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Abstract 
       In this paper, we study the implicative ideal of a BH-algebra. We state and prove some 

theorems which determine the relationship between this  notion and the other types of ideals 

of a BH-algebra, also we give some properties of this ideal and link it with other types of 

ideals of a BH-algebra. 
  

: المستخلص  
زهنات  التي تحدد العلاقة بين أعطينا و بزهنا بعض المب و BH -جبز ستنتاجية  فيلإالمثالية ا درسنا ،بحثال افي هذ     

 أخزي أنىاع   مع اوصلتهالمثالية  خصائص هذهبعض  أعطيناكذلك  و BH –جبز مثاليات من  أخزي و أنىاعم ىالمفها هذ

 .BH-بزج من مثاليات

 

Introduction: 
The notion of BCK-algebras was formulated first in 1966 [14] by Y.Imai and K.Iseki as a 

generalization of the concept of set-theoretic difference and propositional calculus, where this 

notion was originated from two different ways: one of the motivations was based on set theory, 

another motivation was from classical and non classical propositional calculi. In the same year,  

K.Iseki introduced the notion of a BCI–algebra [6], which was a generalization of a BCK- algebra.  

K.Iseki introduced the notion of an ideal of a BCK–algebra[6]. In 1983, Q.P.Hu and X.Li 

introduced the notion of a  BCH-algebra which was a generalization of BCK/BCI-algebras [8].  In 

1998, Y.B.Jun et al introduced the notion of BH-algebra, which is a generalization of BCH-

algebras[12]. Then, they discussed more properties on BH-algebras [4, 8, 11]. In 2009, A. B. Saeid, 

A. Namdar and  R.A. Borzooei introduced the notions of a p-semisimple BCH-algebra, an 

associative BCH-algebra, atoms of a BCH-algebra, a BCH-algebra generated by I-atoms, p-ideals, 

implicative ideals, positive implicative ideals, normal ideals and fantastic ideals in BCH-

algebra[2].In the same year, A. B. Saeid  and A. Namdar introduced the notions of n-fold p-ideal 

and n-fold implicative ideal[1].  

In this paper, we study the implicative ideal of a BH–algebra and the implicative BH-algebra. 

We study some properties of this notion and link it with some other types of ideals of a BH-algebra. 
  

1. Preliminaries :  
In this section, we give some basic concepts about BCI-algebra, BCK-algebra, BCH-algebra, BH-

algebra, subalgebra, ideals of BH-algebra, implicative ideal of BH-algebra and implicative BH-

algebra with some theorems, propositions. 
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Definition (1.1) : [6]  

  A BCI-algebra is an algebra (X,*,0), where X is a nonempty set, * is a binary operation and 0 is a 

constant, satisfying the following axioms:    x, y, z X: 

i.   (x *y) * (x * z)) * (z * y) = 0,    

ii.  (x * (x * y)) * y = 0, 

iii.   x * x = 0, 

iv.   x * y =0 and y * x = 0 imply x = y. 

Definition (1.2) : [ 14] 

   A BCK-algebra is a BCI-algebra satisfying the axiom:        0 * x = 0, x  X. 

Definition (1.3) : [7]  

   A BCH-algebra is an algebra (X,*,0), where X is nonempty set, * is a binary operation and 0 is a 

constant, satisfying the following axioms: 

i.  x * x = 0,  x X. 

ii.  x * y =0 and y * x = 0 imply x = y,  x, y X. 

iii.  ( x * y ) * z = ( x * z ) * y,  x, y, z X.  

Definition  (1.4) : [12]  

  A BH-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the 

following conditions: 

i.  x * x = 0,  x X. 

ii.  x * y = 0 and y * x = 0 imply x = y,  x, y X. 

iii.   x *0 = x,  x X. 

Remark (1.5) : [12]   
1. Every BCK-algebra is a BCH-algebra. 

2. Every BCH-algebra is a BH-algebra. 

3. Every BCI-algebra is a BH-algebra. 

Theorem(1.6) :[12]     

  Every BH-algebra satisfying the condition ((x*y)*(x*z))*(z*y)=0;  x, y, z  X is a BCI-algebra. 

Theorem (1.7): [12]   
   Every BCH-algebra is a BH-algebra. Every BH-algebra satisfying the condition:   

   (x * y)* z = (x * z)*y,     ∀ x, y, z  X is a BCH-algebra. 

Remark(1.8): 

We denote the condition  

i.      x = x *(y *x),    x, y  X    by (a1). 

ii.   x*(y*x)  I  imply    x I,  x, y  X    by (a2). 

iii.   ((x*y)*(x*z))*(z*y)=0,   x, y, z  X    by (a3). 

iv.   (x * y)* z = (x * z)*y,     ∀ x, y, z  X   by (a4). 

