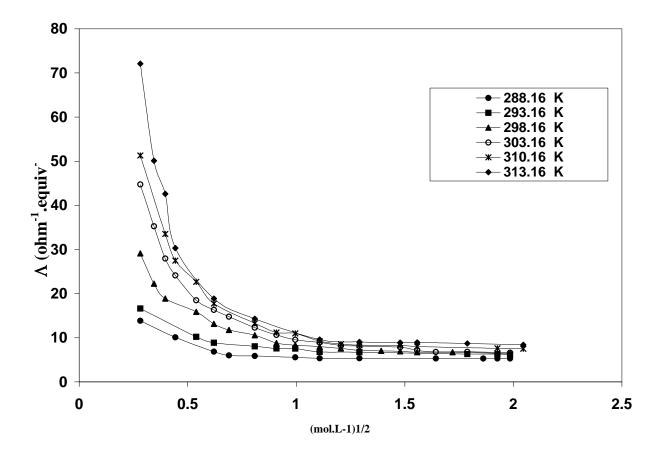


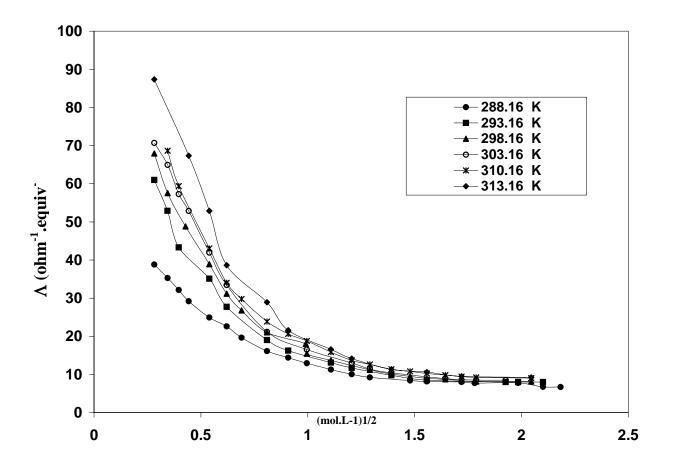
Abstract

This research is the electrical Conductivity study for each of trimetheprim, amoxicillin trihydrate and isoniazid in conductivity water at different temperatures (288.15-313.15) Kelvin By using lee-Wheaton equation for symmetrical electrolytes (1:1), The conductivity

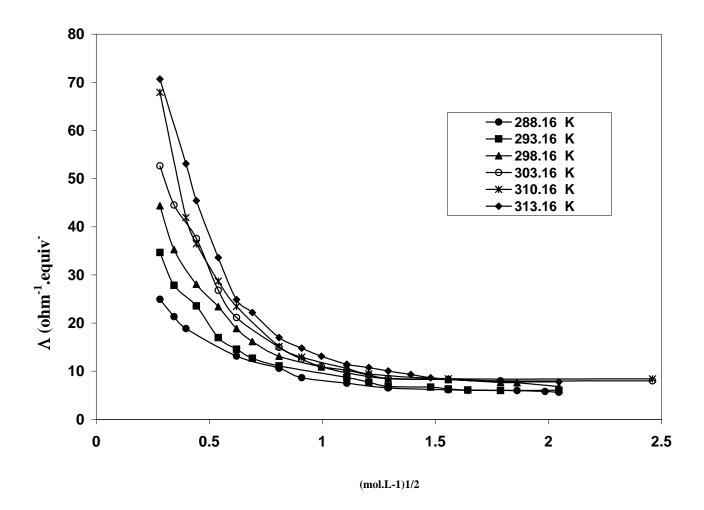
parameters have been calculated. The equivalent conductivity at infinite dilution (Λ°). The ion pair association constant (K_A) and the mean distance values between ion (R) at the best value of standard deviation ($\delta\Lambda$). It is found that the values of (Λ°) and (R) for each drug increase with increasing temperature, while the values of K_A are inversely proportional with temperature. By comparing these values, They follow the sequence:


 Λ_{o} : amoxicillin trihydrate < trimetheprim < ioniazed K_{A} : isoniazid < trimethoprim < amoxicillin trihydrate R : ionized > trimethoprim > amoxicillin trihydrate

An accurate method for determination of these drugs by using conductometric titration method with hydrochloric acid and sodium hydroxide have been found to be good and sensitive comparing with (the standard addition and potentiometric titration methods) from encyclopedia.


