
Al-Qadisiyah Journal for Administrative and Economic Sciences                             ISSNOnline : 2312-9883          

QJAE,  Volume 26, Issue 2 (2024)                                                                           ISSNPrint    : 1816-9171   

                                                      

140 

Single Index Model with Ordinal Data 

 
Taha Alshaybawee 

Anaam Jameel  
University of AL-Qadisiyah 
Corresponding Author : Anaam Jameel 

Abstract : Modeling and forecasting ordinal outcomes has become a core study for many statisticians because of 

the many forms of data encountered in real life, that have such a format. Several authors have proposed different 

approaches in modeling this type of data either in classical approaches (Mc Cullagh, 1980) or from a Bayesian 

perspective (Albert and Chib, 1993) (Cowles et al., 1996). One commonly adopted method of modeling ordinal data 

is that the observed ordinal scores have a correspondence with the latent variable through a set of cut points. 

Sometimes there are some difficulties in estimation. One of these categories is koto. (Albert and Chib, 1993) 

proposed an ordinal model in a Bayesian framework that fuzzy-collaborates prior on the cut-point parameters. The 

approach is used to estimate these parameters through their posterior distribution. We then compare our results after 

prediction with ordinal logistic regression to see which methods through which we obtain the best estimates. 

Keywords: ordinal data, prediction, ordinal results, logistic model. 

Introduction: Ordinal scores arise naturally in fields as diverse as environment, economics, finance, and 

social studies. For example, in social studies in surveying Regarding the level of agreement on a particular question, 

the results can be recorded as follows: 

: 1 for “strongly disagree”, 2 for “disagree”, 3 for “no opinion”, 4 for “agree”, 5 for 

'Strongly Agree'. The results in this example have an ordinal meaning but no cardinal meaning   We usually refer to 

the words (strongly disagree, disagree, disagree, no opinion, agree, strongly agree) as labels and numbers (1, 2, 3, 4, 5) 

as values. 

There is a large body of work on estimation of ordinal data (see, for example, Albert and Chip 1993; Chen and Dai 

2000; Albert and Chip 2001; Kutas, Mueller, and Quintana 2005; Jeliazkov, Greaves, and Kutzbach 2008). Apart from 

the average regression, there is also... 

Studies on( QR) for ordinal data (see Hong and He 2010; Zhou 2010; Hong and Zhou 2013). Compared with mean 

regression, QR models belong to a strong model family (Conker 2005).where as there is No distributional assumption 

is imposed on the error term. However, the conditional quantity of the error term is zero.  

Asingle index for ordinal data model can be determined based on a continuous hafent variable yi
* 
as follows: 

  
 = 

g (  
  ) + εi  , i=1,2,………,n …………………………1) 

Where yi
*
 is the unobserved variable reletes for the observed discrete response variable yi, xi is a covariates vector 

with k   dimenstion ,β is k   index parameter vector ,g( )is the unknownnon parameteric function and εi is the 

error term follows normal distribution with N(0,σ
2
) . Assume that the categories or outcome are, J  

Yi=j ,            
                            

Wher              are cut-point ,where its satisfy the coordinates     0  1    j-1  j =  

In this study, Gaussian process set as aprior distribution for the non parametric function with zero mean and variance-

covariance matrix E(   ) 

Therefore ,we can show as follows. 

g( ) (   (   )) 

E(β'xi , β'xj)=       (  
     

  )  /h}………….2) 

Where   and h are unknown hyparameters  0 that the prior distribution  et al (2011)and Gramcy and lain (2012) can 

be shown  as: 

∏(      ) = det [En]   
 

  exp [-
          

 
] 

Many researchers assum that     =1 for identifiable. Where as Gramcy and lain(2012) mention that ,this codition is 

unnecessary when Gaussion process used as aprior distribution . 