Definition  (1.9) : [14]  

  In any BH-algebra X, we can define a partial order relation ≤  by putting x ≤ y if and only if 

x*y=0. 

Definition(1.10):[9]  
A BH-algebra X is said to be a normal BH-algebra if it satisfying the following conditions:  

 i.     0*(x*y) = (0*x)*(0*y) ,x,y  X. 

 ii.      (x*y)*x = 0* y,x,y  X. 

 iii.    (x*(x*y))*y = 0,x,y  X. 
 

Definition (1.11) : [7] 

  A BCH-algebra X is called medial if   x * (x * y) = y,  x, y  X. 
 

  We generalize the concept of medial to BH-algebra. 
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Definition (1.12) :  

  A BH-algebra X is called medial  if  x * ( x * y ) = y,   x, y  X. 

 Definition (1.13) : [3]  

 A BH-algebra X is called an associative BH-algebra if: (x*y )*z =x *(y*z),  x , y , z  X. 

Theorem (1.14): [3] 
 Let X be an associative BH-algebra. Then the following properties are hold: 

i. 0*x=x       ;      xX 

ii. x*y=y*x     ;   x, yX 

iii. x*(x*y)=y   ;    x, yX 

iv. (z*x)*(z*y)=x*y    ;    x, y ,zX 

v. x*y=0   x=y       ;    x, yX 

vi. (x*(x*y))*y=0       ;    x, yX 

vii. (x*y)*z=(x*z)*y     ;    x, y , zX 

viii. (x*z)*(y*t)=(x*y)*(z*t)     ;    x, y, z ,tX 

Definition (1.15) :[4]  

 Let X be a BH-algebra. Then the set X+ = { x  X : 0 * x = 0 } is called the BCA-part of X. 

Definition (1.16) : [3]   

 Let X be a BH-algebra. Then the elements of the set LK(X), where 

LK(X) = { aX+\{0} : x * a = 0   x = a,  x X\{0} } is called a K-atom of X.  

Definition (1.17) : [12]  

    A nonempty subset S of a BH-algebra X is called a Subalgebra of X if x * y  S,  x, y  S. 

Definition(1.18) : [6]  

   An ideal I of a BCH-algebra X satisfies the condition x  I and a X\I imply x*a I, is called a 

*-ideal of X. 

We generalize the concept of a *- ideal to a BH-algebra. 

Definition(1.19) :   

   An ideal I of a BH-algebra X satisfies the condition x  I and a X\I imply x*a I, is called a    

*-ideal of X. 
 

Theorem (1.20) : [2]  

  In a BCH-algebra X, the following conditions are equivalent: 

1. Every nonzero element of X is a K-atom of X, i.e. X = LK(X){0}, 

2. x*y=x,  x, y  X with xy, 

3. x*(x*y) = 0,  x, y X with xy, 

4. every subalgebra of X is a *-ideal of X. 

Definition (1.21) : [12]: 

  Let I be a nonempty subset of a BH-algebra X. Then I is called an ideal of X if it satisfies: 

i.  0I. 

ii.   x*yI and y I imply xI. 

Proposition (1.22) : [3]  

     Let { Ii , i} be a family of  ideals of  a BH-algebra X. Then

    

i

I
i    is an ideal of X.    

Theorem(1.23):[3]  

   Let { Ii , i} be a chain ideals of a BH-algebra X. Then
i

I
i is an ideal of X.  

Proposition (1.24) : [3] 
  Let f: X→Y be a BH- epimorphism, if I is an ideal of X then f(I) is an ideal of Y. 
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Proposition (1.25) : [3] 

  Let f: X→Y be a BH- homomorphism, if I is an ideal of Y then f 
-1

(I) is an ideal of X.  

Definition (1.26):[4] 

  An ideal I of a BH-algebra X is called a closed ideal of X, 0*xI,  xI. 

Definition (1.27) :[4] 

  Let X be a BH-algebra and I be an ideal of X. Then I is called a closed ideal with respect to an 

element bX (denoted b-closed ideal) if b*(0*x)I,  xI. 

Definition (1.28):[3] 

  An ideal I of  a BH-algebra is called a completely closed ideal  if       ∀        
Definition (1.29) : [6]  

  An ideal I of a BCH-algebra X is called a normal ideal if  x*(x*y) I       implies      y*(y*x) I, 

 x , y X. 

We generalize the concept of a normal ideal to a BH-algebra. 

Definition (1.30) :   

 An ideal I of a BH-algebra X is called a normal ideal if x*(x*y) I implies y*(y*x) I,  x, yX. 
 

Definition(1.31):[3] 

   Let X be a BH-algebra, a non-empty subset N of X is said to be normal subset of X if 

(x*a)*(y*b) N for all x*y, a*b  N,    x, y, a, bX. 
 

