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Abstract : In this work the author investigate a Bayesian inference in lasso censored regression with more flexible 

hierarchical prior model. Learning rate parameter proposed to have multinomial distribution which is a  prior  

distribution of the target parameter, so updated  hierarchical prior expression developed and Gibbs sample algorithm 

have independent based on the proposed hierarchical prior model to generate samples from full conditional posterior 

distribution. Simulation example have conducted to test the performance of the suggested model and real data 

analysis presented. The result summary of simulation studies and real raw data show that the proposed model perform 

better than some existing methods .     
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1- Introduction 
         The Censored model is also known as the Tobit structure pioneered by Tobin in 1958 to model the 

association between the censored response data and some economic  predictor variables. The observed response 

variable in tobit (censored) mode  is defined by  

},max{ *0 yyy   

Here 
*y is the latent response variable, and 

0y which represents a censored point which is usually set to zero in 

the tobit model . There are a large literature on tobit regression model. See Amemiya T. ( 1984  ) for more details 

about the tobit model .  

 Recently, many authors employed the tobit model in variable selection methods, like, lasso, adaptive lasso, 

elastic net (combined),… etc. Yu and Stander (2007) developed a Bayesian estimators for quantile regression with 

Tobit by proposing that the error term follows the asymmetric Laplace distribution.  Flaih and Al-Saadony ( 2020  

) proposed lasso , on the tobit regression based on new scale mixture that represent  Laplace distribution as prior 

distribution from Bayesian perspective  Odah et al. (2017 ) suggested the Tobit regression  to analyzed the Iraqi 

bank loans. Alhusseini et al.(2020) introduced the variable selection procedure in Bayesian adaptive lasso , tobit 

regression based on a new scale mixture of Rayleigh distribution. Abbas and Alhamzawi ( 2019  ) investigate the 

lasso Tobit regression model from Bayesian point of view, new scale mixture of uniform distribution. Alhusseini 

and Georgescu (2018 )  composite model employed with Tobit quantile regression based on (probabilistic) 

Bayesian estimation with scale mixture of uniform distribution .   

             However, all these works mentioned above are focused on Bayesian inference.  This paper have focused 

on safe Bayesian inference for the lasso tobit regression. We assume that the learning rate parameter of likelihood 

function have multinomial prior distribution. Following Heide (  2016  ) we suggest a safe Bayesian 

(probabilistic)  hierarchical model by employing the multinomial distribution as prior density for the learning rate 

parameter that equipped the likelihood function of response variable. New generalized posterior have developed 

to generate the sample of interested parameter. In the second section,  we identified our safe Bayesian 

(probabilistic)  Tobit model and selects of the prior hierarchical model. Full conditional generalized posterior 

distribution and Gibbs sampling algorithm steps will be given. Third section demonstrate simulation results. In 

forth section our model is illustrated on creatinine level in the blood. We conclude  our proposed model in section 

fifth.  
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2- Model Formulation  
Suppose that the general structure formula for Tobit ( censored ) model follows,  
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Where iy is the observed response variable and  
*

iy is the unobserved (latent) response variable. 

Now consider we have a random sample of 
**

1 ,,......... nyy and the corresponding predictor variables X , then based 

on (1), we can define: 

                eXy  *
                                                     (2) 

 Here we set   as vector of unknown interested parameters .  

Based on variable section method (lasso) , the estimator of unknown interested parameter in model (2) defined by   
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Where the shrinkage parameter 0 .  

Tibshirani 1996 suggest the j  have Laplace distribution from Bayesian point view. Many authors investigate the 

Bayesian estimation  of problem (3) , Park and Casella (   2008  ) used the scale mixture of  normal to represent 

Laplace density. Mallick and Yi ( 2014  ) used the scale mixture of uniform to Laplace distribution , Flaih et al.(    ) 

used the scale mixture of Rayeigh to represent Laplace distribution. In this paper we will use Mallick and Yi (   2014 ) 

to redefine the Laplace distribution as follows :  
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Conditioning (4) on 
2 and follow Mallick and Yi(2014) proposition the scale mixture in (4) can rewritten as follows,  
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3- Safe Bayesian Hierarchical prior model  
            Using the tobit formula of regression in (1) , (2) and the scale mixture in (5)the hierarchical prior model 

can be formulate as follows :  
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Where  is the learning rate  parameter .  

