Synthesis, Structural Studies of Some New Transition Metals Complexes of Semicarbazide hydro chloride Schiff Base Derivatives

Abbas ASalih Al-Hamdani, * Muhannd A.Mahmoud*
Shaimaa.R.Bakir*

Received 25, September, 2012 Accepted 5, December, 2012

Abstract:

A new series of transition metal complexes of Cu(II), Ni(II), Co(II) and Fe(III) have been synthesized from the Schiff base (L^1) and (L^2) derived from Semicarbazide hydro chloride and 4-chlorobenzaldehyde or 4-bromobenzaldehyde. The structural features have been arrived from their elemental analyses, magnetic susceptibility, molar conductivity, IR, UV-Vis. and 1H NMR spectral studies. The data show that the complexes have composition of $[M(L)_2](NO_3)_2$ and $[Fe(L)_2 (NO_3)_2](NO_3)$ where the M=Co(II),Ni(II) and Cu(II);L= L^1 and L^2 type. The magnetic susceptibility and UV-Vis spectral data of the complexes suggest a square planer geometry for Co(II) and Cu(II) but Fe(III) octahedral geometry and Ni(II) tetrahedral geometry around the central metal ion. Hyper Chem-6 program has been used to predict structure geometries of compounds in gas phase. The electrostatic potential of the free ligands were calculated to investigate the reactive sites of the molecules. The heat of formation (ΔH_f) and binding energy (ΔE_b) at 298K for the free ligands and its metal complexes were calculated by using PM3 method.

Keywords: Schiff base, Semicarbazide hydrochloride, theoretical studies

Introduction:

Coordination complexes gaining increasing importance recent years particularly in the design of repository; slow release or long acting drugs in nutrition and in the study of metabolism [1]The metal ions are also known to accelerate drug action. The interaction of metal ions with nucleic acids and nucleic acid constituents has been actively studied recent years [2,3].interaction of metal complexes with DNA has long been the subject of intense investigation in relation to the development of new reagents for biological and medicinal fields. DNA can be cleaved by hydrolytic or oxidative pathways. The hydrolytic process involves cleavage of the phosphodiester bond leading to the

formation of fragments that could be relegated by enzymatic process [4]A search through literature reveals that there is no work that has been done on the Schiff base and transition metal complexation [5,6,7,8 9,10,11].

Materials and Methods:

All chemicals used in this work were reagent grade (AR/Aldrich), including $Cu(NO_3)_2.3H_2O$, $Ni(NO_3)_2.6H_2O$, $Co(NO_3)_2.6H_2O$, Fe(NO₃)₃.9H₂O, Semicarbazide hydro chloride ,4-chlorobenzaldehyde,4bromobenzaldehyde DMSO, DMF, and ethanol. Double distilled water was used. The reagents used for the preparation of the ligands and its complexes were of Merck products. Spectroscopic grade solvents were used for spectral measurements.

^{*}Department of Chemistry, College of Science for Women University of Baghdad. Baghdad-Iraq

Fourier Transfer Infrared Rays (FTIR) the spectra were recorded in range (4000-200) cm⁻¹ on a Shimadzu 3800, FTIR spectrophotometer, using CsI .Pellets The UV-Vis spectra of the complexes were recorded in the range (200-1100)nm on a Shimadzu UV-160 spectrophotometer, in freshly prepared 10⁻³ M solutions in (DMF)at room temperature using quartz cell contents of (1.000)cm.,metal the complexes were determined using a Shimadzu A.A680G atomic absorption Spectrophotometer. Molar conductivity measurements of the complexes at 25°C in freshly prepared 10⁻³ M solutions in DMSO were determined using a PW9526 Digital Conductivity meter. The chlorine content was determined gravimetrically (Denny et at 1982). Magnetic properties were collected using (Balance magnetic model susceptibility MSR-MKi). ¹HNMR spectra were recorded using Bruker 400 MHz spectrophotometer. Elemental (C,H and N) analysis were carried out on a EUROEA-Elemental

X=Cl and Br

Semicarbazide hydro chloride

Synthesis of complexes with the ligand L^1 :

An ethanolic solution of the ligand (L¹) (1.97 g, 10 mM) was refluxed with Cu(NO₃)₂.3H₂O (0.6.g, 5 mM) for ~ 8 h. The mixture was kept at room temperature for ~ 24 h., a microcrystalline complex was separated. It was filtered under suction, and the crystals were washed with cold ethanol and finally with anhydrous diethyl ether and kept in a desiccator over fused CaCl₂.

The other complexes were also precipitated by a similar procedure in ethanol medium

analyzer Italya. The melting points of the prepared complexes were measured using Gallen Kamp apparatus while

Synthesis of Schiff base (4-chlorobenzylidene)-urea amine (L^1)

The ethanolic solution of 4-chlorobenzaldehyde (1.4g, 10 mM) was refluxed with Semicarbazide hydro chloride (1.11g, 10 mM) add the sodium acetate (1.23g, 15mM) for 10 h, the volume of the solution was reduced to one third. On cooling, a white solid was separated, filtered and recrystallised from ethanol.