Definition (1.32):[10] 

   Let X be a BH-algebra. For a fixed aX, we define a map Ra: XX such that Ra(x)=x*a,           

 xX, and call Ra a right map on X. The set of all right maps on X is denoted by R(X). A left 

map La is defined by a similar way, we define a map La : XX such that La(x)=a*x, xX, and 

called La a left map on X. The set of all left maps on X is denoted by L(X).  
 

Definition (1.33): [4] 

   A nonempty subset I of a BH-algebra X is called an implicative ideal of X if: 

i.  0  I. 

ii.  (x*(y*x))*z  I and z  I imply x I,  x, y, z   X. 

Proposition (1.34) :[4] 
   Every implicative ideal of a BH-algebra X is an ideal of X.  

Definition (1.35) : [5] 

 A BCI-algebra is said to be an implicative if it satisfies (x*(x*y))*(y*x) =y*(y*x),  x, y X. 
 

  We generalize the concept of an implicative BCI-algebra to a BH-algebra. 
 

Definition (1.36):  

   A BH -algebra is said to be an implicative if it satisfies (x*(x*y))*(y*x) =y*(y*x),  x, y X. 

Example (1.37):  
Consider the BH-algebra X= {0, 1, 2} with the binary operation '*' defined by the following table: 
 

* 0 1 2 

0 0 0 2 

1 1 0 2 

2 2 2 0 
 

Then (X,*,0) is an implicative BH-algebra. 
 

 

Theorem  (1.38)  : [15]  

  A BCI-algebra is implicative if and only if every closed ideal of X is an implicative. 
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Definition (1.39):[10] 

  A BH-algebra (X,*, 0) is said to be a positive implicative if it satisfies the condition,  

 x, y, z X,  (x*z)*(y*z) = (x*y)*z. 

 

Remark (1.40):[10] 

  Let X be a positive implicative BH-algebra and  be a binary operation defined on L(X) by  

(LaLb)(x) = La(x)* Lb(x)    and          (LaLb)(x) = La*b(x);     La ,Lb L(X) and  x  X 

 

Theorem (1.41) :[10]   

  If X is a positive implicative BH-algebra, then (L(X),,L0) is a positive implicative BH-algebra. 

 

Remark (1.42):[13] 

   Let X and Y be BH-algebras. A mapping f: XY is called a homomorphism if  

f(x*y)=f(x)*'f(y), x, y  X. A homomorphism f is called a monomorphism (resp., epimorphism) 

if it is an injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two 

BH-algebras X and Y are said to be isomorphic, written X  Y , if there exists an isomorphism 

f:XY . For any homomorphism f:X Y, the set {xX ; f(x)=0'} is called the kernel of  f, 

denoted by Ker(f), and the set {f(x):xX} is called the image of f, denoted by Im(f). Notice that 

f(0)=0', for all homomorphism f.  
 

Definition (1.43):[11] 

   An ideal A of a BH-algebra X is said to be a translation ideal of X if x *y   A    and    y* x   A     

     (x*z)*(y*z)  A   and   (z*x)*(z*y)  A,  x, y, z   X. 

 

Remark (1.44):[12] 

   Let (X,*,0) be a BH-algebra and let A be a translation ideal of X. Define a relation ∼A on X by      

x ∼A y  if and only if x*y   A and y*x   A, where  x , y   X .Then ∼A is an equivalence relation on 

X. Denote the equivalence class containing x by [x]A, i.e., [x]A={y X|x∼Ay} and X/A={[x]A|x X}. 

And define [x]A [y]A =[x*y]A, then ((X/A),,[0]A) is a BH-algebra. 

 

Theorem(1.45):[12] 

   Let f: X → Y be a homomorphism of BH-algebra. Then Ker(f) is a translation ideal of X.             

 

Definition(1.46):[3] 

   Let X be a BH-algebra, a non-empty subset N of X is said to be normal subalgebra of X if  

  i. (x*a)*(y*b) N, x*y, a*b  N,    x, y, a, bX. 

  ii.  x * y  N,  x, y  N. 

 

Remark (1.47): 

   Let (X,*, 0) be a BH-algebra and let N be a normal subalgebra of X. Define a relation ∼N on X by  

x ∼N y  if and only if x*y  N and y*x  N, where x, y  X .Then∼N is an equivalence relation on X. 

Denote the equivalence class containing x by [x]A, i.e.,  [x]N={y  X| x∼Ny} and X/N={[x]N | x  X}. 

And define [x]N [y]N =[x*y]N, then ((X/N),,[0]N ) is a BH-algebra. 

Remark (1.48):[3] 

   The BH-algebra X/N is called the quotient BH-algebra of X by N. 