(Antibiotics): High performance liquid ^{6 5} chromatography(HPLC) ⁷ Dagorn and Delmas Antibacterial Antifungals Antiflammatory .³⁻¹ Antiparisitics .8 Differential scaning) 1929 Electrophoresis 10 1941 Berzas Nevado Chain Florey 11 (Chemilumine Scence) 2-4diamino-5-(3,4,5-trimethoxy benzyl)-(Lc-UV) pyrimidine

.21 20	Alpha-amino-p- Amoxicillin Moxacin Penicillin hydroxybenzyl .Amoxil Larcin
.23 22	Beecham (1972-1971)
.24 655	
. ²⁵ HPLC	Samonella .Shigella spp.
	13
HANNA (C 832) (Consort) (0.01) (Hakke NK22)	. 14 Liquid chromatography with UV
.(5dis) (Sartorius 2004 Mp6 Electronic Semi – Micro)	HPLC
Conductivity) (Cell	(CZE) Capilary zone
K=) (1.109cm ⁻¹	.18
.(S.D.I) / (Conductivity water) 1.5	Isonicotinic acid hydrazide, INAH, INH, 4-pyridine carboxylic acid hydrazide, Tubazid, Isonicotinyl hydrazide ¹⁹ .
	Mycobacterium tuberculosis


```
(1:1)
                                                                                       (6-4)
                (M^+)
                           (Cation)
                                                                         (10^{-3}M)
                            (X-)
                                     (anion)
                   MX \rightleftharpoons M^+ + X^-
                             K_{A}
MX
                                                           )
                                                                          (50)
                                                                (Thermostatic water bath)
weak )
                                                    15)
                                (electrolytes
                                                                           (40 37 30 25 20
                    (\Lambda)
                                                                                  (10^{-3}M)
                                                               (30)
                                                                                  (60)
                          29 28 27
                           (3 2 1)
                                                              (10^{-3}M)
                                                                  (PH)
                                                                                 (0.05M)
                                                                                 298
                                                                                        (0.05M)
                                                          )
                                                                 (Conductivity water)
                                                    (28816 - 313.16)
```


:(1)

:(2)

:(3)

:(1)

313.16

 $\sigma\Lambda$ ohm⁻¹.equiv⁻¹.cm² **(T)** R $\Lambda_{\rm o}$ K_A ohm⁻¹.equiv⁻¹.cm² (A°) 0.00805 202606.598 16.544 288.16 0.00745 185505.490 19.720 293.16 2 0.00871 174256.916 91.228 298.16 0.01637 4 132644.362 107.222 303.16 128837.437 0.02062 109.639 310.16 6

112.673

119103.366

 $(\sigma\Lambda)\quad (K_A)\quad (R)\quad (\Lambda_o)$

4

0.04773

$$(\sigma\Lambda) \quad (K_A) \quad (R) \quad (\Lambda_o) \qquad \qquad : (2)$$

-

σΛ ohm ⁻ ¹ .equiv ⁻¹ .cm ²	R (A°)	K _A	Λ _o ohm ⁻¹ .equiv ⁻ ¹ .cm ²	(T)
0.00752	2	161346.342	65.868	288.16
0.02405	4	155608.738	86.745	293.16
0.03414	4	133049.475	92.692	298.16
0.03937	6	127391.469	100.668	303.16
0.03327	6	117133.196	118.644	310.16
0.05013	4	112630.184	125.071	313.16

$$(\sigma\Lambda)$$
 (K_A) (R) (Λ_o) :(3)

_

σΛ ohm ⁻ ¹ .equiv ⁻¹ .cm ²	R (A°)	K _A	$\Lambda_{\rm o}$ ohm ⁻¹ .equiv $^{-1}$.cm 2	(T)
0.03942	2	168350.482	65.455	288.16
0.00817	4	146883.530	75.775	293.16
0.01345	4	126274.287	96.492	298.16
0.03277	6	111511.429	125.520	303.16
0.03639	6	109668.942	133.606	310.16
0.03875	6	103154.833	142.143	313.16

.33(Barbituric acid)
$$(\Lambda_0)$$

³⁴(Bjerrum)

(K_A) (Theoretical expressio)

