
 36

Received 6 May 2019; Accepted 5 September 2019

Adaptive Performance Evaluation for SDN Based on

the Statistical and Evolutionary Algorithms

Afrah Salman Dawood1, Mohammed Najm Abdullah2
1,2Department of Computer Engineering, University of Technology, Baghdad, Iraq

afrah.salman@ymail.com, mustafamna@yahoo.com

 Abstract- Being able to send different types of data (i.e. text, audio, or video) through the

network is the most important aspect of networks. Different networks have different issues

and restrictions while sending data. These restrictions are basically the QoS (Quality of

Service) metrics and security. The recent Software-Defined Networking (SDN) that aims

to separate the control plane from the data plane can be applied where Business

requirements are not responsible for the way the network is configured; instead, it is the

responsibility of the high-level business policies and objectives. SDN gives preferable

techniques for centralized dynamic management and control configurations. In this work,

a proposed model has been estimated and discussed to promote QoS requirements in some

suggested topologies. Adaptive Resource Management (ARM) and control to send different

types of data through different hosts have been investigated. The intended requirements

are basically the capacity and delay of traffic metrics sent through different hosts through

the network. It produces a mathematical model and implementation for three proposed

algorithms to enhance the quality of a sample video sent from source host to destination

host by Visible Light Communication (VLC)-media player in three different topologies.

These algorithms (statistical, MOGA, and PSO) have been implemented using Mininet

emulator, FNSS tool, PULP, and network libraries; with two types of controllers which

are Floodlight and OVS under Linux operating system and in python programming

language.

Index Terms- SDN, Performance Evaluation, ARM, QoS, MOGA, PSO, FNSS, Mininet, Floodlight

Controller, OVS Controller.

I. INTRODUCTION

 Many companies, industries and researches are now moving toward SDN technology in networking

[1] because of the basic difficulty in traditional IP networks which is represented mainly in the

complexity of management and configuration of all devices in the network. In other words, the source

code of the configuration must be set up throughout all switches, routers, and other devices. Nowadays,

implementing networks with SDN configuration doesn’t require that the configuration setup on all

devices, instead, only the controller is responsible for controlling and managing the network [2]. This

controller is the brain of the network and all control-plane data pass through to other forwarding devices

which are in this case only dummy devices and is responsible only for transferring data (i.e. through the

data-plane). The main point in SDN is that it separates the control plane (i.e. management plane) from

the data plane (i.e. forwarding plane) [3].

 The environment of SDN that is also known as Software-Defined Environment (SDE) is mainly

responsible on the management of different resources in such networks [4]. Some of these resources

include sending different types of data among network hosts [5], dynamic resource management for

QoS [6], enabling High-Definition (HD)-map-assisted cooperative driving among Autonomous

Vehicles (AVs) to improve the navigation safety [7], ensuring security of transferred data, etc. SDN

and Network Virtualization (NVI) are widely considered promising techniques for reducing the

DOI: https://doi.org/10.33103/uot.ijccce.19.4.5

mailto:afrah.salman@ymail.com
mailto:mustafamna@yahoo.com
https://doi.org/10.33103/uot.ijccce.19.4.5

 37

Received 6 May 2019; Accepted 5 September 2019

complexity of network management in many contexts that require high QoS and the support for

heterogeneous architectures [8].

Resource Management (RM) can be optimized in different methods; some of these methods are the

General MOGA that is used to handle multi-objective optimization problems in different search spaces

[9].

 The rest of this paper is organized as follows: Section 2 shows some works that are related to the

concept of this work, while section 3 discusses the basic problem definition that is to be explained and

implemented in section 4. Finally, sections 5 and 6 review experimental results and conclusion,

respectively.