Theorem(1.49):[3] 
  Let N be a normal subalgebra of a BH-algebra X. Then X/N is a BH-algebra. 
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Definition (1.50) :[4] 

   Let  X be a BH-algebra and a   med(X). B(a) = {x   X : a*x = 0} is called a branch subset of X 

determined by a. 
 

2. The Main Results: 
Proposition(2.1):  

    Let X = LK(X)∪{0} be a BH-algebra. Then every ideal of X is an implicative ideal. 

Proof:  

i.  Since I is an ideal of X, so 0 I                      

ii.  Let I be an ideal of X and x, y, zX such that  (x*(y*x))*z  I and zI.  

 x*(y*x)  I   [Since I is an ideal ] 

We have two cases: 

Case1:  if x=y, we will have x*(y*x) = x*(x*x) =x*0=x                       

[Since X is a BH-algebra; x*x=0   and  x*0=x  ] 

 x  I       [Since x*(y*x)  I  ] . Then I is an implicative ideal of X. 

Case2 : if x≠y, then x*(y*x) = x*y = x                       

   [ Since  X = LK(X)∪{0},then y*x=y,  x, y   X with x≠y   ; by Theorem (1.20,2 )] 

 x  I          [Since x*(y*x)  I ].  

Then I is an implicative ideal of X. 

Proposition(2.2): 

   If X is a BH-algebra satisfies the condition,  x , yX  ;    x = x *(y *x)   (a1) , then every  ideal is 

an implicative ideal of X. 

  Proof : 

   Let I be an ideal of X and x, y, z X such that (x*(y*x))*z I and   zI  

  x*(y*x)I.            [Since I is an ideal of X.] 

   x  I.                     [By (a1)] 

Then I is an implicative ideal of X. ■    

Remark (2.3) :  

  In any BH-algebra, the set I=X is an implicative ideal of X, but the set I={0} may not be an 

implicative ideal of X, as in the following example ,  
 

Example (2.4): 

  Consider the BH-algebra X= {0, 1, 2, 3} with the binary operation '*'defined by the following 

table: 

 

* 0 1 2 3 

0 0 0 2 3 

1 1 0 2 2 

2 2 1 0 1 

3 3 2 3 0 

 

Then (X,*,0) is a BH-algebra. The subset I={0} is not an implicative ideal of X. Since  

  if  x=2 , y=0  ,z=0, then  (2*(0*2))*0  =0*0=0I  and    0I      but x=2I. 
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Theorem (2.5):   

 Let X be BH-algebra and let I be an ideal of X. Then I is an implicative ideal of X if and only if            

x*(y*x)  I imply    x I         (a2). 

Proof: 

  Let I be an implicative ideal of X and x, y X such that   x*(y*x)  I. Then (x*(y*x))*0  I.  

[Since X is a BH-algebra;   x*(y*x) = (x*(y*x))*0] 

Now, we have (x*(y*x))*0 I and 0 I. Then  x I.       [Since I is an implicative ideal of X] 

Conversely, 

  Let I be an ideal of X and   x, y, z X   such that ( x*(y*x) )*z I  and z I.    

  x*(y*x)  I.    [Since I is an ideal of X.] 

  x  I.               [By   (a2)]  

 Then I is an implicative ideal of X.■ 

Proposition(2.6): 

  Let X be BH-algebra. If {0} is an implicative ideal of X, then 0*x ≠ x,  xX/{0}.   

Proof:  

 Suppose I = {0} be an implicative ideal of X and  xX/{0}  such that  0*x=x.  

Now, 

  x*(0*x) =x*x=0      [Since X is an associative BH-algebra;  x*x=0  and 0*x=x]. 

We have    (x*(0*x))*0=0I and 0I 

 xI      [ Since I is an implicative ideal]  

 x=0      [Since I = {0}], 

we get a contradiction . [Since xX/{0} ] 

Then 0*x ≠ x. ■ 

Remark (2.7):   

  The converse of proposition (2.6) is not correct in general, as in the following example:   

Example (2.8):  

  Consider the BH-algebra X= {0, 1, 2, 3, 4} with the binary operation '*' defined by the following 

table: 

* 0 1 2 3 4 

0 0 2 1 0 3 

1 1 0 2 1 1 

2 2 1 0 2 2 

3 3 2 3 0 3 

4 4 4 4 4 0 

0*x ≠ x,  xX/{0}, but  the set I={0} is not  an implicative ideal of X. Since 

     If  x=1 , y=2  , z=0, then  (1*(2*1))*0  =1*1=0I,    but    x=1I. 

Theorem(2.9) :  

   Every associative BH- algebra is an implicative BH-algebra. 