They indicated (β/√ ) is identifiable without the constriaant ǁβǁ=1, we will replaced β/√  by the parameters vector β 

which is identifiable then variance covariance matrix is: 

E(β'xi , β'xj)=       (  
     

  )} 

Invars Gamma set as aprior to the hyperparameter ɤ, ɤ IG(   )where a,b Laplace distribution put as prior 

distribution for the coefficient vector βj, j=1,2,…..p 
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Where(   ) is apenalty parameter follow Andrews and Mallows(1974).Laplace distribution can represent as ascale 

mixture of normal and exponential density for any     ,then 
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On the other side ,for the unobserved dependent variable  
 the error termdistributed as normal with mean zero and 

varianc    

 Then the cumulative distribution function for the j category of observed respose yi is given as: 

P(yi      
    )  pr(  

      ) 

                               =pr (g  
  )       ) 

                                                =pr (       (  
  )) 

                               =pr (
  

  
 

    (  
  )

  
) 

                                = (
    (  

  )

   
) 

Based on    we have  

Pr(         
      ) 

= (
   ( (  

  )

  
)   (

  
     (  

  )

  
) 

As same as the metivn by sorenser et al.(1995) Montesinos-Lopez et al.(2015) and Alhamzawi and Ali (2018),an order 

statistics from U(  min , max) distribution for the J-1unknown cut-point . 

P( )  (   )  (
 

          
)    I( 0) 

Where   ( 1, 2,     J) and Z={( min, 1,……, max)/ min<,……< max)} 

Then the hierarchical Bayesian for single index model when the response variable is ordinal can be shown as: 

  
 /β, g ,  N(g(  
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2.Posterior Distribution 
We can write the full condition posterior distribution as follws:  

P(β,g,ɤ,         
 )  p(  

 /β,   )p(g/ɤ,β) 

P(β,s/ ) p(ɤ) p( ) p(  ) p( ) 
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Where I{.} is anindicator function .In the for we will summarizd the MCMC algorithm: 

1-Truncated normal distribution TN( j , j-1)(g(  
  ,  ) will be u sed to sample the latent variable   

 . 

2-The full conditional posterior for the cut points   will compute as follows 
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P( j/yi)  p(yi/ j).p( j)  ∏ ∑  ( 
   

 
   yi=j) I( j-1   

   j) I(   ) 

 

Therefore the full conditional of  j is a uniform and it will be draw from 

P( j/yi)=
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3-To sample g we will use: 
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Then gn will by sampling form normal distribution N(A, B) where 

A=E(E+D)       

B=E(E+D)   ( ) 

4-sampling the coefficient vector β from the following posterior 
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3. Simulation of Ordinal Single Index Model . 
In this part of chapter three we conducted two simulation example to check the accuraty of our proposed method 

Bayesian ordinal SIM and compar results with the method (BOSI) of Bayesian Ordinal Quantil regression (BOQR) 

with quarfole  level (0.5). 

3.1-Example One  
The dataset in this example are generated from the following regression form:     

       (  )              

{
 

 
                      

   

                     
       

                        
   

                          
   

 

where      ,   is the design matrix with dimension 5 columns, five independent variables and sample size 

n=25,50,100 and 150             , (          ),    (         ) √ ⁄ , the quantile coefficient    will be 

estimated for the five different quantile levels                       and 0.95, and the error term will be considered 

with a mixed distribution        (   )            (   ) (Kuruwita, 2015). Table 3-1 shows a brief summary of 

the parameter estimates for simulation example one. 

Table 3-1 the parameter estimates of simulation example one ordinal SIM 
Sample Size 

Methods                

N=25 
BOSI 0.41041 0.33152 0.61258 0.60940 0.24068 

 
BOQR 0.11910 1.43240 -1.57336 -0.69546 0.34936 

N=50 
BOSI 0.36830 0.39799 0.37641 0.44651 0.51080 

 
BOQR -0.30758 0.69392 0.06304 -0.41690 1.44962 

N=100 
BOSI 0.12966 0.13797 0.51014 0.36915 0.38501 

 
BOQR 0.70080 -0.24725 0.25290 0.14005 0.08985 

N=150 
BOSI 0.35272 0.50031 0.37536 0.61735 0.53729 

 
BOQR -0.85395 -0.38165 1.17395 0.91055 0.18315 

 

The simulation results in Table (   ) including the parameter estimates of the ordinal single index model 
(   )over sample sizes (             ) It can be observed that the proposed method (    )performs better than 

other methods (    ) especially when the sample size getting bigger, where the true value of            As the 

values for estimated bias for BOSI and BOQR in methods in ordinal. 

In Table (3-2) Estimated Bias for simulation example one using different methods.  