(CIP) . 31 30(

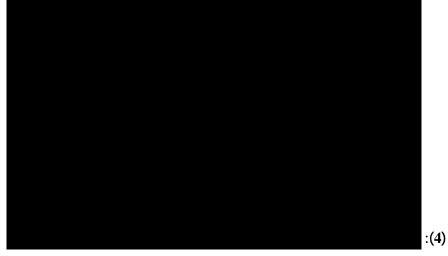
:

$$K_{A} = \frac{4\pi N_{A}}{3000} a^{3} e^{b} \tag{K_{A}}$$

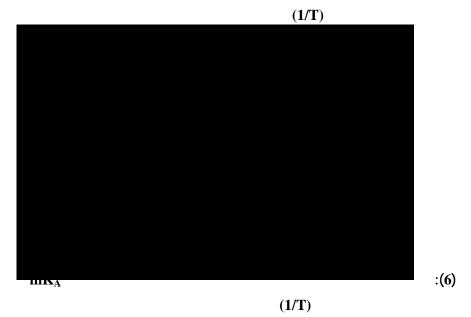
$$\beta \quad \frac{\beta}{R} = b \tag{K_A}$$

 $i \qquad \frac{eiej}{Da}$

 lnK_A (4) .(III II I) (1/T)


lnK _A		$(1/T)\times10^{-3}$	
			(K ⁻¹)
12.09	11.99	12.21	3.47
11.89	11.95	12.13	3.41
11.74	11.79	12.06	3.35
11.62	11.75	11.79	3.29
11.60	11.67	11.76	3.22
11.54	11.63	11.68	3.19

: $1/T lnK_A$


$$lnK_{A} = \frac{-\Delta H^{\circ}}{R} \cdot \frac{1}{T} + C$$
.(6 5 4)

$$\Delta G^{\circ} \quad \Delta H^{\circ} \qquad K_{A}$$
 :
$$\Delta G^{\circ} = -RT L_{n}K_{A} \qquad (SSIP)$$

$$\Delta S^{\circ} \qquad .$$
 :
$$.^{31}(CTP)$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

:(5)

ΔS°	- ΔG°	- ΔH°	T
(J.mol ⁻¹ . K ⁻¹)	(KJ.mol ⁻¹)	(KJ.mol ⁻¹)	(° K)
44.322	29.252	16.480	288.16
44.630	29.564	16.480	293.16
44.992	29.895	16.480	298.16
43.660	29.716	16.480	303.16
44.638	30.325	16.480	310.16
44.482	30.410	16.480	313.16

:(6)

ΔS°	- ΔG°	- ΔH°	T
(J.mol ⁻¹ . K ⁻¹)	(KJ.mol ⁻¹)	(KJ.mol ⁻¹)	(° K)
61.563	28.725	10.985	288.16
61.880	29.126	10.985	293.16
61.178	29.226	10.985	298.16
61.452	29.615	10.985	303.16
61.606	30.093	10.985	310.16
61.613	30.280	10.985	313.16

:(7)

ΔS° (J.mol ⁻¹ .K ⁻¹)	- ΔG° (KJ.mol ⁻¹)	- ΔH° (KJ.mol ⁻¹)	T (°K)
51.540	28.964	14.112	288.16
50.712	28.979	14.112	293.16
50.275	29.102	14.112	298.16
50.056	29.287	14.112	303.16
50.941	29.912	14.112	310.16
50.878	30.045	14.112	313.16

- R.K. Gilpin and L.A. Phachla, *Anal. Chem.*, 1993, 65, 117R-132R.
- J.E.F. Reynolds, Editor,
 "Martindule-The Extra Pharmacopoeia". 31st Edn., Royal Pharmaceutical Society, London, 129 (1996).
- "British Pharmacopoeia on CD-Rom". 3rd Edn., System Simulation Ltd., The Stationary Office, London (2000).
- T.B. Vree, Y.A. Hekster, A.M. Baars, J.E. Damsma and E.V. Kleijn, *J. Chromatogr. Biomed. Sci. Appl.*, 1978, 146(1), 103.
- G. Chen, Y. Tu, L.V. Allen, Jr. and D. Wang, *Int. J. Pharm.*, 1988, 46(1-2), 89.
- M. Dagorn and J.M. Delmas, *Anal. Chim. Acta*, 1994, 285(3), 353.