Proof :  

Let X be an associative BH- algebra. Then 

(x*(x*y))*(y*x)=((x*x)*y)*(y*x)  [Since X is an associative BH-algebra] 
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              =(0*y)*(y*x) [Since X is a BH-algebra; x*x=0] 

                          = y*(y*x) [Since X is an associative BH-algebra; 0*y=y, by Theorem (1.14,i)] 

Then X is an implicative BH-algebra. 

Theorem(2.10) :  

   Let X be a BH-algebra and satisfies the condition,    ((x*y)*(x*z))*(z*y)=0, x, y, z  X  (a3). 

Then X is an implicative if and only if every closed ideal of X is an implicative ideal of X. 

Proof: Directly from Theorem (1.6) and (1.38). 
 

Lemma (2.11):  Every medial BH- algebra is an implicative BH-algebra. 

Proof :  Let X be a medial BH- algebra. Then 

(x*(x*y))*(y*x) = y*(y*x)             [Since X is medial ; x*(x*y)=y ].  

Then X is an implicative BH-algebra. 
 

Theorem (2.12) :   

    Let X be an implicative BH-algebra satisfies (a3) and let I be an ideal of X. Then  

i. If  I   X+ , then  I is an implicative ideal of X. 

ii. If  L0(I)   I , then  I is an implicative ideal of X. 

iii. If X is equal to a branch subset of X determined by '' 0 '', then I is an implicative ideal 

of X. 

Proof : 

i. Let I X+ and I be an ideal of X. 

   0 * x = 0 I,  x  X. 

   0 * x = 0I ,   x  I.   [Since I  X+] 

 every ideal of X is a closed ideal of X. [by Definition (1.26) ] 

 X is a BCI-algebra.    [Since X is BH-algebra and satisfies (a3), By Theorem(1.6 )] 

 I is an implicative ideal of X.         

      [Since every closed ideal of X is an implicative ideal of X.  By Theorem (1.38)]. ■ 

ii.  Let  x I . Then  L0 (x) I.   [ Since  L0 (I)  I  ]  

 0*x I       [ Since L0 (x)= 0*x  ] 

  I is a closed ideal of X. [By Definition (1.26)] 

 X is a BCI-algebra.[Since X is BH-algebra and satisfies (a3),  By Theorem (1.6 )] 

 I is an implicative ideal of X.         

      [Since every closed ideal of X is an implicative ideal of X.  By Theorem ( 1.38 )]. ■ 

iii. Let X is equal to a branch subset of X determined by '' 0 '' and let I be an ideal of X. 

 X=B(0)   

   0 * x = 0 I,  x  X.  [ Since X=B(0)] 

   0 * x = 0I,  x  I. [ Since I  X] 

 I  is a closed ideal of X. [By Definition (1.26)] 

 I is an implicative ideal of X.      

        [Since every closed ideal of X is an implicative ideal of X. By Theorem ( 2.10 )].■ 
 

Theorem  (2.13) :   

   Let X be an associative BH-algebra. Then 

i. every proper subset of X  is not an implicative  ideal of X. 
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ii. X+ is not  an implicative ideal of X. 

iii. a branch subset of X determined by '' 0 '' is not  an implicative ideal of X. 

Proof : 

i. Suppose   I is an implicative ideal of X and  I is a proper subset of X. Then 

There exist   x  X    such that  x  I                   [Since I  X]   

Now, Since X is a BH-algebra, we have  x*0=x. So (x*(0*x))*0 = x*(0*x)              

=  x*x              [ Since  0*x=x ; by Theorem (1.14,i)] 

= 0  I             [since X is a BH- algebra ; x*x=0   ] 

We have  

(x*(0*x))* 0  I      and    0  I.   

 x I                 [ since I is an implicative  ideal of X ] 

We get a contradiction ( By assumption  I X , x  I   ] 

 I is not an implicative ideal of X. 

Then every proper subset of X is not an implicative ideal of X. ■ 

ii. To prove X+ is not  an implicative ideal of X. 

X+={x X ; 0*x=0} ={0}           [since X is an associative ; 0*x=x ; by Theorem (1.14,i)] 

Now, 

   Since   X+ X    

Then  X+ is not an implicative  ideal of X  [by (i) ]. ■ 

iii. To prove a branch subset of X determined by '' 0 '' is not an implicative ideal of X. 

B(0)={x X ;0*x=0} ={0}       [since X is an associative ; 0*x=x ; by Theorem (1.14,i) ] 

Now, 

  Since   B(0) = X+.     

  B(0) is not an implicative  ideal  of X [by ( ii)]. ■ 

Then a branch subset of X determined by  '' 0 ''  is not  an implicative ideal of X. 

Corrolary (2.14): Let X be an associative BH-algebra. Then X is a unique implicative ideal of X. 