II. RELATED WORK

 RM is very essential approach in all types of networks. Researchers in reference [10] can be

considered as the first attempt for strict QoS requirements and manage the exchange among different

network devices. RM mechanisms, provided by obtainable SDN approaches according to OpenFlow,

have been summarized in reference [11]. Reference [9] used MOGA with PSO to eliminate the

distributed controller placement problem that finds out the pareto optimal solutions minimizing the

switch-to-controller load imbalance for wide area SDN. A general model has been produced and

discussed; this model also considers switch assignments beside to dealing with the controller placement,

and explains evaluations and results. Reference [12] is a paper about highlighting the comparative

analysis of nature inspired Swam Intelligence based optimization techniques according to literature

analysis and the areas where these algorithms have been most successfully applied. An investigation

about the problem of saving energy in hybrid IP/SDN networks [13] where traditional IP nodes are

incrementally replaced by SDN ones. Genetic Algorithms (GA) has been proposed and evaluated

through simulations over realistic network topologies to solve this problem. The paper in reference [14]

proposes a novel intelligent technique that has been designed to optimize the performance of SDN. The

proposed hybrid intelligent system has employed integration of intelligence-based optimization

approaches with the artificial neural network. These heuristic optimization methods include GA and

PSO.

III. PROBLEM DEFINITION

 A network scenario has been considered in details in this section. A network 𝐺 (𝐸, 𝐿) is a graph of

a datacenter topology implemented in python programming language under PULP basis and run in

Mininet as an SDN with OVS and Floodlight controller. Where, 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑛} represents vertices

(i.e. links available in each path in the topology) and 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚} represents edges of the

proposed topology. Traffic flow description is described by a traffic matrix 𝑇𝑡 = (𝑠, 𝑑𝑒) sent from each

source 𝑠 ∈ 𝐸 to each destination 𝑑𝑒 ∈ 𝐸 in the network in a specific time interval, 𝑡. Edges have

capacities belonging to the set 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐿}. The goal is to find suitable capacity for each link in

the topology regarding the primary delay 𝐷𝑙 of the link. Increasing the capacity of the link 𝑙𝑖 results in

an increased bandwidth 𝐵𝑊 of the path which in turn reduces the total delay 𝐷𝑡 of the path between

two hosts.

 The issue is that when packet size is expanded, there will be more delays in packet delivery

proportion. However, there must be some relationship between the amount of the capacity 𝑐𝑙 assigned

to the link 𝑙 ∈ 𝐿 and the packet size. In view of this suspicion, an Integer Linear Programming (ILP)

that attempts to recognize a set of capacities 𝐶 assigned to vertices 𝑙 ∈ 𝐿 dependent on packet size

according to statistical regression approach is going to be presumed according to values of Fig. 1.

Regression analysis has been made according to equation 1.

 38

Received 6 May 2019; Accepted 5 September 2019

𝑦 = 𝑏𝑥 + 𝑎 (1)

 From the equation above and from the measured data, regression line equation can be calculated

using equation 2 and thus the capacity of every link can be estimated relating to algorithm 1:

 𝑐𝑙 = 13.1237 + 0.03436 ∗ 𝐷𝑙 (2)

ALGORITHM 1: STATISTICAL APPROACH PSEUDO CODE DESCRIPTION

Input: network graph composed of edges and links 𝑮 = (𝑬, 𝑳)

Output: optimal capacity for each link in the graph

1 Import essential libraries

2 Formulate G = (E, L) using FNSS library

3 Set basic settings for the network

4 For all 𝑙 in 𝐿 do

5 𝑑 ← 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑙

6 𝑐 = 𝑓(𝑑)

7 𝑠𝑜𝑙 ← 𝑐

8 End for

9 Return 𝑠𝑜𝑙

10 Draw the network with nx library or web UI

11 Set video transferring properties

12 Export to Mininet topology, launch the controller, and start the network

13 Record results and evaluate the results

14 Stop the network and clear all 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡 𝑙𝑖𝑛𝑘𝑠

FIG. 1: MEASURED DATA FOR ESTIMATION

 The statistical approach has been implemented according to Algorithm 1 above. In the second

approach (GA), the population is represented by the variable 𝑃 and its size is 𝐼. It is composed of a

list of chromosomes represent random values of capacities𝑐 ∈ 𝐶. Each chromosome 𝑐𝑝 ∈ 𝑃 in the

generated population 𝑃 represents a specific capacity and is represented by a set of genes in binary

representation (for example𝑐𝑝 = 11001110 = 206 𝑀𝑏𝑝𝑠). The following is an example of

crossover process for two different chromosomes:

0 0 1 1 0 0 0 1

1 1 0 0 1 1 1 1

 After performing the single-point crossover process for these chromosomes, two children will

be resulted as follows:

23.16

388.27

1047.28

15.67
24.2 29.22

0

200

400

600

800

1000

1200

1 Kbps 24 Kbps 64 Kbps

D
el

ay
 (

m
s)

Packet Size

1 Mbps 256 Mbps

Chromosome 2

Chromosome 1

 39

Received 6 May 2019; Accepted 5 September 2019

0 0 1 1 1 1 1 1

1 1 0 0 0 0 0 1

 Where child 1 is going to be the first capacity which is 63Mbps, while the second child represents

a capacity of 193Mbps. Binary values are utilized to symbolize the two potential operational modes

of each link, 𝑙 ∈ 𝐿: 𝑔𝑙 = 0 (𝑝𝑜𝑤𝑒𝑟𝑒𝑑 𝑜𝑓𝑓); 𝑔𝑙 = 1 (𝑝𝑜𝑤𝑒𝑟𝑒𝑑 𝑜𝑛). The best solution 𝑠𝑜𝑙𝑐𝑝
 is

achieved when the network configuration is able to route the set of traffic demands, 𝑇𝑡 = (𝑠, 𝑑𝑒)and

be content with both conservation and delay 𝐷𝑙 limits. The fitness function (equation 3 bellow) is a

multi-objective function (MO) of traffic demands 𝑇𝑡 that are transferred from source to destination.

It is composed of subtracting the capacity 𝑐𝑝 from the target 𝑡 multiplied by the state 𝑔𝑖 and delay

𝐷𝑙 of the link 𝑙 ∈ 𝐿.

 𝑓(𝑐𝑝,, 𝐺, 𝑇𝑡) = (𝑡 − 𝑐𝑝)𝑔𝑙𝐷𝑙 ; ∀𝑙 ∈ 𝐿; 𝑔𝑙 ∈ {0; 1} (3)

 The innate genetic functions of GA (selection, crossover, mutation and replacement) are

repeated for ƿ generations to response with the preferable solution 𝑠𝑜𝑙. The crossover is based on

one-point selection by dividing each parent into two halves and then performing the crossover by

copying everything before this point from the first parent to the second parent. Algorithm 2 bellow

describes the pseudo code of GA approach, where 𝑓(𝑐𝑝, 𝐺, 𝑇𝑡) is computed according to equation 3

above.

ALGORITHM 2: GA PSEUDO CODE DESCRIPTION

Input: network graph composed of edges and links 𝑮 = (𝑬, 𝑳)

Output: optimal capacity for each link in the graph

1 Import essential libraries

2 Formulate G = (E, L) using FNSS library

3 Set basic settings for the network

4 𝑃 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐺, 𝐼)

5 For all 𝑐𝑝 in 𝑃 do

6 (𝑓𝑣𝑎𝑙𝑐𝑝) ← 𝑓(𝑐𝑝, 𝐺, 𝑇𝑡)

7 End for

8 Compute avfitness

9 Do{

10 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑃, 𝑟𝑎𝑛𝑘 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛)

11 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑝𝑎𝑟𝑒𝑛𝑡𝑠, 𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑝𝑜𝑖𝑛𝑡)

12 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑛𝑜𝑛 − 𝑢𝑛𝑖𝑓𝑜𝑟𝑚)

13 𝑃 ← 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)

14 For all 𝑐𝑝 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

15 (𝑓𝑣𝑎𝑙𝑐𝑝, 𝑠𝑜𝑙𝑐𝑝) ← 𝑓(𝑐𝑝, 𝐺, 𝑇𝑡)

16 End for

17 Compute avfitness

18 𝑠𝑜𝑙 ← 𝑠𝑜𝑙𝑐𝑝

19 ƿ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_avfitness − previous_avfitness

20 }While (ƿ < 10-6)

21 Return 𝑠𝑜𝑙

22 Draw the network with nx library or web UI

23 Set video transferring properties

24 Export to Mininet topology, launch the controller, and start the network

25 Record results and evaluate the results

26 Stop the network and clear all 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡 𝑙𝑖𝑛𝑘𝑠

Child 2

Child 1

 40

Received 6 May 2019; Accepted 5 September 2019

 The accordance of a parent 𝐴𝑐𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒𝑖 (equation 4 below) is calculated by finding the

preferable fitness value 𝑓 corresponding to the global best position.

