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The logistic regression model is one of the modern statistical methods developed to
predict the set of quantitative variables (nominal or monotonous), and it is considered as
an alternative test for the simple and multiple linear regression equation as well as it is
subject to the model concepts in terms of the possibility of testing the effect of the overall
pattern of the group of independent variables on the dependent variable and in terms of its
use For concepts of standard matching criteria, and in some cases there is a correlation
between the explanatory variables which leads to contrast variation and this problem is
called the problem of Multicollinearity. This research included an article review to
estimate the parameters of the logistic regression model in several biased ways to reduce
the problem of multicollinearity between the variables. These methods were compared

through the use of the mean square error (MSE) standard. The methods presented in the
research have been applied to Monte Carlo simulation data to evaluate the performance of
the methods and compare them, as well as the application to real data and the simulation
results and the real application that the logistic ridge estimator is the best of other method.

Najlaa S. Ibrahim
najlaa.s.a@uomosul.edu.iq

DOI: 10.33899/1QJOSS.2020.165448, ©Authors, 2020, College of Computer Science and Mathematics, University of Mosul.
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

1- Introduction

Regression is a statistical method that specializes in studying the relationship between a dependent variable and one or
several other independent variables, resulting in a mathematical equation where this relationship represents the best
representation. The logistic regression model is a special case of the generalized linear model which is the most common in
analyzing metadata and is a logarithmic transformation of linear regression, and it has several types, but the most common
is the analysis of the binary logistic regression that we will use in our research without other types of logistic regression. it
is a more powerful tool because it provides a test of the significance of parameters, and it also gives the researcher an idea
of how much the independent variable affects the qualitative dependent variable dual value In addition, it sees the effect of
independent variables, which allows the researcher to conclude that a variable is considered stronger than the other variable
in understanding the appearance of the desired result, and that the logistic regression analysis can include qualitative
independent variables The effect of the interaction between the independent variables in the two-valued dependent variable
[Abbas,2012]. The researcher faces many problems, most of which are the lack of analysis hypotheses when using the
method of ordinary least squares, including the problem of multicollinearity that affects the results of estimates and tests,
and this problem appears as a result of an association between explanatory variables that lead to giving weak estimates that
cannot be relied upon as the variations of these The capabilities are amplified and unacceptable and the (OLS) method is
not able to give good estimates when there is a linear relationship between the explanatory variables.

2- Logistic Regression

The logistic regression model is an important statistical model in analyzing binary data (0 or 1) as the primary goal of most
studies is to analyze and evaluate relationships between a set of variables to obtain a formula by which we describe the
model and uses the logistic regression model to describe the relationship between the response variable of the
discontinuous type and the explanatory variables, prediction, estimation and control of the values of the dependent variable
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according to the changes in the values of the variable with interpretation [Farhood, 2014]. One of the characteristics of the
binary response logistic regression is that the dependent variable (Y) of the response variable follows the Bernoulli
distribution taking the value (1) with a probability of (1) probability of success, and a value (0) with a probability (1- x) of
failure probability [Qasim,2011]. As we work in linear regression whose independent and dependent variables take
continuous values, the model that links the variables is as follows:

Y =8 +pBX+ ¢y

Since (Y): represents a continuous observational variable and assuming that the average values of (Y) observation or actual
at a given value of the variable x which is E(Y) and that the variable e represents a random error, then the model can be
written as follows:

EY|X) =By + B X (2)
In regression (the other end), it is known that models have values (-co0,+ o), but when the variable (Y) is:

EYIX)=P.(Y=1=mn 3)

Thus, the value of the right side is confined between the two numbers (0.1), and thus the model is not applicable from the
regression point of view, and one of the methods of solving this problem is to enter an appropriate mathematical
transformation on the dependent variable (Y). Since (0 < w < 1), then the ratio (n / (1-n)) is a positive amount confined
between (0, ) i.e. (0 <7/ (1-m) < ) and taking the natural logarithm For the base (e) of the amount (n / (1-7)) the value
field becomes between  (-o0, + 00) and is ((-o0< loge ( / (1-1)) < o). Therefore, the regression model can be written in the
case of one explanatory variable as follows:

loge (=) = Bo + BuX 0
But if we have more than one explanatory variable, then the model is formulated as follows:
L 14
loge(;) = Bo + Xj=1 B Xij )
As:i=1.23, ... N By, B2 ..., By Directed for features to be estimated.  X;;: are explanatory variables.