Synthesis of Schiff base (4-bromobenzylidene)-urea amine (L²)

The ethanolic solution of 4-bromobenzaldehyde (1.85g, 10 mM) was refluxed with Semicarbazide hydro chloride (1.11g, 10 mM) add the sodium acetate (1.23g, 15mM) for 10 h, the volume of the solution was reduced to one third. On cooling, a white solid was separated, filtered and recrystallised from ethanol

$$\begin{array}{c|c} \hline \text{sodium acetate} \\ \hline \text{ethanol -H}_2\text{O} \end{array} X - \begin{array}{c|c} C = N - N - C - NH_2 \\ \hline H & H \end{array}$$

Synthesis of complexes with the ligand L^2 :

An ethanolic solution of the ligand (L^2) (2.42 g, 10 mM) was refluxed with $Cu(NO_3)_2.3H_2O$ (0.6, 5 mM) for ~ 8 h. The mixture was kept at room temperature for ~ 24 h., a microcrystalline complex was separated. It was filtered under suction, and the crystals were washed with cold ethanol and finally with anhydrous diethyl ether and kept in a desiccator over fused $CaCl_2$.

The other complexes were also precipitated by a similar procedure in ethanol medium.

Fig (1):Suggest the structure of the complexes

Results and Discussion:

Physico-chemical characterizations and geometrical configuration of the complexes:

Metal (II) salts react with Schiff base ligand in 1:2 molar ratios in alcoholic medium. The ligands and its complexes are stable at room temperature and are nonhygroscopic. The ligands are soluble in common polar organic solvents, such as ethanol, methanol, and chloroform but partially soluble in hexane. The Schiff base complexes are relatively well soluble in DMF and DMSO. The synthesized and its complexes characterized by elemental analysis, conductivity molar and spectra, measurements. Apart from this,

biological activity of the ligands and its complexes were studied. The geometry of the newly synthesized compounds has been elucidated based on their elemental analysis, molar conductivity and spectral data.

Elemental Analysis:

The stoichiometry of the ligands and its complexes were confirmed by their elemental analysis. The metal / ligand ratio was found to be 1:2 has been arrived at by estimating the metal, carbon. hydrogen and nitrogen contents of the complexes. Elemental ligands analysis of and Cu(II),Ni(II),Co(II)and Fe(III) complexes show good agreement with the proposed structures of the ligands and its complexes (Table 1).

Table (1): Physical Characteristics and analytical data for (L^1) , (L^2) and its metal complexes

Mol. Formula	Color	Yield %	M.P (⁰ C)	C% Calcd	H% Calcd	N% Calcd	M% Calcd	Cl% Calcd
Mol. Weight		, •	(0)	C% Expt	H% Expt	N% Expt	M% Expt	Cl% Expt
(C ₈ H ₈ N ₃ ClO)	White	nite 72	214-	48.62	4.08	21.26	-	17.96
L ¹ =197.62			216	48.01	5.01	21.05		16.87
$(C_8H_8N_3OBr)$ $L^2=242.02$	Yellow	59	210	39.69	3.33	17.36	-	-
L = 242.02				38.43	4.12	17.34		-
$[Fe(NO_3)_2(L^1)_2]NO_3$	Reddish	66	220-	30.14	2.51	19.78	8.76	10.89
=636.99	brown		222	30.89	2.90	20.32	7.78	11.22

[Fe(NO ₃) ₂ (L ²) ₂]NO ₃	Reddish	81	231-	26.45	2.2	17.36	7.69	-
=725.79	brown		233D	26.07	2.55	18.07	7.77	-
$[Co(L^1)_2](NO_3)_2$	Light	64	191-	33.21	2.76	19.37	10.19	12.1
=578.11	pink		193D	33.94	2.06	18.85	10.66	11.43
$[Co(L^2)_2](NO_3)_2$	Light	58	211-	28.78	2.39	16.79	8.83	-
=666.91	pink		213	28.66	2.65	17.01	7.62	-
$[Ni(L^1)_2](NO_3)_2$	Brown	83	108-	33.22	2.76	19.38	10.15	12.11
=577.87			110	33.76	2.11	20.42	11.23	13.01
$[Ni(L^2)_2](NO_3)_2$	Brown	67	121-	28.8	2.4	16.79	8.8	-
=666.67			123	28.01	3.12	17.87	7.67	-
$[Cu(L^1)_2](NO_3)_2$	Greenish	62	240-	32.94	2.74	19.22	10.9	12.01
=582.72	yellow		242	33.07	3.25	20.56	9.43	12.79
$[Cu(L^2)_2](NO_3)_2$	Greenish	58	258-	28.59	2.38	16.67	9.46	-
=671.52	yellow		260	28.11	3.12	17.11	10.23	-

Infrared spectra:

The spectra provide IR valuable information regarding the nature of functional group attached to the metal atom. The IR spectra of the ligands L^1 and L^2 showed strong bands in the 3286, 3190 cm⁻¹ and 3294, 3201 cm⁻¹ respectively assignable attributed to the -NH₂ group and the strong bands in the 3460 cm⁻¹ and 3449 cm⁻² respectively assignable attributed to the -NH group The appearance of this peaks in all the spectra of the complexes indicates that the -NH2 and -NH groups is free from complexation [6,8,9,10,12,13,14]

The IR spectra of the ligands L¹ and L² showed a band in the 1689 and 1692 cm⁻¹ respectively, assignable attributed to the C=O groups., which is shifted to lower frequencies in the spectra of all the complexes (1669–1657 cm⁻¹) for the ligands L¹ and L² indicating the involvement of -C=O oxygen in coordination to the metal

,16,17]. Accordingly, ion[15 spectrum of the ligands L^1 and L^2 shows two different -C=N bands in the and 1590 cm⁻¹ respectively, which is shifted to lower frequencies in the spectra of all the complexes (1564– 1549 cm⁻¹) indicating the involvement of -C=N nitrogen in coordination to the metal ion. [15,16,17] Accordingly, the ligands acts as a bidentate chelating agent, bonded to the metal ion via the nitrogen (-C=N) atoms and the oxygen (-C=O) atoms of the Schiff base ligands L^1 and L^2 for the Co(II), Ni(II) ,Cu(II) and Fe(III) complexes. Assignment of the proposed coordination sites is further supported by the appearance of medium bands at 520-489 cm⁻¹ which could attributed to vM-O and 570-524cm⁻¹ vM–N respectively for complexes with ligands \overline{L}^1 and the L^2 [8,17] In addition, the Fe(III) complexes show a band at 1319-1011 cm⁻¹ attributed to Fe-NO₃ frequency[17,18].

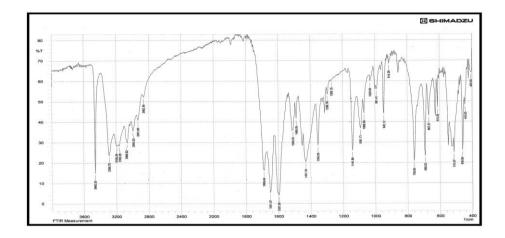


Fig (2) The FT-IR spectrum of L1 Table (2). Characteristic IR bands (cm⁻¹) of the compounds studied

Compound	vNH_2	υΝΗ	υC=O	υC=N	υΜ-Ο υΜ- Ν	vM-NO ₃
$(C_8H_8N_3OCl) = L^1$	3286	3460	1689	1597	-	
	3190					
$(C_8H_8N_3OBr)=L^2$	3294	3449	1692	1590	-	-
	3201					
$[Fe(NO_3)_2(L^1)_2]NO_3$	3285	3361	1669	1553	489 524	1319 1027
	3199					
$[Fe(NO_3)_2(L^2)_2]NO_3$	3268	3351	1659	1554	498 566	1311 1011
	3195					
$[Co(L^1)_2](NO_3)_2$	3269	3354	1665	1564	491 567	
	3187					
$[Co(L^2)_2](NO_3)_2$	3293	3351	1663	1549	504 559	
	3193					
$[Ni(L^1)_2](NO_3)_2$	3278	3340	1662	1554	524 560	
	3201					
$[Ni(L^2)_2](NO_3)_2$	3274	3346	1657	1550	521 567	
	3198					
$[Cu(L^1)_2](NO_3)_2$	3287	3352	1662	1554	520 570	
	3206					
$[\operatorname{Cu}(L^2)_2](\operatorname{NO}_3)_2$	3275	3349	1658	1554	526 556	
	3196					

Electronic Spectra:

The UV-visible spectrum of the Schiff base ligands L^1 and L^2 and its complexes were recorded in DMF solution in the range of 200 to 1100 nm regions and the data are presented in Table 3.

The absorption spectrum of free ligands L^1 and L^2 consist of an intense bands centered at 300 nm and 316 nm attributed to $n-\pi^*$ transitions of the azomethine group respectively

[19]. These transitions are found also in the spectra of the complexes, but they shifted towards lower frequencies, confirming the coordination of the ligands to the metallic ions[20].

The Fe(III) Complexes:

The electronic spectra of the L^1 and L^2 ligands for Fe(III) complexes in DMF solutions show absorption bands at 434,544 nm and 447,562 nm respectively. The first band may be assigned to ${}^6A_1 \rightarrow {}^4A_1 {}^4E(G)$, transition,

while the second band would be due to ${}^{6}A_{1} \rightarrow {}^{4}T_{2(G)}$ transition, suggesting an octahedral arrangement around the Fe(III) ion. [18,20].

The copper (II) complexes:

The copper (II) complexes green yellow studied, displays two bands at 582 , 682 nm and 571 , 668 nm respectively for the complexes with ligands (L^1 and L^2), assigned to ${}^2B_{1g} \rightarrow {}^2A_{1g}$ and ${}^2B_{1g} \rightarrow {}^2E_{1g}$ transitions of 4-coordinate square planar geometry[21].