𝐴𝑐𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒𝑖 = 𝑓𝑡 Gbest/𝑓𝑖 (4)

General PSO algorithm uses equation 5 to find current velocity of the particle according to the

previous velocity and last position P𝑙.

 V𝑐 = 𝑤 V𝑙 + 𝑐1𝑟1(𝐿𝑏𝑒𝑠𝑡 − P𝑙) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − P𝑙) (5)

 P𝑐 = V𝑐 + P𝑙 (6)

 V𝑐 = 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − P𝑙) (7)

 Where 𝐿𝑏𝑒𝑠𝑡 is the local best position of the particle, 𝑤 represents inertia of a particle [15],

𝑐1, 𝑟1 and𝑐2𝑟2 are the amount of experience to be learned from 𝐿𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡, respectively, 𝑟1, 𝑟2

are random variables in (0,1) range, and finally, P𝑐 in equation 6 above is the current position of the

particle based on its last position and velocity. Since each particle in our mutation function only runs

one cycle, the 𝑤 that takes the weight of last velocity and the local best position does not mean

anything in our situation, the first two parts of equation 5 are dropped, and a new equation 7 has

been created to calculate the velocity. Algorithm 3 illustrates the pseudo code description of the PSO

approach.

ALGORITHM 3: PSO PSEUDO CODE DESCRIPTION

Input: network graph composed of edges and links 𝑮 = (𝑬, 𝑳)

Output: optimal capacity for each link in the graph

1 Import essential libraries

2 Formulate G = (E, L) using FNSS library

3 Set basic settings for the network

4 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑠𝑤𝑎𝑟𝑚(𝐺, 𝐼)

5 For each 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 in 𝑠𝑤𝑎𝑟𝑚 do

6 (𝑓𝑣𝑎𝑙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) ← 𝑓(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑡, 𝑇𝑡)

7 End for

8 Compute avfitness

9 Do{

10 For each 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 in P do

11 Compute Accordance

12 Arrange 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 According to their Accordance

13 𝑣𝑐𝑝 ← 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝐺𝑏𝑒𝑠𝑡, 𝑝𝑙)

14 𝑝𝑐 ← 𝑛𝑒𝑤 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑣𝑐𝑝, 𝑝𝑙)

15 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ← 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑝𝑙 , 𝑝𝑐)

16 For each 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 in 𝑠𝑤𝑎𝑟𝑚 do

17 (𝑓𝑣𝑎𝑙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) ← 𝑓(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑡, 𝑇𝑡)

18 End for

19 Compute avfitness

20 ƿ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_avfitness − previous_avfitness

21 }While (ƿ < 10-6)

22 Draw the network with nx library or web UI

23 Set video transferring properties

24 Export to Mininet topology, launch the controller, and start the network

25 Record results and evaluate the results

26 Stop the network and clear all 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡 𝑙𝑖𝑛𝑘𝑠

 41

Received 6 May 2019; Accepted 5 September 2019

IV. Experimental Results

 The proposed models and algorithms illustrated in the previous section have been implemented and

tested on three different datacenter topologies and dumbbell topology with two controllers which are

Floodlight and OVS and the adaptive resource management has been tested on two different video

streams (their properties are illustrated in Table 1) played on VLC media player.

