there exists an x e H such that
I T AI<Il X

In what follows, B(a,r) will denote
the open ball at a with radius r,
where for acH and r >0.

Remark 2.7.
a. Notice that if T is countably
hypercuclic and E={x,} a

bounded separated sequence with
dense orbit, then one may assume
that x, =0 for all n, thus it
follows that E is both bounded and
bounded away from zero, [8].

b. If an operator T has a set with
dense orbit, then any non-zero
multiple of that set also has dense
orbit. Thus T has a bounded set
with dense orbit if and only if the
unit ball has dense orbit if and only
if B(a,r) has dense orbit for any

r>0,[8].

3. Hypercyclicity

It is well known that the
restriction of @—operator T |, is a
@ —operator for every M e Lat(T),
and if T is a @-operator and
invertiable, then T is a @ —operator,
[7]. Recall that an operator T € B(H)
is dominant if (T-A)H (T -A)'H
for all scalars A, Y. kato show that
every @—operator is dominant, [10].

Before  proving one of
important results in this paper, we need
the following.
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Definition 3.1. [11] An operator
T € B(H) is said to have the property

(1) if for every A,ueo,(T) and
every bounded sequences of vectors X,
and 'y, such that A=x and
[(T-A% -0, [(T-24)y,l—0,
the sequence (x,,y,) converges to 0 as
n— oo,

Theorem 3.2. [11] If T has property
(11), then T also has property ().

It is well known that dominant
operator has Bishop's property (£) but
couldn't find the proof, so we prove it.

Theorem 3.3. Every dominant
operator has Bishop's property (5).

Proof. Let A, ueo,,(T) (4# u) and
sequences {x }.{y,} of bounded
vectors in H satisfy || (T —A)x, |[— 0,
|(T-A)y, >0 (@ n—0). Since T

is dominant, then || (T —A)"y, [0 as

n — oo . Hence
(A= 1)(%0:Yn) = ((A=T)%, Yo ) + (%o (T = )"y,) >0
as (n—0)

This implies that (x,,y,)—>0. Then
T has the property (1) Therefore T
has property (£) by Theorem (3.2).
O

Remark 3.4. Every & —operator has
Bishop's property (£).

Now we give an example of
@ —operator which is not hypercyclic,
We begin with the following result.

Corollary 3.5. [12] If T eB(H) and
| T [<1,then T is not hypercyclic.
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Example 3.6. Let U be the unilateral
shift operator defined on ¢?(N).

U (X, X%, %5...) = (0, X, X, X5,..)
One can easily cheek that
(UU)YU +U), X5, X, =

(X, Xy 4 X5, Xg + Xy5--)

(U +U)UU)) K X0 X
(Xp, X + X5, X, + X,,..2)
Which implies U is a & -—operator.
Since U is not hypercyclic by
Corollary (3.5). m

Now we give our Theorem.
Theorem 3.7. If T is a @—operator
on a separable Hilbert space H , then
T is hypercyclic if and only if
o, (X)ND=¢ and

o; (X)N(C\D) = ¢ for every nonzero
xeH.

)=

Proof. If T is a #—operator on H,
then T has property (£) by Remark

(3.4). Thus T has property (C), and so
T" has property (5). If the local
spectra o (X)ND=¢ and
o; (X)N(C\D) = ¢ for every nonzero

xeH, then T is hypercyclic by
Corollary (2.3).

Conversely, suppose that T~ is
hypercyclic. First we prove that every
part of the spectrum of T meets both

D and C\D, ie, o(T|,)ND=4¢

and o(T |,,)N(C\D) #¢.

Let S=T]|, for some
M e Lat(T)\{0}. If x is a hypercyclic
vector for T, then by the definition of
hypercyclic vector
Orb(T",x) ={x,T'x,(T)?x,.. } is
dencein H.

We claim the projection B, X is
hypercyclic for S"=P,T|, . Since
M e Lat(T)\{0}, then by Corollary
of Theorem 2, [3, P.39],
R, TR, =TPR,, .Consequently
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P TR, =P, T, and
S*(PM X) = (PMT* |M)(PM X) = PMT*(PM X)
= (PyT'R)(X) =R, T (x) =R, (T"x)

New a little bit calculation
show that

Orb(S”™, Ry (X)) ={Py (¥),8"(Pyx),(S)*(RyX)... 3

={P,, (X),P, (T"X),S (P, T X),.. }

={Pu (%), Py T (%), Ry (T)* (%), 3

=P, {XT X (T)?x%,..}=P,(H)=M

i.e., the projection B,Xx is
hypercyclic for S"=P,T"|,, . Since S
is a 6 —operator, then
rS)=Isl=Is"I>1 [ 1f [IS"]<1,
then S™ is not hypercyclic this is
impossible].