Proof : Directly  by Theorem (2.13 ,i) and Remark (2.3). ■ 

Theorem  (2.15) :  

   Let X be a medial BH-algebra and satisfies (a3). Then every normal ideal of X is an implicative 

ideal of X. 

Proof :  

    Let I be a normal ideal of X and let x  X. Then  

(0*x)*((0*x)*0)=(0*x)*(0*x)=0  I      [Since X is s BH-algebra ; x*0=x  and x*x=0  ]  

  0*(0*(0*x)) I             [Since I is a normal ideal ] 

  0*x I   ;      x  X   [Since X is a  medial ; x*(x*y) =y ]  

  0*x I   ;      x  I    

  I is a closed ideal of X.   [By Definition (1.26)] 

 I is an implicative ideal of X.          [Since every closed ideal of X is an implicative ideal of X. 

By Theorem(2.10)]].■ 

 

 

 

 



Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014 
 

215 

 

Theorem (2.16):  

   Let X be an implicative BH-algebra and satisfies (a3).Then every completely closed ideal of X is 

an implicative ideal of X. 

Proof : 

 Let I be a completely closed ideal of X .Then I is an ideal of X.     [By definition (1.28)] 

Let y  X, if x=0  

 0*y   I,  y   X. 

 0*y   I,  y   I. 

Then I is a closed ideal of X. 

 I is an implicative ideal of X.        [ Since every closed ideal of  X is an implicative ideal of X. 

By Theorem (2.10) ].■ 

Proposition (2.17): 

  Let X be a normal BH-algebra such that X=X+ and let I be an implicative ideal of X. Then I is a 

completely closed ideal of X. 

Proof:  

  Let I be a an implicative ideal of X. Then I is an ideal of X.     [By proposition(1.34)] 

Let  x , y   I. Then  

((x*y)*(0*(x*y)))*x= ((x*y)*0)*x   [Since  0*(x*y)=0  ; X=X+.  By Definition (1.15)] 

                                  =(x*y)*x         [Since X is a BH-algebra . x*0=x] 

                                  = 0*y               [Since X is a normal, By Definition (1. 10, ii)] 

                                  =0   I              [Since X=X+. By Definition(1.15) ] 

 ((x*y)*(0*(x*y)))*x   I and   x   I  x*y   I.         [ Since I is an implicative ideal of X ] 

Therefore, I is a completely closed ideal of X.■ 
 

Theorem ( 2.18):   

   Let { Ii , i} be a family of implicative  ideals of  a BH-algebra X. Then  
i

I
i is an implicative 

ideal of X. 

Proof:   

   To prove that  
i

I
i   is an implicative ideal of X. 

i. 0Ii ,i           [Since each Ii is an implicative ideal of X,i.By Definition(1.33)] 

 0   
i

I
i 

ii. Let     (x*(y*x))*z   
i

I
i       and z  

i

I
i                         

 (x*(y*x))*z Ii and z  Ii ,i  

 x Ii ,i           [Since each Ii  is Implicative ideal of X,  i . By Definition(1.33)] 

    x    
i

I
i  .  Therefore, 

  

i

I
i  is an  implicative ideal of X. ■ 

Corollary ( 2.19): Let X=LK(X)∪{0} and let { Ii , i} be a family of  ideals of  a BH-algebra X. 

Then  
i

I
i   is an implicative ideal of X.   
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Proof: Let {Ii , i} be a family of  ideals of X. Then 
i

I
i  is an ideal of X.   [By Theorem(1.22)]. 

Therefore,  
i

I
i    is an implicative ideal of X.  [Since X=LK(X)∪{0}  , by Proposition (2.1)].■ 

 

Theorem (2.20): 

Let { Ii , i} be a chain implicative ideals of  a BH-algebra X. Then 
i

I
i is an implicative ideal 

of X.  

Proof :  To prove that    
i

I
i  is an implicative ideal of X. 

i.  0Ii , i  

 [ Since each Ii is an implicative ideal of X, i. By Definition(1.33)] 

 0 
i

I
i  

ii. Let     (x*(y*x))*z   
i

I
i    and z  

i

I
i                         

 Ij , Ik  { Ii }i , such that (x*(y*x))*z  Ij and z  Ik ,  

 either Ij   Ik   or Ik   Ij                             [ Since  {Ii}i is a chain ] 

 either (x*(y*x))*z Ij  and  zIj      or    (x*(y*x))*z Ik  and  zIk 

 either x  Ij    or   x  Ik    

[ Since Ij and Ik are implicative ideals of X. By Definition(1.33)] 

x  
i

I
i  .  Therefore 

i

I i  is an implicative ideal of X. ■ 

Corollary (2.21):   Let X=LK(X)∪{0}  and let { Ii , i} be a Chain of  ideals of  a BH-algebra X. 