TABLE 1: DETAILED PARAMETERS OF TESTED VIDEO FILES

Video File Detailed Parameters

Video 1

Video Format MP4

Duration 26 second

Total File Size 2,100,396 bytes

Resolution 320x240

Video 2

Video Format MP4

Duration 18 second

Total File Size 1,804,076 bytes

Resolution 640x360

 As mentioned earlier, we have implemented different tiers of Data Center (DC) topologies

infrastructure which are two and three tiers with five edges, two hosts per edge, and different number

of cores (i.e. one, two, three, and five cores). It is worth mentioning that the number of aggregation

switches has been considered to be a constant value of two. We have also implemented fat tree

topologies with two levels, two and four levels. Finally, dumbbell topology has also been

implemented with two values (four and ten) of nodes in each bell and two values (five and ten) of

nodes in the path. This design implementation has been done with the FNSS library using the

following commands:

fnss_topo = fnss.two_tier_topology(n_core=1, n_edge=5,

 n_hosts=2)

fnss_topo = fnss.three_tier_topology(n_core=1,

 n_aggregation=2,

 n_edge=5, n_hosts=2)

fnss_topo = fnss.fat_tree_topology(2)

fnss_topo = fnss.dumbbell_topology(4, 5)

 The capacity of each link has been set adaptively relating to link delay and according to the

proposed models explained previously in chapter three; the following command represents a

function call for the already built-in solutions:

set_capacities_packet_delay(fnss_topo, buffer_unit='bytes',

 capacity_unit='Mbps')

 Now, we have built a complete FNSS scenario and it is ready to be converted to Mininet using

the following command:

mn_topo = fnss.to_mininet(fnss_topo, relabel_nodes=True)

 The complete topologies designed and implemented with both OVS and Floodlight controllers

using the following commands, respectively:

net = Mininet(topo=mn_topo, link=TCLink,

 controller= OVSController)

net = Mininet(topo=mn_topo, controller=RemoteController,

 link=TCLink)

fController=net.addController(name='floodlightController'

 ,controller= RemoteController

 42

Received 6 May 2019; Accepted 5 September 2019

 ,ip='127.0.0.1',port=6653)

 The complete SDN topologies can be now run and tested to evaluate tested resources adaptively

according to proposed solutions. Selected topologies executed with OVS controller can be drawn

using networkx library; while those executed with Floodlight controller can be exhibited in both

networkx and web UI by the REST API facility which shows a more flexible graphs, as shown in

Fig. 2. It is important to mention that according to our hardware properties, we have discovered that

OVS controller can implement and run only one-core and two-level DC topologies while Floodlight

controller can implement and run different number of cores and levels for the same topologies. We

design and implement one, two, three, and five cores for both two and three tiers, two and four levels

for fat tree DC topologies, and dumbbell topology with two values for nodes in each bell (four and

ten) and for nodes in the path (five and ten).

2-Tier 1-core Topology 3-Tier 2-core Topology

4-level Fat-Tree Topology Dumbbell (5,4) Topology

FIG. 2: DIFFERENT EXAMPLES OF IMPLEMENTED TOPOLOGIES

The throughput results of implemented scenarios have been improved from to 11.82Mbps-14.22Mbps

and to 11.9Mbps- 13.583Mbps, to 119.2Mbps-128.96Mbps and to 110.425Mbps-114.158Mbps, and to

201.8Mbps-209.6Mbps and to 216.417Mbps-225.583Mbps in Floodlight and OVS controllers

respectively and for the statistical, GA, and PSO approaches, respectively. File transfer duration (Fig.

3) between sender and receiver (measured in seconds) has been computed according to the following

formula:

 43

Received 6 May 2019; Accepted 5 September 2019

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝐹𝑖𝑙𝑒 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑎𝑡𝑒
 (8)

Where, total file size is the file size in bytes (referring to Table 1) and the actual file transfer rate is in

bytes per second.

(a) transfer duration for the video 1 (b) transfer duration for the video 2

FIG. 3: TRANSFER DURATION RATE FOR TESTED VIDEO STREAMS

 According to collected data, the average mean packet delay was reduced by 85.31% in floodlight

controller and 86.46% in OVS controller in the statistical approach as shown in Fig. 4, while it was

91.42% in OVS controller and 91.58% in floodlight controller as shown in Fig. 5, and finally, it was

95.48% in OVS controller and 95.52% in floodlight controller as shown in Fig. 6. The enhancement

of the proposed solutions on tested video streams is shown in Fig. 7.