As for (n / (1-m)) odds of success rate or preference ratio for the desired event and its mathematical formula are as follows:

P(Y=1) _ po+Xf_ BjXij
a6 (6)

The probability formula for the logistic regression model is written as follows:

eXB
™= m (7)

And the amount Loge(r / (1-n)) is called the logs odds of success logarithm. Logistic regression does not require many
assumptions. It only requires that there is no correlation between the explanatory variables and that the volume of
observations is large in each group that is assumed to be greater than five times the number of parameters used in the final
model [Demosthenes, 2006]. The estimation of the parameters of the logistic regression model is carried out using the
Maximum Likelihood Method (ML), which is one of the most famous estimation methods in statistics. Assuming that the
observations are independent, the logarithmic likelihood function is defined by the following formula: [Hosmer and
Lemeshow, 2000]

L= Yilog(m) + (1 = ¥log(1 - m) ®)
i=1
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By maximizing the likelihood function (L) and taking the derivative with respect to the parameters (B) and equating the
result of the equation with zero, the possibility function is given as:

0= > X -m) )
i=1

Since equation (9) is a nonlinear parameter, some special methods should be used to obtain the appropriate solutions.
Therefore, Iteratively Re-Weighted Lest Squares (IRLS) can be applied to obtain appropriate solutions. The maximum
likelihood estimator (MLE) of the parameters () can be found using the IRLS algorithm as follows:

ﬁMLE =ST1XWZ (10)
As S=XWX< W =diag(#;(1—#)) <« Z;=log(#,)

One disadvantage of using MLE is that MSE becomes bulky when explanatory variables are Linear dependent, which is
called the problem of multicollinearity. A condition number (CN) has been developed to test the existence of the problem
of multicollinearity between the variables known as the following formula:

2/ A/ =
N — | == a1
(= >

minm

As: /Imax » Amin They represent the largest and smallest eigenvalue roots of the matrix (S), if the value of CN <10 this

means there is no problem of multicollinearity between the explanatory variables and if it is  10< CN <30 then there is a
problem of moderate multicollinearity between the explanatory variables and if the value CN> 30 This means that there is a
strong multicollinearity problem between the explanatory variables [Inan and Erdogan, 2013] Also when the eigenvalue
root values of the matrix (S) are close to zero, this indicates that there is a problem of multicollinearity between the
variables and this will lead to an increase in the value of (MSE) .The value of the mean square error of equation (10) is
found according to the following formula: [Siray et al. 2015]

—~ = u
MSECSuw ) — >_—

a=>
3
As: }ti represent the eigenvalue roots of the matrix (S).

3- Ridge Estimator

When there is multicollinearity, the maximum likelihood estimator method (ML) suffer from inflation in the variations of
the estimated parameters and the occurrence of instability, and this inflation is represented by the diagonal elements of the
matrix (S). To solve this problem, [Schaefer et al., 1984] suggested a logistic ridge estimator (LRE) that was first
introduced by 1970 (Horal & Kennard), and used it to estimate the parameters for the Multiple Linear Regression Model.
This method is summarized by adding a small positive constant quantity (k) whose value falls between zero and one (0< k
<1) to the diagonal elements of the information matrix (S) to obtain more accurate estimator, and this method works to
decouple the links between the explanatory variables and the logistic character estimator is defined according to the
formula next: [Mansson and Shukur, 2011] and [Kibria et al. , 2012]

Pire = S+ kDX WZ (13)

The estimator (ML) can be considered a special case of equation (13) when the value of (k = 0). The value of k in logistic
regression models is found according to one of the following common formulas: [Schaefer et al., 1984] & [Smith et al.,
1991]

k - /\';’\ L] k - % ’ k - ,\'F)—+,\:L
AL Bm AL Bau AL Bm

The value of the average square error of equation (13) is found according to the following formula:

a4
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~ P 1. + k%2
MSE (S5 y=>_-_ J
LRE s (;i«j _|_k)2

as

As: @ ~7Pw ang 7 represent the eigenvalue vectors of the matrix (S).

4-  Liu Estimator

Liu's logistic estimator was defined by the scientist (Mansson et al., 2012) as another solution to the problem of
multicollinearity, and Liu's logistic estimator denoted by symbol (LLE) was defined according to the following formula:

BLLE =S+ I)_l(s +dI) ﬁML (16)

As: (0<d <1) is the biasing parameter, regardless of the value of (d), the value of (MSE) of the Liu logistic value (LLE) is
less than the value (MSE) of maximum likelihood estimate (ML). The value of d is found according to the following
formula: [Mansson et al. 2012]

S (e — DA, D)

d,, . = max(O0,

D) a7

Zp:((/ljajz +1D/2;,(A; +1D3)

The value of the average square error of equation (16) is found according to the following formula:

MSE(SBL ) => @as)

i—1

A; +d)? +d —D?*x,;?
A;(4; +D? - A; +1D?