The Nickel (II) complexes:

The Ni(II) complexes brown have two absorption bands at 360 , 628 nm and 357 , 631 nm respectively for the complexes with ligands (L^1 and L^2), typical of a 4-coordinate tetrahedral geometry and is assigned to ${}^3T_{1(F)} \rightarrow {}^3T_{1(P)}$ and ${}^3T_1 \rightarrow {}^3A_2$ transitions[8,11]. The Cobalt (II) complexes:

The electronic spectra of the L^1 and the L^2 ligands for Co(II) complexes in DMF solutions show absorption band at 605 nm and 608 nm respectively. The band may be assigned to ${}^1A_{1g} \rightarrow {}^1B_{1g}$ transition suggesting a square planar geometry arrangement around the Co(II) ion [8,16].

Magnetic Moments:

Magnetic measurements of the complexes are measured at room

temperature Cobalt(II) and Copper(II) complexes are paramagnetic susceptibilities are μ_{eff} (1.73,1.76) and (1.72,1.70) B.M., respectively of the square planer geometries but that Nickel(II)complexes magnetic moment values μ_{eff} (2.20,2.11)B.M respectively of the tetrahedral geometries. The Fe(III) Complexes magnetic moment values μ_{eff} (5.43 and 5.79 B.M.) respectively with the ligands L^1 and L^2 of the octahedral geometries [8,14].

Molar conductance measurements:

The molar conductance values $(71-77 \text{ Ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}) \text{ of the}$ complexes for the Co(II),Ni(II) and Cu(II) from the Schiff base Ligands (L¹and L²) which were carried out in DMSO solvent indicates that the under complexes study 1:2 electrolytic nature, but the Fe(III) complexes under study is electrolytic nature because the values (33-38 Ohm⁻¹ cm² mol⁻¹) .Further, the high molar conductance of the complexes might arise due to large size of the anionic coordination sphere, which might have low ionic mobility. The values of molar conductance, complexes suggest that electrolytes, thereby showing that the nitrite ion is a counter ion[20,22].

Table (3): U.V-Visible spectra of free ligands and their complexes in 10⁻³ M in DMF, Magnetic Moments and Molar Conductance in DMSO

Compound	λ_{max}	Wave	$\epsilon_{ m max}$	(d-d)	Molar	μeff
_	nm	Number	$(L.mol^1.Cm^1)$	Transitions	Conductance	(BM)
		cm ⁻¹			$\Lambda m(\Omega^{-1}cm^2mol^{-1})$	
$(C_8H_8N_3OCl) = L^1$	300	33333.3	17800	n→π*	-	ľ
$(C_8H_8N_3OBr) = L^2$	316	31645.5	16800	n→π*	1	1
$[Fe(NO_3)_2(L^1)_2]NO_3$	434,	23041.4	2400	$^{6}A_{1} \rightarrow ^{4}A_{1}$	33	5.43
	544	18382.3	1800	$^{4}E(G)$ $^{6}A_{1} \rightarrow ^{4}T_{2}(G)$		
\mathbf{r} \mathbf{r} \mathbf{r}	4.47	22271.2	2000		20	<i>5.70</i>
$[Fe(NO_3)_2(L^2)_2]NO_3$	447,	22371.3	2900	$^{6}A_{1} \rightarrow ^{4}A_{1}$	38	5.79
	562	17935.9	1800	⁴ E(G)		
		1,,000,	1000	$^{6}A_{1} \rightarrow ^{4}T_{2}(G)$		
$[Co(L^1)_2](NO_3)_2$	605	16528.9	2500	$^{1}A_{1g} \rightarrow {}^{1}B_{1g}$	73	1.73
$[Co(L^2)_2](NO_3)_2$	608	16447.3	2450	$^{1}A_{1g} \rightarrow {}^{1}B_{1g}$	77	1.76
$[Ni(L^1)_2](NO_3)_2$	360	27777.7	3170	$^{3}T_{1(F)}$ \rightarrow	77	2.20
	628			$^{3}T_{1(P)}$		

		15923.5	2410	$^{3}T_{1} \rightarrow ^{3}A_{2}$		
$[Ni(L^2)_2](NO_3)_2$	357	28011.2	3230	${}^{3}T_{1(F)} \rightarrow {}^{3}T_{1(P)}$	74	2.11
	631	15847.8	2140	${}^{3}\mathrm{T}_{1} \rightarrow {}^{3}\mathrm{A}_{2}$		
$[Cu(L^1)_2](NO_3)_2$	582	17182	2150	${}^{2}\mathrm{B}_{1\mathrm{g}} \rightarrow {}^{2}\mathrm{A}_{1\mathrm{g}}$	71	1.72
	682	14662.7	1970	$^{2}\mathrm{B}_{1\mathrm{g}} \rightarrow ^{2}\mathrm{E}_{1\mathrm{g}}$		
$[Cu(L^2)_2](NO_3)_2$	571	17513.1	3690	${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$	77	1.70
	668	14970	2460	$^{2}\mathrm{B}_{1\mathrm{g}}^{^{1}\mathrm{g}} \rightarrow ^{2}\mathrm{E}_{1\mathrm{g}}^{^{1}\mathrm{g}}$		