FIG. 4: MEAN PACKET DELAY OF THE STATISTICAL APPROACH USING BOTH OVS AND FLOODLIGHT CONTROLLERS

3.7443 3.6812

2.7972

3.8946 3.7455

2.8096

0

1

2

3

4

5

LSE Approach GA Approach PSO Approach

Tr
an

sf
e

r
D

u
ra

ti
o

n
 (

s)

Floodlight Controller OVS Controller

4.8512

2.4761

1.4749

2.6073

1.6623 1.6452

0

1

2

3

4

5

6

LSE Approach GA Approach PSO Approach

Tr
an

sf
e

r
D

u
ra

ti
o

n
 (

s)

Floodlight Controller OVS Controller

1 Kbps 24 Kbps 64 Kbps

OVS Controller Before Using
the statistical approach

17.2588 381.541 1039.5

Floodlight Controller Before
Using the statistical approach

25.480625 390.81425 1049.5835

OVS Controller After Using the
statistical approach

27.4902 65.0196 123.4142

Floodlight Controller After
Using the statistical approach

25.6621875 63.694375 125.89525

0
200
400
600
800

1000
1200

 44

Received 6 May 2019; Accepted 5 September 2019

FIG. 5: MEAN PACKET DELAY FOR GA USING BOTH OVS AND FLOODLIGHT CONTROLLERS

FIG. 6: MEAN PACKET DELAY FOR PSO USING BOTH OVS AND FLOODLIGHT CONTROLLERS

(a) Video 1 before implementing enhancement (b) Video 2 before implementing enhancement

1 Kbps 24 Kbps 64 Kbps

OVS Controller Before Using
GA

17.25875 381.540875 1039.495

Floodlight Controller Before
Using GA

25.480625 390.81425 1049.5835

OVS Controller After Using
GA

26.96425 38.421125 58.02

Floodlight Controller After
Using GA

24.9465625 37.7170625 60.7254375

0
200
400
600
800

1000
1200

1 Kbps 24 Kbps 64 Kbps

OVS Controller Before Using
the PSO

17.25875 381.540875 1039.495

Floodlight Controller Before
Using the PSO

25.480625 390.81425 1049.5835

OVS Controller After Using the
PSO

17.432625 20.023625 27.4505

Floodlight Controller After
Using the PSO

17.1314375 21.3006875 27.2219375

0
200
400
600
800

1000
1200

 45

Received 6 May 2019; Accepted 5 September 2019

(c) Video 1 after implementing the statistical

approach

(d) Video 2 after implementing the statistical

approach

(e) Video 1 after implementing GA approach (f) Video 2 after implementing GA approach

(g) Video 1 after implementing PSO approach (h) Video 2 after implementing PSO approach

FIG. 7: PERFORMANCE EVALUATION FOR TWO TESTED VIDEO STREAMS

V. CONCLUSION

 Two animation videos have been used in this research to test the performance of the proposed

solutions. These videos were the Big Buck Bunny with a total file size of 2.1 Mbytes, resolution

320x240 and its length is 26 seconds, the frame rate is 15, and the same video with a total file

size of 5.2 Mbytes, frame rate 25, resolution 640x480 and its length is 30 second. The other

test video was a sample animation video with a total file size of 1.8 Mbytes, resolution

640x360, frame rate 25 and its length is 18 seconds. The test on the set of the chosen topologies

was made by sending these videos between two hosts and capturing the performance of each

approach. The VLC media player was the application used to display the tested videos on both

hosts. The purpose of this research is to investigate resource management by improving QoS

metrics (increasing the capacity of links and decreasing delay values). Three approaches have

been proposed and implemented according to the algorithms stated in section 3. They were

tested on four different topologies which are (2-tier, 3-tier, and fat-tree) DC and dumbbell

topologies. Ping and Iperf commands have been used to record delay and bandwidth values

and Wireshark application was used to capture packet delivery ratios and average packets per

second for the streamed video between hosts. The floodlight controller has more appropriate

graphics and display capabilities than that in the OVS controller. On the other hand, the

performance of reducing the delay of the statistical approach for both controllers is 85.88% as

 46

Received 6 May 2019; Accepted 5 September 2019

an average, while the performance of reducing the delay in the GA approach for both

controllers is 91.5%, and lastly, it is 95.5% for PSO approach. Finally, the throughput in both

controllers has been improved from 951 Kbps- 1.77 Mbps to 11.68 Mbps-13.901 Mbps in the

statistical approach, and to 114.812Mbps- 121.559Mbps in the GA approach, while it has been

increased to 209.108Mbps- 217.591Mbps in the PSO approach as an average. The error rates

in terms of packet delivery ratio of Floodlight and OVS controllers were 6.71% and 3.42%,

respectively.