We prove o(S)N(C\D)# 4.
Since r(S)=sup{|A|:Ae0(S)}>1,
this means that o(S) contains a
complex number A such that [A1[>1
and  since C\D={1:| A>3
Consequently o(S)N(C\D) # ¢.

Now to show that
o(S)ND=¢. If o(S)c=(C\D). i.e,
o(S)ND=¢, then for all 4 in o(S)
is nonzero and hence 0 € p(S), thus S

is an invertiable and therefore S~ is a
6 —operator.
Since o(S) contains a complex

number A such that |1 |>1, then by
[3, P.171], o(S™") contains a complex
number A such that |A|<1. Thus
F(S™) =inf{| 1]: At e o(S)}<1.
Consequently ||S™|l<1. But
S™ hypercyclic and invertiable, which
implies that (S)™ is hypercyclic and
thus || (S ||>1 by Corollary (3.5).
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Notice that
1SS IS >1, thisis a
contradiction  since || S7[I<1, it

follows that o(S) D= ¢.

Since T is a @ —operator, then
T has property (£) by Remark (3.4)
and hence T has property (C). Thus by
Proposition (2.2), o1 (x) =o(T |,y )
whenever F=o0;(x) for every

nonzero x and as in the previous
paragraph, it follows that

o, (X)ND =g and
o7 ()N(C\D) = ¢

for every nonzero XxeH.
O

view of Proposition (2.2), an
equivalent way to state Theorem (3.1)
is as follows.

Theorem 3.8. If T is a @—operator
on a separable Hilbert space H, then

T is hypercyclic if and only if
o(T|,)ND# ¢ and
o(T|,)N(C\D) # ¢ for every
hyperinvariant subspace M of T .

4. Countably Hypercyclicity

It was shown in [6] that if T is
a @ —operator, then for fixed scalar,
ker(T —2) reduces T and T |_, IS
normal. Recall that an operator
T e B(H) is called pure if there is no
reducing subspace M such that T |,
is normal.

Proposition 4.1. If T is a pure
@ —operator, then T has no
eigenvalues.

Proof. If Aeo,(T), then T |yq 5 IS

normal, it is a contradiction to
definition ~ of  pure.  Therefore

o,(T)=¢.
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Now we give an example of
6 —operator which is not countably
hypercyclic.

Example 4.2. Let U be the unilateral
shift operator defined on ¢*(N)

U (X, %y, %) = (0,%, %5, Xs,...)

U is a @ —operator by Example (3.6).
since ||U|=1, then |JU"|KJU |"=1
and hence sup ||[U" ||< c. Thus can not
exists a bounded set E with
Orb(U,E) dence by part (a) of
Proposition (2.6). Therefore U is not
countably hypercyclic. o

Lemma 4.3.
a. If T is a @—operator on a
Hilbert space H, then for any
open set UcC, we have

HT*(U)L =H,(C\U).
b. If T isa pure &—operator for

which  H_.(D) is finite
dimensional, then
H_.(D) ={0}.

Proof.

a. Since T is @—operator, then T
has property () by Remark (3.4),
and hence T~ has property (5).
Therefore by [1, Proposition
(2.5.14)], for any open set U c C,
we have H_.(U)" =H;(C\U).

b.  Suppose that H_.(D) is a
nonzero and finite dimensional.
Since H_.(D) is finite dimensional
invariant subspace for T, it

follows that T~ has eigenvectors
with eigenvalues in D. Let A4 be
such an eigenvalue, then since

ker(T"—4) c H_.(D), it follows
that  ker(T'—A4) is  finite
dimensional. Thus by [1, Lemma
(3.1.2)], (T —4) has closed range.
Since T is pure, then by
Proposition (4.1), T—A4 is one to
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one with closed
Aelo(M)\ o, (M1
[o(T)\o,,(T)] is an open set and
since. e DN[o(T)\ o, (T)], it
follows that D([o(T)\o,,(T)] is

a non-empty open set. Hence for
each ueDN[o(T)\o,p(T)] we

have  ker(T"—u)={0}  and
ker(T"— ) = H..(D). It follows

range, hence
However,

that H..(D) is infinite
dimensional, a  contradiction.
O
Theorem 4.2. If T is a pure
6 —operator on a separable Hilbert
space H, then T  is countably

hypercyclic if and only if for every
hyperinvariant subspace M of T,

o(Ty)N(C\D) = ¢ and
o(T)ND=¢

Proof. Suppose the spectral conditions
are satisfied. We want to apply
Theorem (2.5). So, suppose that