5- Liu-Type Logistic Estimator

The Liu-Type estimator was suggested as a substitute for the ridge regression estimator in the linear regression, which was
defined by the following formula:

~ . -1 . ~

Bure = (XX + k1) (XX +dI) Boss (19)

As: (-0 <d <o), (k> 0) and f represent the estimated value of the parameter f in the least squares method. To take into
account the problem of strong linear interrelationship, a Liu-Type logistic estimator has been proposed, which can be

defined according to the following formula:

Brire = S+ kDS +dD) fu, (20)

And that the value of the average square error of the above equation is found according to the following formula:

(€=}

_ e (A; +d)H* d—Kk)*e;”
MSE(LL L +e) = ; A,(A; +k)Z - a4; +k)? j

6- Tow-parameter Logistic Estimator

The Tow-parameter estimator was suggested by [Asar and Genc, 2017] as an alternative to the ridge regression estimator in
a linear regression that was defined by the formula:

~ ., -1 ., ~

Birpe = (XX + k1) (XX + kdl) Bos (22)

As: (0 <d <1), (k>0) and f represent the estimated value of the parameter { in the least squares method and in the ridge
logistic regression model, the estimator with two parameters denoted by the symbol (LTPE) is defined according to the

following formula:

ﬁLTPE = S+k I)_l(s + kdl) 3ML (23)
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We note that B rprcombines between two different estimators, which are the liu logistic estimator (LLE) and the ridge
logistic estimator (LRE), if the value of (k=1) in equation (23) we get the liu logistic estimator B, zand if the value of
(k=0) in equation (23) We get the maximum likelihood estimator By;.and when the value of (d = 0) in equation (23) we get
the ridge logistic estimator B, rg. And that the value of the average square error of equation (23) is found according to the
following formula:

MSE(BLTPE) = i 24

j=1

1; +kd)? . k*(d —D?e;?
A;(A; +k)? (A; +k)?
7- The practical side:

1- Simulation: For the purpose of obtaining the best capabilities, Monte Carlo simulation was used to compare
the above mentioned criteria by using the standard comparison of the average squares of error. The data was
generated using the MATLAB program where sample sizes were chosen (n = 50,120,200), The following
formula was used to generate the explanatory variables:

Xiji=QQ-p)"w;;+pwy, i=12,..,n&j=12,..,p (25)

As: p represents the value of the correlation between the explanatory variables in the studied model, and values were
taken (p =0.90,0.95,0.99).

n: represents the number of observation.

p: represents the number of related variables and values are taken (p =5,10).

w;;: represents random numbers that follow the standard normal distribution.

Wip: represents the values of the last column of the columns of the generated variables.

The response variable for (n) of observations was found according to the formula of the logistic regression
model:

_ ex<p (< /ZD
h ~ B (:L—|— exx<p (< ,6)) =S5

p

And B,=B,=Bs=...=P, and the feature values were determined z ﬁj =1[Kibria, 2003]. The experiment was repeated
j=1

(1000) times. And the mean square error (MSE) is calculated according to the following formula:

MSE(S,) — ﬁ)z(ﬁx — (B — 1D 27)

As: B, represents (B, Bires Biies Biirer Biree) Respectively

We conclude from the results of Table (1) the following three points:

1- As the correlation coefficient value increases, the MSE value increases when taking all the probabilities of the number of
explanatory variables (p) and the sample size (n). In addition, the estimated performance (LRE) is better than the rest of the
estimators.

2- The more the number of explanatory variables (p) increases, the value of (MSE) increases, and this increase affects the
quantity of estimators. However, the estimated performance (LRE) is better than the rest of the estimators.

3- As the sample size increases, the value of MSE decreases when taking different values for each correlation coefficient
and the number of explanatory variables.
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Table (1): shows MSE values for different values of p, p, n for data generated for each of the
capabilities ML, LRE, LLE, LLTE, LTPE.