REFERENCES

[1] W. Xia, Y. Wen, and C. Heng Foh, “A Survey on Software-Defined Networking”, IEEE Communication Surveys &

Tutorials, Vol. 17, NO. 1, First Quarter 2015.

[2] A. Salman Dawood, and M. Najm Abdullah, “A Survey and a Comparative Study on Software-Defined Networking”,

International Research Journal of Computer Science (IRJCS), ISSN: 2393-9842, Issue 08, Volume 3 (August 2016)

[3] M. Najm Abdullah, A. Salman Dawood, and A. Kamal Taqi, “Network Resource Management Optimization Based on

Statistical Approach”, International Journal of Computer Applications (0975 – 8887), Volume 177 – No.6, November

2017.

[4] M. Najm Abdullah, and A. Salman Dawood, “Novel Approach Based on Genetic Algorithm for Adaptive Resource

Management in Software-Defined Networks”, International Journal of Advanced Research in Computer and

Communication Engineering, ISO 3297:2007 Certified, Vol. 6, Issue 1, January 2017.

[5] P. May Thet, P. Panwaree, J. Won Kim, and C. Aswakul, “Design and Functionality Test of Chunked Video Streaming

Over Emulated Multi-Path OpenFlow Network”, 978-1-4799-7961-5/15©2015 IEEE.

[6] C. Xu, B. Chen, and H. Qian, “Quality of Service Guaranteed Resource Management Dynamically in Software Defined

Network”, ©2015 Journal of Communications, doi:10.12720/jcm.10.11.843-850.

[7] H. Peng, Q. Ye, and X. Shen, “SDN-Based Resource Management for Autonomous Vehicular Networks: A Multi-

Access Edge Computing Approach”, arXiv:1809.08966v1, Cornell University.

[8] S. Agliano, M. Ashjaei, Moris Behnam, and L. Lo Bello, “Resource management and control in virtualized SDN

networks”, 2018 IEEE Conference, DOI: 10.1109/RTEST.2018.8397078.

[9] L. Liao and V. C.M Leung, Genetic Algorithms with Particle Swarm Optimization based Mutation for Distributed

Controller Placement in SDNs, 2017 IEEE Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN).

[10] F. Ongaro, “Enhancing Quality of Service in Software-Defined Networks”, Department of Computer Science and

Engineering Master Degree in Computer Engineering, 2013-2014.

[11] C. Xu, B. Chen, and H. Qian, “Quality of Service Guaranteed Resource Management Dynamically in Software Defined

Network”, Journal of Communications Vol. 10, No. 11, November 2015.

[12] A. Khanna, A. Mishra, V. Tiwari, and P.N. Gupta, “A Literature Based Survey On Swarm Intelligence Inspired

Optimization Technique”, International Journal of Advanced Technology in Engineering and Science, Volume No 03,

Special Issue No. 01, March 2015.

[13] J. Galán-Jiménez, “Minimization of Energy Consumption in IP/SDN Hybrid Networks using Genetic Algorithms”, 978-

3-901882-99-9 c 2017 IFIP.

[14] A. Sabih, Y. Al-Dunainawi, H. S. Al-Raweshidy, and M. F. Abbod, “Optimisation of Software-Defined Networks

Performance Using a Hybrid Intelligent System”, Advances in Science, Technology and Engineering Systems Journal,

ISSN: 2415-6698, Vol. 2, No. 3, 617-622 (2017).

[15] L. Lingxia, V. C. M. Leung, and L. Chin-Feng, “Evolutionary Algorithms in Software Defined Networks: Techniques,

Applications, and Issues”, ZTE COMMUNICATIONS, August 2017 Vol.15 No. 3.