Nuclear Magnetic Resonance Spectral Studies:

The 1 HNMR spectrum of ligands L^1 and L^2 , in DMSO–d6 solvent shows a singlet signal at (δ =3.43 ppm) and (δ =3.41 ppm) equivalent to two protons assigned to (N–H₂) group and singlet signal at (δ =6.55 ppm) and (δ =6.47 ppm) equivalent to first protons assigned to (N–H) group

respectively[24]. First protons of (N=C-H) imine group appears as a singlet signal at (δ =10.35 ppm) and (δ =10.41 ppm) the multiple signals at (δ = 7.346, 7.71, 7.86 ppm)and (δ = 7.35, 7.73, 7.89 ppm) are due to aromatic hydrogen of carbon respectively of ligands L¹ and L²[23].

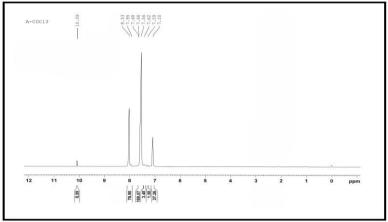


Fig (3) The ¹HNMR spectrum of ligands L¹ and L²

Theoretical treatment

Computational chemistry

Today, advances in software have produced programs that are easily used by any chemist. Hyper Chem-6 program is known for its quality, flexibility and ease of use. It offers ten semi-empirical methods[24].Some of then have been devised specifically for the description of inorganic chemistry as well, and generally good for predicting molecular geometry and energetics. They can be used for predicting vibration modes and transition structures[25].

Electrostatic potential (E.P):

The electrostatic potential has been used to give a simple representation of more important features of molecular reactivity .Therefore, it has been calculated and plotted as 2D contour for molecule of free ligands, illustrated contour map. The results calculation showed that the LUMO of transition metal ion prefer to react with the HOMO of nitrogen atom azomethain of Schiff base and oxygen of carbonyl group [26].

Optimized geometries energies and vibrational for starting materials and free

ligands Schiff bases (L1 and L2)

The results of PM3 method of calculation in gas phase for the heat of formation and binding energies of Schiff base and their metal complexes were tabulated in table (4), which shows that the L1 was more stable than L2. This difference in stability might be related to the present of Cl group in ions.

the para position of the L1. The vibrational spectra of the free ligands have been calculated as shown in Table (5). The theoretically calculated wave number for these ligands shows that some deviations from the experimental values. These deviations are generally acceptable in theoretical calculat

Table (4): Conformation energetic (in kJ.mol⁻¹) for (L1 &L2) and their metal complexes.

Conformation	PM3				
Conformation	$\Delta \mathbf{H_f}^{\circ}$	$\Delta \mathbf{E}_{m{b}}$			
C ₇ H ₅ OCl	37.7934293	-1507.4955707			
C ₇ H ₅ OBr	57.0265180	-1486.0124820			
CN ₃ H ₅ OHCl	27.1272030	-802.8317970			
\mathbf{L}^{1}	53.2604310	-3010.5192310			
\mathbf{L}^2	66.7374538	-2142.4975462			
[Fe(L1)2(NO2)2] NO3	-22.6018287	-4871.6458287			
[Fe(L1)2(NO2)2] NO3	-19.4088415	-5859.8527415			
$[\mathrm{Co}(\mathrm{L}^1)_2](\mathrm{NO}_3)_2$	-34.5727319	-7589.7712681			
$[\operatorname{Co}(\operatorname{L}^2)_2](\operatorname{NO}_3)_2$	-432.9087654	6762.6984320-			

Table (5): Comparison of experimental and theoretical vibrational frequencies(cm $^{-1}$) for Ligand(L 1 &L 2).

	rrequencies(cm) for Liganu(L &L).							
COMP.	v NH ₂	vC=O	ν C=N _{iso}	νNH				
L¹	(3286)* (3100)** (5.60)*** (3190)* (3209)** (-0.59)***	(1689)* (1700)** (-0.65)***	(1597)* (1633)** (-2.25)***	(3460)* (3292)** (4.85)***				
L ²	(3294)* (3110)** (5.58)*** (3201)* (3322)** (-3.78)***	(1692)* (1702)** (-0.59)***	(1590)* (1654)** (-4.02)***	(3449)* (3321)** (3.71)***				

^{*:} Experimental frequency, **: Theoretical frequency, ***: Error % due to main difference in the experimental measurements and theoretical treatments of vibrational spectrum.