B P ML LRE LLE LLTE LTPE

090 23013 07117 23013 07470 07434

3o 0.95 4.4138 1.ZT7EE 44158 1.B01E8 1.5678

099 201307 5 3018 Z0 1307 61 9295 S BOZ5

0.90 0.9365 0.3614 09363 0.3614 0.3614

=3 120 0.95 1.6919 0.3467 1.6919 0.5511 0.5522
099 80310 X 2102 80310 59571 3 3929

0.90 3325 0.z474 35235 0.z474 0.2474

200 a.95 1.035%9 03722 103959 Q3725 03725

099 4. 7502 1.3165 4 7502 1. 9428 1. 6654

0.90 =414z 1.39E9 =414z 1.4392 1.4339

so 095 103673 T 6734 104674 3 9056 3 3364

0.99 50.8296 IZ. 5165 50.829¢6 194 1565 250133

0.90 1.9879 0.5738 1.987%9 0.5738 0.5738

p=10 120 09 3 9080 T 0989 T 9060 11026 T 1030
099 I8 3977 4 B357 I8 3977 1Z 6889 T 4601

090 1.187%9 03776 1.187%9 031776 03776

200 0.95 2.2298 0.6522 22298 0.6522 0.6522

0.99 10.6250 I.B468 10.6250 4.0223 3.5251

2- Real data: Data were taken that dealt with anemia on two levels, namely acute anemia that was symbolized (0), and
chronic anemia, which was symbolized (1). The explanatory variables are the gender represented by the variable (X;), the
age represented by the variable (X,), the hemoglobin ratio (hp) represented by the variable (X3), the ferritin ratio in the
blood represented by the variable (X,), the retic count(They are immature red blood cells) ratio represented by the variable
(Xs), the MCV ratio represented by the variable (Xg), iron deficiency in the blood represented by the variable (X-), the rate
of transferrin in the blood represented by the variable (Xs), the cause of poverty is hemorrhage represented by the variable
(Xg) anemia, chronic diseases represented by variable (Xy0), and anemia is a decrease in blood cells Red represented by the
variable (Xy;). After conducting the initial data analysis in the Minitab program, he found the following:

1- The number of people with severe anemia is (67) patients with a percentage of 47.9%, while those with chronic anemia
are (73) patients with a rate of 52.1% as shown in Table (2).
Table (2): Shows the number of patients with anemia.

Types of anemia Number of people with types of the The proportion of
disease injured
Severe anemia 67 47.9
Chronic anemia 73 52.1
Total 140 100.0

2- As for the number of males and females in the sample, they were as in Table (3) as follows:

Table (3): Shows the number of males and females in the sample.

Male and female number Male and female ratio
Male 83 59.3
Female 57 40.7
Total 140 100.0

To test the existence of the problem of linear relationship between the data, the eigenvalue roots of the matrix (S) were
found and the values of the roots were as shown in Table (4), as we note that the value of CN = 726.9358 is greater than
(30) and this is evidence of the existence of a problem of multicollinearity between the explanatory variables.

Table (4): shows the values of the eigenvalue roots of the matrix (S).

A Ay A3 Ay I R A I I T et
143077 33144.1 1762.75 31.27 13.65 7.12 | 2.35 1.8 093 | 027 | 0.38
The following table shows the estimated binary logistic regression parameters, standard error, and MSE values for each of

the ML, LRE, LLE, LLTE, and LTPE estimators. We note that the best estimation is LRE having the lowest value for
MSE.

Table (5): shows the estimated parameters, standard error, and MSE values for ML, LRE, LLE, LLTE, LTPE.
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ML LRE LLE LLTE LTPE
MSE 86433 §.5803 83573 68519 5.6447
> 15023 25077 25784 £8.615 15012
A (2.34) (2.330) (2.533) (71.507) (2.34)
- 0.166 0.168 0.168 0606 0.166
A (0.085) {0.085) (0.085) (239) {0.085)
p 3620 3559 3380 1563 36103
A (1437) (1432) (1.433) (40452 (1437)
- -0.401 0.4 0.4 -1.096 -0.401
Ay (0.031) {0.031) (0.031) (0.865) {0.031)
p -19.775 ~10.688 _10.602 3713 -18.773
A (1.712) (1.706) (1.708) (48.204) (1712
s 2457 2444 1445 7763 2437
Bs (0.357) {0.355) (0.356) {10.041) {0357)
p 1073 1004 1083 7612 1074
B, (0.802) (0.799) (0.800) (22.591) (0.802)
s 230.733 -39387 -39.463 197188 239751
B (4372) (4355) (436) {123.074) (43715
p 10347 15046 10036 271365 10344
A (4.965) (4.947) (4.952) (139.788) (4.965)
. -8.609 -8.596 8373 -14346 -8.609
Ao (3.605) (3.591) (3.595) {101.495) (3.605)
- 160 4716 “1602 6336 ~1.690
A (2.398) (2.3891) (2392} (67.514) (2.398)

8- Conclusions:
1- The simulation results showed that the best way to address the problem of multicollinearity is the ridge logistic
regression method.
2- The higher the correlation coefficient value, the greater the MSE value.
3- The more the number of explanatory variables (p) increases, the value of (MSE) increases, and that this increase affects
the amount of estimators, however the estimated performance (LRE) is better than the rest of the estimators.
4- As the sample size increases, the value of (MSE) decreases when taking different values for each correlation coefficient
and the number of explanatory variables.
5- The results of the application on the data showed the fact that the ridge logistic regression method is the best method
presented in the search because it has the lowest value for the average squares of the error, and that the value of the
standard error for the estimated parameters was almost close to all methods.
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