Table 3-2 Estimated Bias for simulation example one using different methods 

Sample Size Methods Bias (  ) Bias (  ) Bias (  ) Bias (  ) Bias (  ) 

N=25 
BOSI 0.03681 0.56291 0.61258 0.60940 0.24068 

 
BOQR 0.32811 0.53797 1.57336 0.69546 0.34936 

N=50 
BOSI 0.07892 0.49644 0.37641 0.44651 0.51080 

 
BOQR 0.75479 0.20051 0.06304 0.41690 1.44962 

N=100 
BOSI 0.31756 0.75645 0.51014 0.36915 0.38501 

 
BOQR 0.25359 1.14168 0.25290 0.14005 0.08985 
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table (   ) show that the obtained bias values from our proposed method (BOSI) is much smaller at different 

sample sizes than the competing method (    ) for all the five parameter estimates . We can see that as the sample 

size become more larger, the proposed method (    ) yields lower bias values, which indicated that (    ) method 

peforms well .  

Moreover, we draw the valnes of the standard errors for the estimated values of the parameters estimates (     ) 

along with BOSI and BOQR methods.  

Figure (3-1) the SD value of parameter estimating for simulation example one in Ordinal SIM 

 
It is ving clear from figures  (    ) That the value of SD for the proposed method (    ) Are less than the values 

of SD that obtaimal from (    ) Method , and that indicates the good from (    ) Perfrom of the propted method. 

Table 3-3 MSE and MAD of simulation example one 

sample size Methods MSE MAE 

N=25 BOSI 5.27339 1.64769 

 
BOQR 9.53420 2.59238 

N=50 BOSI 5.55599 1.82967 

 
BOQR 6.67400 2.07213 

N=100 BOSI 7.03031 2.02433 

 
BOQR 8.41190 2.34842 

N=150 BOSI 6.12743 1.96520 

 
BOQR 8.35379 2.39524 

 

The results of MSE and MAD that listed in table (    ) shows that the proposed method (    ) performs better 

than (    ) methods ocer all different sample size . However , we observed that (    ) method tends to be the best 

meted in terms of the values of MSE and MAD Criteria.   
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N=150 
BOSI 0.09450 0.39412 0.37536 0.61735 0.53729 

 
BOQR 1.30116 1.27608 1.17395 0.91055 0.18315 
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Figure (3-2) MSE and MAD values polts of simulation example one for Ordinal SIM 

 
In Figure (3-2) the values of MSE and MAD Criteria are plotted against the methods (              )It can be 

observed that the values of MAE criterion with different methods are better than the performance of MSE criterion 

.The closer value to zero the better perform. But in estimed the resulte of the popcered method 

(    )                                         

3.3-Example Two : 
In this example, the samples size we considers n=25,50,100 and 150 observations are generated from the regression 

model: 
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where      ,   is the design matrix   (              )
     is the coefficient vector   (         ) √ ⁄ , and the 

   (           ) are i.i.d in a uniform distribution [0,1]
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) respectively.   is the error term, and we consider   density distributions of the error term to evaluate 

the robustness of our proposed approach (Benoit et al., 2013).  

   (   )                 
  In each   level 10,000 iterations are run in the MCMC algorithm with 2,000 burn-in Table (3-4) shows abrief  

summing of the parameter estimates for simulation example two 

Table 3-4 the parameter estimates of simulation example two 
Sample Size  

Methods                    

N=25 
BOSI 

0.33446 0.62063 0.20104 0.41123 0.67259 

 
BOQR 

1.68870 1.36485 0.13475 3.14425 0.38655 

N=50 
BOSI 

0.49593 0.08846 0.50133 0.64144 0.31773 

 
BOQR 

1.07100 1.94110 -1.04940 0.81170 3.01440 

N=100 
BOSI 

0.44483 0.40846 0.38780 0.44186 0.45855 

 
BOQR 

0.77743 0.80620 1.96608 1.02379 -0.03009 

0.00000

2.00000

4.00000

6.00000

8.00000

10.00000

12.00000

BOSI BOQR BOSI BOQR BOSI BOQR BOSI BOQR

N=25 N=50 N=100 N=150

MSE

MAE



QJAE,  Volume 26, Issue 2 (2024)                                                                           

146  

N=150 
BOSI 

0.55623 0.32565 0.42486 0.49516 0.40414 

 
BOQR 

1.49374 1.16375 0.92632 0.64043 0.92769 

The simulation results in Table (3-4) including the parameter estimation of the ordinal single index model (SIM) with 

four sample sizes (             ) It can be seen that the proposed method (    ) performs better than other 

methods (    ) especially when the sample size getting larger, where the true value of          with in sample 

size (     )     (  
      ) parameter estimates getting closer to the true value as sample size getting bigger .  