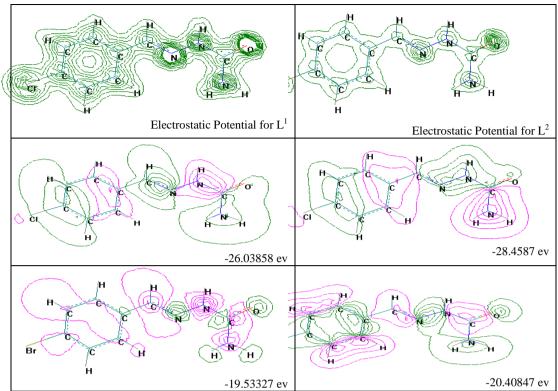
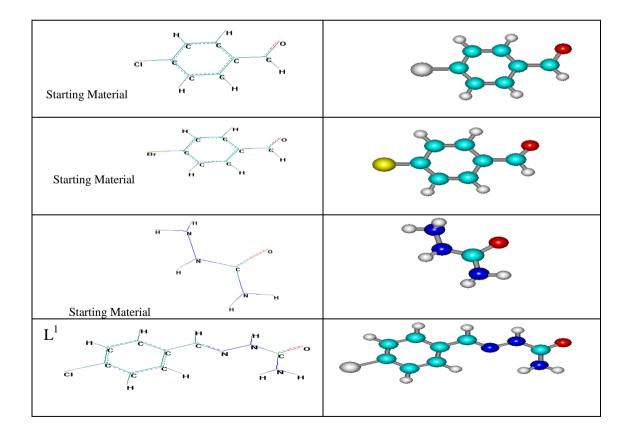



Fig (4): HOMO and Electrostatic Potential as 2D Contours for L¹ and L²

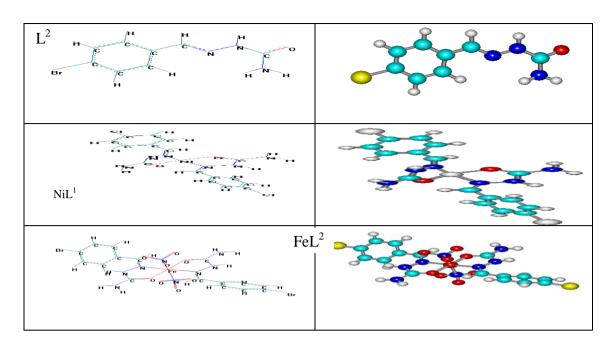


Fig (5): conformation structure of L^1 , L^2 and its complexes

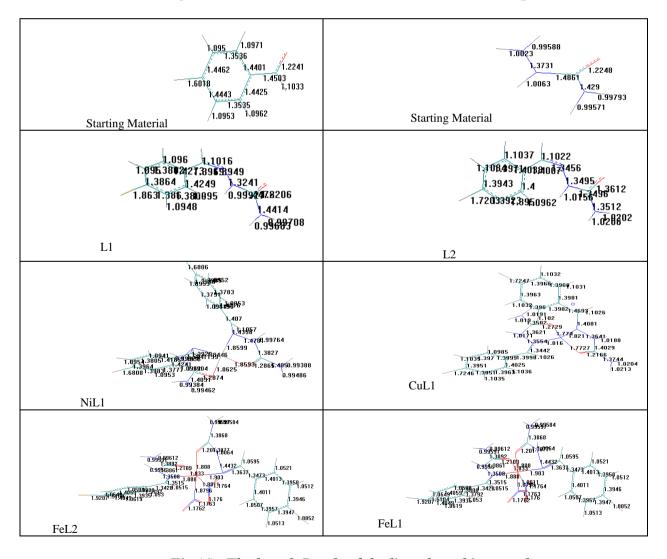


Fig (6):-The length Bonds of the ligands and its complexes

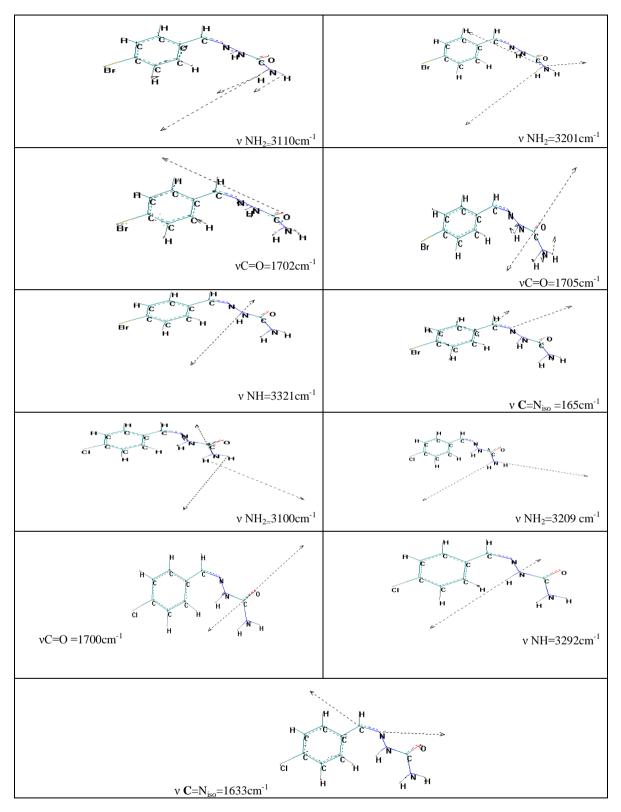


Fig (7): Calculated vibrational frequencies of $L^1\&L^2$

Conclusion:

In this paper new Schiff Base ligands (L^1 and L^2) complexes with the general formula [M(Ligand)₂](NO₃)₂ where Ligand= L^1 = and L^2 =, M= Co(II) .Ni(II) and Cu(II) $[Fe(Ligand)_2(NO_3)_2](NO_3)$ were synthesized. The molar conductivity of the complexes in DMSO solution was electrolyte (1:2) for Co(II),Ni(II) and Cu(II) complexes, but the Fe(III) complexes (1:1) and the configurations were performed to coordinate the Schiff base through the nitrogen and oxygen atoms. Therefore, from the presented results the complexes have tetrahedral for Ni(II) complexes square planer with Co(II) and Cu(II)complexes and octahedral geometry with Fe(III) configuration. Theoretically probable structures of metal complexes with Schiff base have been calculated, These shapes shows the calculated optima geometries for (L^1,L^2) and its metal complexes.

References:

- 1- Bharti, N.; Maurya, M.; Naqvi, F.; Bhattacharya, A.; Bhattacharya, S. and Azam, A. 2000. New Palladium(II) Complexes of 5-Nitrothiophene-2-carboxaldehyde Thiosemicarbazones Synthesis, Spectral Studies and In Vitro Anti-Amoebic Activity. Eur. J. Med. Chem., 35(4) 30-37.
- 2-Abbas A. and Shaimaa A.sh. 2011. Synthesis ,characterization,Stuctural Studies and Biological Activity of aNew Schiff Base –Azo Ligand and its Complexation with Selected Metal Ions"Oriental J. Chem. 27(3) 825-845...
- 3- Sharika R.y., Amit R.Y., Gaurav B.P. and Anand S.A.. 2009. Synthesis and characterization of transition metal complexes with N,O-chelating hydrazone Schiff base

- ligand"American –Eura. J.scient.Res. 4(4):229-234.
- 4- Gupta,T.;Patra,A.; Dhar,K. S.; Nethaji, M. and Chakravarty,A. R. 2005.Synthesis, Characterization and Antiamoebic Activity of Benzimidazole Derivatives and Their Vanadium and Molybdenum Complexes.J. Chem Sci. 117(12).12-18
- 5-Yraola,F.; Silvia,G.V.; Ferna´ndez-Recio, J.; Albericio,F.; Zorzano,A.; Marti ,L. and Royo., M. 2006. New Efficient Substrates for Semicarbazide-Sensitive Amine Oxidase/VAP-1 Enzyme: Analysis by SARs and Computational Docking, *J. Med. Chem.* 49: 6197-6208.
- 6-Manrao, M. R. Balbir K.M, Gill, V. K.and Sharma, J. R. 2009. Synthesis and biological potential of nitrones of 4 -chlorobenzaldehyde and ethylvanillin , *J. Indi. Chem. Soc.* 86(5): 531-534
- 7-Kanoongo,N.; Bohra,S.; Mathur, R. and Mathur., N.K. 1994. Synthetic and structural aspects of dioxomolybdenum complexes of thiosemicarbazones and semicarbazones., *Trans. Met. Chem.* 17 (4): 18-21
- 8-Raman,N.;Johnson,S.;Joseph,J.;Sakt hivel,A. and Dhaveethu,J. 2008. Synthesis and Characterization of Zno Microcrstal Tubes".,*J. Chil. Chem. Soc.*53(3) 1599-1604.
- 9-William,H.O.; Ostman, J. M. and Charles O. R. 2000. Schiff bases or glycosylamines crystal and molecular structures of four derivatives of -mannose References and further reading may be available for this article.. 326 (2) 104-112.
- 10-Kumar, D.; Syamal, A. and Singh, A. K. .2003. Synthesis and characterization of manganese (II), cobalt (II), nickel (II), copper (II),

- zinc(II), cadmium(II), iron(III), zirconium(IV), dioxomolvbdenum(VI) and dioxouranium(VI) coordination compounds polystyreneof supported tridentate dibasic Schiff base derived from semicarbazide and 3- formylsalicylic acid, Indi. J. Chem.. 42A (2): 18-24.
- 11-Singh, K.; Singh, R. V. and Tandon ,J. P. 2004. Lead(II) Complexes of Some Biologically Active Schiff Bases. J. für Praktisc. Chem. 330: 621–625.
- 12-Denny,G .B.;Geffery, R. C.and Mendhan,G. H. 1982 J. Vogel Text Book of Quantitative Inorganic Analysis; 4th ed.
- 13-Sanna.H.A.2012.Synthesis and characterization of some mixed-ligand complexes containing salicylic acid and pyridine with some metal ions.J.of AL-Al-Nahran univ.Sci.15(3) 23-29.
- 14-Wang,J.L.;Jia, Y.J. and Yu.,M. 2004. The Schiff base 3,4-methylene dioxybenzaldehyde semicarbazone., *Acta Cryst* .E **60**: 662-663.
- 15- Thankamony, M. and Mohanan ,K. 2009. Catalytic and biological activity of transition metal complexes of salicylaldiminopropylphosphine. J. Coordin. Chem. , 62(17)342-357.
- 16- Sliverstein R.M.and Webser X.F. .2005.Spectrometric Identification of Organic Compounds . 7th Ed., Jon Wiley and Son, Inc.USA .
- 17-.Nakamoto N . 2009. Infrared and Raman Spectra of Inorganic and Coordination Compounds" , 6th Ed,Part 2 John wiley and Sons,Inc.,New Jersy .
- 18- Alias, M.F. Hashim, A.K. and Kareem. T.A. 2008 "Synthesis and characterization of some inorganic compound and study their effect on activity of laccase produced by