3-1  Conditional posterior distribution  
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             Based on Mallick and Yi (   2014  ), the following are the full conditional posterior distribution 

considering the safe Bayesian technique. The joint density with likelihood powered to the learning rate parameter  

( ) becomes  
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Then  

 The full conditional posterior distribution of  , 
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Where XTXA   

 The full conditional posterior distribution of u is defined by  
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 The full conditional posterior distribution of 
2 is defined by  
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 The full conditional posterior distribution of regularization coefficient  is defined by  
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    5- The full conditional posterior distribution of  is defined by  
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4- Simulation 
   This section describe our proposed approach to safe Bayesian censored Tobit (SBT) regression through simulation 

examples . We proceed by adopting the Gibbs sample algorithm of the full conditional posterior that considered in 

section (3). Furthermore we use the median of means absolute deviation criteria (MMAD) to assess the performance 

of the proposed model (SBT)with tobit regression model (TRM) , Bayesian tobit regression model (BTRM) and 

Bayesian tobit quantile regression process (BLTQR). R language have used to implement the above packages ( see 

Kleiber  and Zeileis (2017), Morten  et.al. (2018) and Alhamzawi (2018) for more details about packages ). Now let 

MMAD defined by             

MMAD=Me. [mean
trueXX  ˆ ] 

4-1 Simulation Example first     

       In this example we generates 200 observations of each predictor  variables of the standardized these observation , 

the correlation coefficient =  
ji

  ,   5.0 the vector of true values of   is defined by 

T)0,0,0,2,0,0,5.1,3( , The regression model is eXy T  *
 we set )5,2(  see Tibshirani (1996) for 

more information. Also, we assumed that the learning rate parameter )9.0,2.0( .  

The model is defined as follows  

exxxy  521

* 25.13  

Table (1) Shows the MMAD value and its standard deviation over 200 simulations from the above model.  

Table (1) : MMAD and SD for example (1) 
                  method   MMAD SD 

0.2 SBT 

TRM 

BTRM 

BLTQR 

 

2 
0.21213 

0.37450 

0.38212 

0.34210 

0.1712 

0.2915 

0.2834 

0.2021 

0.6 SBT 

TRM 

BTRM 

BLTQR 

 

6 
0.30154 

0.38151 

0.39651 

0.36128 

0.1954 

0.3214 

0.2989 

0.2516 

The proposed model (Safe Bayesian Tobit )regression model performs the best because it gain the least MMAD values 

over all other methods under 2.0 .  

        After implementing the Gibbs sample algorithm , we must check and diagnosis the convergence of the algorithm 

and that can be obtained by drawing the following trace plot of generating process for each interested parameter .   

 

Figure (1):Trace plots of simulation first for 81    
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Figure (1) show that trace plot for every parameter estimator )( 81   , clearly that the Gibbs sample algorithm 

generating sample from the proposed posterior distribution which are converge to the target distribution. Furthermore 

the Gibbs sample algorithm showing no slow mixing between the iterations .  

4-2 Simulation Example second     

       This is the same as simulation example first , but the true vector of  is defined by  

T

18)85.0(   

           With )5,2(  . The results are explained in Table (2) 

Table (2) : MMAD and SD for example (2) 
                  method   MMAD SD 

0.2 SBT 

TRM 

BTRM 

BLTQR 

 

2 
0.1925 

0.2954 

0.3034 

0.2857 

0.1534 

0.2702 

0.2683 

0.1846 

0.6 SBT 

TRM 

BTRM 

BLTQR 

 

6 
0.2287 

0.3059 

0.3281 

0.2956 

0.1745 

0.3072 

0.2751 

0.2367 

Table (2) suggest that proposed model preforms better comparing with the other estimation method by capturing the 

least MMAD and SD values under 2.0  

     After implementing the Gibbs sample algorithm , we must draw the following trace plot of generating process for 

each interested parameter two check and diagnosis the convergence of the algorithm. 

 

Figure (2): Trace plots of simulation second for 81    

Figure (1) show that trace plot for every parameter estimator )( 81   , Gibbs sample algorithm showing no slow 

mixing between the iterations .  

 Conclusions  
We developed new safe Bayesian tobit regression model hierarchical prior model  and new full conditional  posterior 

distribution. Our new proposed model out per forms overall standard Bayesian methods and non-Bayesian method. 

Also, the proposed Gibbs sample algorithm is very time – intensive.  The optimal value of   - learning rate 

parameter is learnt from generated samples.  Consequently, the proposed model performs comparably with other 

methods  
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