Then   
i

I
i   is an implicative ideal of X.   

Proof:    Let { Ii , i} be a chain of  ideals of X. Then  
i

I
i  is an ideal of X. [by Theorem(1.23)] 

Therefore, 

  

 
i

I
i    is an implicative ideal of X.[ Since X=LK(X)∪{0}  , by Proposition (2.1)] .■ 

 

Proposition (2.22) : 

    Let f: (X,*,0)→(Y,*',0') be a BH- epimorphism. If I is an implicative ideal of X, then f(I) is an 

implicative ideal of Y. 

  Proof :   

 Let I be an implicative ideal of X. Then  

i.   f(0) = 0',           [Since f is an epimorphism, by Remark(1.42 )] 

 0'f(I) 

ii.  Let  ( x*'(y*'x))*'z   f(I)    and    z  f(I)   

   a ,b I and c  I   such that    f(a)=x , f(b)=y and  f(c)=z 

 ( x*'(y*'x))*'z =[f(a)*'( f(b)*'f(a))]*'f(c)=f((a*(b*a))*c)  f(I)   [Since f is an epimorphism] 
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  (a*(b*a))*c  I   and     c I   [Since  f(I)={f(x) ; x I}] 

  a  I                                      [Since I is an implicative ideal of X ] 

 f(a)  f(I).    

Then f(I) is an implicative ideal of Y. ■ 

 

Proposition (2.23) :  

    Let f: (X,*,0)→(Y,*',0') be a BH- homomorphism and  I is an implicative ideal of Y. Then f 
-1

(I) 

is an implicative ideal of X. 

 Proof :   

  Let I be an implicative ideal of Y. Then  

i.  f(0) = 0'       [Since f is a homomorphism, by Remark(1.42 )] 

 0=f
-1

(0')f
-1

 (I) 

ii. Let x, y, z X such that    ( x*(y*x))*z   f
-1

 (I)    and    z  f
-1

 (I)   

 f(( x*(y*x))*z)  I  and f(z) I 

f((x*(y*x))*z)=(f(x)*'(f(y)*'f(x)))*'f(z)I and f(z) I [Since f is a homomorphism, by 

Remark(1.42 )] 

  f(x) I   [Since  I is an implicative ideal of Y ] 

  x  f
-1

(I).   

Then f
-1

 (I) is an implicative ideal of X. ■ 

Theorem (2.24):  

   Let X be a BH-algebra and N be a normal subalgebra. If I is an ideal of X, then I/N is an ideal      

of X/N. 

Proof :  

  Let I  be an ideal of X. Then    

i. Since 0I  [0] N  I/N. 

ii. Let [x]N,[y]N X/N. 

 [x]N *[y]N   I/N  and   [y]N I/N          [ Since[x]N*[y]N=[x*y]N , By remark(1.47)]. 

[x*y]N  I/N  and    [y]N I/N  

 x*y  I  and   y I                                  [Since I/N={[x]N |x I}, By remark(1.47)] 

 xI                [Since I is an ideal of X].  

 [x]N I/N. Then I/N is an  ideal of  X/N.■                         

 Theorem (2.25):   

   Let X be a BH-algebra and N be a normal subalgebra. If  I is an implicative ideal of  X, then I/N is 

an implicative of X/N. 

Proof:  

Let I be an implicative ideal of X. To prove I/N is an implicative ideal of  X/N. 

I is an ideal of X.          [By proposition(1.34)] 

I/N is an ideal of X/N.   [By proposition(2.24)] 

i. Since 0I[0] N  I/N. 

ii. Let  [x]N, [y]N, [z]N X/N. 

 ([x]N*([y]N * [x]N)) *[z]N  I/N  and    [z]N I/N   

 ([x]N*[y*x]N ) *[z]N  I/N  and    [z]N I/N              [Since[x]N*[y]N=[x*y]N, By remark(1.47)]  

 [x*(y*x)]N  *[z]N  I/N  and    [z]N I/N 
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 [(x*(y*x))*z]N   I/N  and    [z]N I/N 

 (x*(y*x))*z   I  and   z I  [Since I/N={[x]N |x I},  By remark(1.47)] 

 xI            [Since I is an implicative ideal of X] 

 [x]N I/N.   

Then  I/N is an implicative ideal of  X/N.■   
 

Theorem (2.26):   

   Let X be a BH-algebra and A be a translation ideal of X. If I is an ideal of X, then I/A is an ideal 

of X/A. 

Proof: 

 Let I be an ideal of X. To prove I/A is an ideal of X/A. 

i. Since 0I[0] I/A. 

ii. Let  [x]A,[y]A X/A. 