 As the sample size become more larger, the parameter estimates are close to true values with the proposed method .In 

Table 3-4 the value of estimated bias for different sample size with different estimation method of Ordinal SIM 

.Further more,we calculate the estimated values of the quality criteria ,MSE and MAD.  

Table (3-5) shows the values of the MSE and MAD  Criteria. 

Table 3-5 Estimated Bias for simulation example one using  Ordinal SIM 

Sample Size Methods Bias (  ) Bias (  ) Bias (  ) Bias (  ) Bias (  ) 

N=25 BOSI 0.24289 0.04327 0.20104 0.41123 0.09524 

 BOQR 1.11135 0.78750 0.13475 3.14425 0.19080 

N=50 BOSI 0.08142 0.48889 0.50133 0.64144 0.25963 

 BOQR 0.49365 1.36375 1.04940 0.81170 2.43705 

N=100 BOSI 0.13252 0.16890 0.38780 0.44186 0.11880 

 BOQR 0.20008 0.22885 1.96608 1.02379 0.60744 

N=150 BOSI 0.02112 0.25170 0.42486 0.49516 0.17321 

 BOQR 0.91639 0.58640 0.92632 0.64043 0.35034 

from table (    ) that the obtained bias values from our proposed method (    ) is much smaller at different 

sample sizes than the competing method(    ) for all parameter estimates .Also we can say that the prosed method 
(    ) performs better than other method .cosquently, as the sample size become more larger, the proposed method 

(    ) gives lower bias values, which suggesting a good performance of(    ) method.  

Next  ,we draw the SD values for the estimated parameters (     ) 

With BOSI and BOQR methods. 

Figure (3-3) MSE and MAD values plots of simulation example two 
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Figure (3-3) we can see that the SD result from proposed method (BOSI) are less then the values of SD criterim that 

obtainal from (BOQR) method ,this indicates the well performing of proposed method (BOSI) in terins of standard 

prror for the parameters estimates. 

Next table (   ) Show the values of MSE and MAE measures under different sample sizes. 

Table 3-6 MSE and MAD of simulation example two for Ordinal SIM 

sample size Methods MSE MAE 

N=25 BOSI 2.64807 1.34439 

 
BOQR 12.09748 3.29586 

N=50 BOSI 4.32750 1.76307 

 
BOQR 12.43013 3.25683 

N=100 BOSI 5.93040 2.16584 

 
BOQR 10.89384 2.97045 

N=150 BOSI 5.20379 2.12142 

 
BOQR 11.98434 3.24380 

The results of MSE and MAD that obtaned in table (3-6) indicates that the proposed method (BOSI) generally 

performs better than (    ) method overall different sample size . However , we observed that (BOSI) method tends 

to be have better than the other method in terms of the values of MSE and MAD Criteria. To summary the values of 

MSE and MAE we draw the following figures. 

Figure (3-4) MSE and MAD values polts of simulation example two 

 
 

In Figure (3-4) the values of MSE and MAD Criteria are plotted against the methods (BOSI) and(BOQR) .It can be 

observed that the values of MAE criterion with different methods are better than the performance of MSE criterion 

.The closer value to zero the better perform. 

4. Conclusions 
1. the Ordinal SIM, the proposed method (BOSI) performe better in terms of MSE and MAE values. 

5. Recommendations 
1.we recommerd the usage of (BBSI) in Binary Single Index Model and (BOSI) method when dealing with Ordinal 

SIM because the flexibility of these model. 
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2.we also recommend and suggest the of Bayesian semi parametric logistic regression ueder the same hierarichal prior 

distributions. 

4. Apply the proposed method in medical research labs to support the medical staff with the necessary information that 

help patients to recover as soon as possible 
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