- local isolate pleurotus ostreatus", Ibn-Al-Haith. J. pure Appl. Sci. 21(2):71-88
- 19- Temel,H. 2011 .Synthesis, Spectral Characterizations and Antimicrobial Activity of some Schiff Bases of 4-Chloro-2-Aminophenol. Chemic. Soci. Ethiop. 25(3), 407-417
- 20- Bailar, J. C.; Emeleus, H.; Nyholm, and Dickenson, J. 2009. Synthesis and characterization manganese(II), nickel(II), copper(II) and zinc(II) Schiff-base complexes derived from phenanthroline-2,9dicarboxaldehyde 2and mercaptoethylamine.Comprehensiv e Inorg. Chemis.; Pergamum 62(7) 1172-1179.
- 21-Lever, A.B.P. 1968. Inorganic Electronic Spectroscopy . New York. 6.121.
- 1. 22- Chandra, S. Jain, D. Sharma, Sharma. A.K. and P. 2009 "Coordination Modes of a Schiff Base Pentadentate Derivative of Aminoantipyrine Cobalt(II), with Nickel(II) and Copper(II) Metal Ions: Synthesis, Spectroscopic and Antimicrobial Studies" Molecul.14(1):174-190.
- 23- Thomas, M.;Nair,M.K.M.and Radhakrishan, R.K. 2008,.Synthesis, Physical Characterization and Biological Activity of Some Schiff Base Complexes Synth.React.Inorg.Met.-Org .Chem. 25.471.
- 24- Bakir,Sh.R.Kareem,T.A.A. and Alias,M.F. 2010. Synthesis,structural study and antibacterial activity of some new complexes with2-N(4-N,N-dimethyl benzyliden -5-(P-iodo phenyl)- 1,3,4-thiodiazole with

Cr(III),Mn(II),and Cd(II)ions,J. of Al- Nahran. Univ., 13(2):8-19,. 25-Shaimaa.R.B.2012.Synthesis,Spectral study and biological activity of some metal ions complexes with bidentate ligands. J. of AL-Nahra.universi.Sci.15(3) 30-42.

26- Anderson, W.P.; Behm, P. and Glennon, T.M. 1997. Searching the Conformational Space of Cyclic Molecules: A Molecular Mechanics and Density Functional Theory Study of 9-Crown-3). J Phys. Chem. A101:1920-1926.

تحضير ودراسة التركيب لمعقدات بعض العناصر الانتقالية الجديدة لمشتقات قواعد شف سمى كريزايد هايدروكلورايد

عباس علي صالح الحمداني* ، مهند عبد اللطيف محمود النعيمي* و شيماء رجب باقر*

*قسم الكيمياء ،كلية العلوم للبنات ،جامعة بغداد- بغداد العراق

الخلاصة:

حضرت سلسلة معقدات العناصر الانتقالية الجديدة لكل من النحاس ،النيكل ،الكوبلت بتكافوئهم الثنائي والحديد الثلاثي مع قواعد شف L^2 و L^1 الجديدة المحضرة من سمي كاربزايد هايدروكلورايد مع 4- كلورو بنزلديهايد أله أله بنزلديهايد أله أله أله بنزلديهايد أله أله أله أله ألمولارية و للمغاطيسية والتوصيلية والمولارية و درست اطياف الاشعة تحت الحمراء وفوق البنفسجية والمرئية و طيف الرنين النووي المغناطيسي للبروتون أظهرت النتائج ان المعقدات ذات الصيغة :(NO3)[NO3)[00] و $[Fe(L)_2(NO_3)_2]$ حيث $[M(L)_2](NO_3)_3$ و $[Fe(L)_2(NO_3)_3]$ حيث $[M(L)_2](NO_3)_3$ النيكل ،الكوبلت بتكافوئهم الثنائي و $[NO_3]_3$ و $[NO_3]_3$ الطهرت نتائج الحساسية المغناطيسية والأشعة فوق البنفسجية ان الأشكال المقترحة للمعقدات هي مربعة مستوية والنيكل رباعي السطوح ومعقد الحديد ثماني السطوح تم أستخدام برنامج ال $[NO_3]_3$ المهورة على المواقع الفعالة في الجزيئة. تم حساب حرارة التكوين القياسية $[NO_3]_3$ حساب الجهد الالكتروستاتيكي لليكاند لتحديد المواقع الفعالة في الجزيئة. تم حساب حرارة التكوين القياسية $[NO_3]_3$