[x]A[y]A   I/A  and   [y]A I/A    [Since[x]A[y]A=[x*y]A. By remark(1.44)] 

[x*y]A  I/A  and    [y]A I/A 

 x*y  I  and   y I   [Since I/A={[x]A |x I}. By Remark(1.44)] 

 xI            [Since I is an ideal of X] 

 [x]A I/A    

Then   I/A is an ideal of X/A.■   

Proposition(2.27):  

   Let X be a BH-algebra and A be a translation ideal. If I is an implicative ideal of X, then I/A is an 

implicative of X/A. 

Proof:  

Let I be an implicative ideal of X. To prove I/A is an implicative ideal of X/A. 

i. Since 0I[0] I/A. 

ii. Let  [x]A,[y]A, [z]A X/A. 

 ([x]A([y]A  [x]A)) [z]A  I/A  and    [z]A I/A  

 ([x]A[y*x]A ) [z]A  I/A and  [z]A I/A          [Since[x]A[y]A=[x*y]A .By remark(1.44)] 

 [x*(y*x)]A  [z]A  I/A  and    [z]A I/A 

 [(x*(y*x))*z]A   I/A  and    [z]A I/A 

 (x*(y*x))*z   I  and  z I   [Since I/A={[x]A |x I}. By Remark(1.44)] 

 xI            [Since I is an ideal of X] 

 [x]A I/A .Then I/A is an implicative ideal of X/A.■          

Corollary (2.28):  

    Let X be a BH-algebra. If I is an implicative ideal of X,then I/Ker(f) is an implicative                 

of X/ Ker(f). 

Proof:  

 Let I be an implicative ideal of X. To prove I/Ker(f) is an implicative ideal of X/Ker(f). 

Since Ker(f) is translation ideal.     [By Theorem(1.45)] 

 I/ Ker(f)  is an implicative ideal of  X/ Ker(f). [By Theorem(2.27)].■                                
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Remark  (2.29) :     

    Let X be a BH-algebra and let I be a subset of X. we will define to the set   { La   L(X) ; a   I } 

by L(I). 

 

Theorem (2.30) : 

    Let X be a positive implicative BH-algebra. If I is an ideal of X. Then L(I) is an ideal                 

of (L(X),,L0).  

Proof: 

  Let  I be an ideal of X. To prove L(I) is an ideal of (L(X),,L0).  

i.   I  L0  L(I)                     [By  Remark (2.29) ] 

ii. Let   Lb ,Lb   I).   

We have       Lb =La*b  , where   a ,b  I 

a*b  I  and  b  I                                                                                     

a  I [Since I is an ideal of X  ] 

La  L(I) .Then L(I) is an ideal of  (L(X),,L0). ■ 

Corollary (2.31):  

   Let X be a positive implicative BH-algebra. If I is an implicative ideal of X. Then L(I) is an 

implicative ideal of (L(X),,L0). 

Proof:  

  Let I be an implicative ideal of X. Then I is an ideal of X. 

  L(I)  is an ideal of  L(X).        [By Theorem(2.30)] 

i. 0  I     L0  L(I)                       [Since I is an ideal of X ] 

ii. Let     Lb          I)   and   Lc   I)   

(a           I     and  c   I       [Since     Lb                               

 a  I [Since I is an implicative ideal of X ] 

 La  L(I).Then L(I) is an implicative ideal of (L(X),,L0). ■ 

Theorem (2.31):   

 If X= LK(X) {0} be a BH-algebra satisfies (a4) and S be a subalgebra of X, then S is an 

implicative ideal of X.  

Proof: 

Since X be a BH-algebra satisfies (a4), then X is a BCH-algebra. [by Theorem(1.7)] 

 Let S is a subalgebra of X. Then S is a *-ideal.                       [By Theorem(1.20,4) ] 

 S is an ideal.  [every *-ideal  is an ideal. By Definition (1.19)] 

To prove S is an implicative ideal of X.      

i)  0  S      [Since S is an ideal ] 

ii)  Let x, y, z X  such that    (x*(y*x))*z  S and z  S .                        

 x*(y*x)  S.   [Since S is an ideal of X ] 

We have two cases: 

Case 1: if x=y, then  x*(x*x)  S    

 x*0  S            [Since X is a BH-algebra ; x*x=0] 

 x S                 [Since X is a BH-algebra ; x*0=x] 

Then S is an implicative ideal of X.   
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Case 2: if x≠y, then x*(y*x) = x*y = x 

 x*y  S  [Since X = LK(X)∪{0}, then  y*x=y ;  x, y  X with x ≠ y,  by Theorem (1.20, 2)] 

 x  S      [Since x*y=x] 

Then S is an implicative ideal of X.■ 
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