H_.(D) ={0}. Since T is &—operator,
then by part (a) of Lemma (4.1),
H_.(D)" =H;(C\D), it follows that

H,(C\D)=H . Thus by Proposition
(21), o(T)=0(T |y @) =(C\D) a
contradiction. So, H_.(D)={0}, now
by part (b) of Lemma (4.1) H_.(D) is
infinite dimensional. Now, suppose
that H_.(C\D) is notdensein H, i.e.,
HT*(C\B) #H, then H,.(C\D)#H -
Thus H,(D) is a nonzero [ If

H,(D)=0, then by part (a) of
Lemma 4.2),
H..(C\D)" =H,(D)=0, and hence
H.(C\D)" =H. So
H.(C\D)=H.

contradicting our
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assumption]. Therefore HT(B) IS a
nonzero hyperinvariant subspace for
T. Furthermore  o(T |HT(B))§D

contradicting our assumption. Thus it
follows that H_.(C\D) is dense. So,

by Theorem (2.5), T" is countably
hypercyclic.

Conversely, suppose T s
countably hypercyclic. Let E be a
bounded set, that is bounded away
from zero, with dense orbit by part (a)
of Remark (2.7). Let M be an
invariant subspace for T and let P, be
the projection onto M . It is easy to
prove (T |,) P, =P,T and B, (E) is
bounded set.

Now

Orb((T )", Py (E))

= U 00.(T 1) (B OO 1)) (Ry (X)),

Pw (x)ePy (E)
xeE

= [UJER 00u((T 1) PO (T 1) (T ) R (), 3

P (X)EEPM (E)

= UR (0. (RTHX). (T 1) (R TH).-- 3

Pu (x)ePy (E)
xeE

= U{PM (X)’PM (T*X)!((PMT*)T*)(X),...}

2" (X)EEM (E)

- U{PM (X)’PM (T*X)!(PMT*)Z)(X),...}

Pu (X)EEPM (E)

=P, (X T%T)x..p =R, (H) =M
xeE

Therefore B, (E) whose orbit

under (T |,,)" is dense in M . Thus, we

must have [T |yl =9I (T |y)" I>1 [ If

(T ) €2, then [[((T |w))" <1,
n=012,... and hence
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sup | (T 1) )" ll< oo, This is
impossible by part (a) of Proposition

(2.6)].

Since Tis ¢ —operator, then
T, is &—operator and hence T |, is
normoliad. Thus r(T |,) =T |yl>2.
Since
r(T ) =sup{] A[: 2 € o(T |,y)}>1,
then there is Aeo(T|,) such that

| A]>1, also since C\D={1:|A]>1}.
So o(T|,)N(C\D) # ¢.

Now, if o(S)ND=¢, ie,
o(S)c(C\D), then for all A in
o(T) is nonzero and hence 0e p(T),
thus T is an invertiable and therefore
T is @-operator. Since o(T)
contains a complex number A such
that | A |>1, then by [3, P.171], (T ™)
contains a complex number A such

that |A£1. Thus
rT ) =inf{{A: ' eo(T)}<1.
Consequently || (T)™ I T [I<1,

hence || T'x|>|| x|| for all xeH,

contradicting part (b) of Proposition
(2.6) m

Proposition 43. If T is a

@ —operator,then T~ has a bounded
set with dense orbit if and only if for
every hyperinvariant subspace M of

T, o(T[y\)N(C\D) = 4.

Proof. Suppose that every
hyperinvariant subspace M of T,

o(T],)N(C\D)=¢, we want to
show H_.(C\D) is dense in H. So,

suppose that H_.(C\D) is not dense
in H, ie, H.(C\D)#H, then

H..(C\D)=H and hence H, (D) is
a nonzero hyperinvariant subspace for
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T. Furthermore  o(T|, 5)<D

contradicting our assumption. Thus
H_.(C\D) is dense in H . It follows

that if Z=H_.(C\D), then

condition(2) of the Countably
Hypercyclic Criterion is satisfied , see
[7, Theorem 3.2]. However, condition
(2) of the Countably Hypercyclic
Criterion easily implies that the unit
ball has dense orbit, then by part (b)
of Remark (2.7) has a bounded set
with dense orbit. The converse is
similar to the proof of Theorem (4.2)
O
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.o(T|,)N(C\D) = ¢