 ΔH°

(Dielectric Continuum media) . 36 35 (Rigid)

 ΔG°

$$(\Delta G^{\circ} = -$$

38

$$R T \ln K_{A})$$

$$\Delta S^{\circ}$$

(Orientation)

(M⁺) .(M⁺X⁻)

 A. Kucers and N.M. Bennett, "The Use of Antibiotics". 3rd
Edn., William Heinemann
Medical Books Ltd., London, 3
(1979).

- **Biomed.** Appl., 1999, **731(2)**, 309.
- S.M. El-Ashry, F. Belal, M.M. El-Kerdawy and D.R. El-Wasseef, *Mikrochim. Acta.*, 2000, 135(3-4), 191.
- A. Siba, Actapharm. Hung., 59,
 205-212; Anal. Abst., 52, 6D62 (1990).
- 20. E.K. Kastrup, Editor, "Drug Facts and Comparisons". Facts and Comparisons Div., Philadelphia, 1441 (1985).
- M. Cahill, Editor, "Nursing 97-Drug Handbook". Springhouse Corporation, Pennsylvania, 63 (1997).
- 22. K.K. Verma and A.K. Gupta, *Talanta*, 1981, **28**, 849.
- A. Das and K.S. Boparai,
 Talanta, 1982, 29, 57.
- N.M.A. Mahfouz and K.M. Emara, *Talanta*, 1993, 40(7), 1023.
- H. Kirchherr, *J. Chromatogr.*,
 1993, 617, 157. (Abstract)
- L. Grasso, G. Scarano, E. Imparato, O. Arace and G. Oliviero, Food Additives and Centaminauts, 2000, 17, 749.
- 27. Z.A.H. Al-Delemi, M.Sc. Thesis, Mosul University (2001).

- Y.M. Issa, A.L. El-Ansary and
 W. Selim, *Anal. Lett.*, 1998,
 31(1), 131.
- M.E. Ribone, A.P. Pagani and A.C. Olivieri, *Anal. Lett.*, 1999, 32(7), 1389.
- J.J. Berzas Nevado, G. Castaneda Penalvo and F.J. Guzman Bernardo, *J. Chromatogr.*, 2001, 918(1), 205.
- M. Polasek and M. Jambor,
 Talanta, 2002, 58(6), 1253.
- S. Croubels, S. DeBaere and P. DeBacker, *J. Chromatogr.*, 2003, 788, 167.
- C.R. Charles and R.E. Stitzet, "Modern Pharmacology". Little, Brown and Company, Boston (1982).
- H.J. Nelies, J. Vanden, A. Dekruif and A.P. DeLeeheer, Antimicr. A. *Chemother.*, 1992, 36(9), 1859.
- E.M. Abdelmoety, M.A.
 Abounassif, E.A. Gadkariem and
 N.A. Khattab, *Talanta*, 1993,
 40(6), 811.
- S. Chulavatratol and B.G.
 Charles, J. Chromatogr.,
 Biomed. Appl., 1993, 615(1), 91.
- 17. M. Hernandez, F. Borrull and M. Calcull, *J. Chromatogr.*,

- 38. Y.O.H.M. Al-Mustawi, Ph.D. Thesis, Mosul University, 52 (2002).
- 39. H. Doe and T. Kitagawa, *Bull. Chem. Soc. Jpn.*, 1985, **58**, 2975.
- L.P. Safonova, D.V. Saharov,
 L.E. Shmukler and A.M. Kolker,
 Russian J. Electrochem., 1999,
 35(12), 1268.
- P.G. Sears, R.L. Moneer and L.R. Dawson, *J. Electrochem. Soc.*, 1955, 102, 269.
- 30. R.A. Robinson and R.H. Stokes,"Electrolyte Solution".Butterworth, London, 118(1959).
- 31. A.M. Dawod, Ph.D. Thesis, Mosul University (1996).
- 32. H. Yokoyama and H. Kon, *J. Phys. Chem.*, 1991, **95**, 8956.
- 33. Y. Yano, Sh. Kondo and K. Utsumi, *J. Sci. Biol. Chem.*, 1997.
- 34. R.M. Fuoss and F. Accascina, "Electrolyte Conductance". Interscience Publishers Inc., New York, 213 (1959).
- 35. R.M. Fuoss, *J. Am. Chem. Sos.*, 1958, **80**, 5059.
- 36. G.H. Nancollas, "Interactions in Electrolytes Solutions". Elsevier, Amesterdam, Tables A-1 and A-5 (1966).
- 37. H. Doe, H. Ohe, H. Matoba, A. Ichimura and T. Kitagawa, *Bull. Chem. Soc. Jpn.*, 1990, **63**, 2785.