On The Implicative Ideal of a BH-Algebra

المثالية الإستنتاجية في جبر - BH

Assist.prof.Husein Hadi Abbass
University of Kufa\
Faculty of Education for Girls\
Department of Mathematics
Msc_hussien@yahoo.com

Suad Abdulaali Neamah
University of Kufa\
Faculty of Education for Girls\
Department of Mathematics
soshabib@yahoo.com

بحث مستل

Abstract

In this paper, we study the implicative ideal of a BH-algebra. We state and prove some theorems which determine the relationship between this notion and the other types of ideals of a BH-algebra, also we give some properties of this ideal and link it with other types of ideals of a BH-algebra.

المستخلص:

المستحصى . في هذا البحث، درسنا المثالية الإستنتاجية في جبر - BH و أعطينا و برهنا بعض المبرهنات التي تحدد العلاقة بين هذا المفهوم و أنواع أخرى من مثاليات جبر – BH و كذلك أعطينا بعض خصائص هذه المثالية وصلتها مع أنواع أخرى من مثاليات جبر -BH.

Introduction:

The notion of BCK-algebras was formulated first in 1966 [14] by Y.Imai and K.Iseki as a generalization of the concept of set-theoretic difference and propositional calculus, where this notion was originated from two different ways: one of the motivations was based on set theory, another motivation was from classical and non classical propositional calculi. In the same year, K.Iseki introduced the notion of a BCI-algebra [6], which was a generalization of a BCK-algebra.

K.Iseki introduced the notion of an ideal of a BCK-algebra[6]. In 1983, Q.P.Hu and X.Li introduced the notion of a BCH-algebra which was a generalization of BCK/BCI-algebras [8]. In 1998, Y.B.Jun et al introduced the notion of BH-algebra, which is a generalization of BCH-algebras[12]. Then, they discussed more properties on BH-algebras [4, 8, 11]. In 2009, A. B. Saeid, A. Namdar and R.A. Borzooei introduced the notions of a p-semisimple BCH-algebra, an associative BCH-algebra, atoms of a BCH-algebra, a BCH-algebra generated by I-atoms, p-ideals, implicative ideals, positive implicative ideals, normal ideals and fantastic ideals in BCH-algebra[2].In the same year, A. B. Saeid and A. Namdar introduced the notions of n-fold p-ideal and n-fold implicative ideal[1].

In this paper, we study the implicative ideal of a BH–algebra and the implicative BH-algebra. We study some properties of this notion and link it with some other types of ideals of a BH-algebra.

1. Preliminaries:

In this section, we give some basic concepts about BCI-algebra, BCK-algebra, BCH-algebra, BH-algebra, ideals of BH-algebra, implicative ideal of BH-algebra and implicative BH-algebra with some theorems, propositions.

Definition (1.1): [6]

A BCI-algebra is an algebra (X, *, 0), where X is a nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms: $\forall x, y, z \in X$:

i.
$$(x * y) * (x * z)) * (z * y) = 0$$
,

ii.
$$(x * (x * y)) * y = 0$$
,

iii.
$$x * x = 0$$
,

iv.
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$.

Definition (1.2): [14]

A BCK-algebra is a BCI-algebra satisfying the axiom: $0 * x = 0, \forall x \in X$.

Definition (1.3): [7]

A BCH-algebra is an algebra (X,*,0), where X is nonempty set, * is a binary operation and 0 is a constant, satisfying the following axioms:

i.
$$x * x = 0, \forall x \in X$$
.

ii.
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$, $\forall x, y \in X$.

iii.
$$(x * y) * z = (x * z) * y, \forall x, y, z \in X$$
.

Definition (1.4): [12]

A BH-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions:

i.
$$x * x = 0, \forall x \in X$$
.

ii.
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$, $\forall x, y \in X$.

iii.
$$x *0 = x, \forall x \in X$$
.

Remark (1.5): [12]

- 1. Every BCK-algebra is a BCH-algebra.
- 2. Every BCH-algebra is a BH-algebra.
- 3. Every BCI-algebra is a BH-algebra.

Theorem(1.6):[12]

Every BH-algebra satisfying the condition $((x^*y)^*(x^*z))^*(z^*y)=0$; $\forall x, y, z \in X$ is a BCI-algebra.

Theorem (1.7): [12]

Every BCH-algebra is a BH-algebra. Every BH-algebra satisfying the condition:

$$(x * y)* z = (x * z)*y$$
, $\forall x, y, z \in X$ is a BCH-algebra.

Remark(1.8):

We denote the condition

i.
$$x = x *(y *x), \forall x, y \in X \text{ by } (a_1).$$

ii.
$$x^*(y^*x) \in I$$
 imply $x \in I$, $\forall x, y \in X$ by (a_2) .

iii.
$$((x*y)*(x*z))*(z*y)=0, \forall x, y, z \in X$$
 by (a_3) .

iv.
$$(x * y)* z = (x * z)*y$$
, $\forall x, y, z \in X$ by (a_4) .

Definition (1.9): [14]

In any BH-algebra X, we can define a **partial order relation** \leq by putting $x \leq y$ if and only if x*y=0.

Definition(1.10):[9]

A BH-algebra X is said to be a **normal BH-algebra** if it satisfying the following conditions:

i.
$$0*(x*y) = (0*x)*(0*y), \forall x,y \in X$$
.

ii.
$$(x*y)*x = 0*y, \forall x,y \in X$$
.

iii.
$$(x^*(x^*y))^*y = 0, \forall x, y \in X.$$

Definition (1.11): [7]

A BCH-algebra X is called **medial** if $x * (x * y) = y, \forall x, y \in X$.

We generalize the concept of **medial** to BH-algebra.

<u>Definition</u> (1.12):

A BH-algebra X is called **medial** if $x * (x * y) = y, \forall x, y \in X$.

Definition (1.13): [3]

A BH-algebra X is called an **associative BH-algebra** if: (x*y)*z = x*(y*z), $\forall x, y, z \in X$.

Theorem (1.14): [3]

Let X be an associative BH-algebra. Then the following properties are hold:

- i. 0*x=x; $\forall x \in X$
- ii. $x^*y=y^*x$; $\forall x, y \in X$
- iii. x*(x*y)=y; $\forall x, y \in X$
- iv. $(z^*x)^*(z^*y)=x^*y$; $\forall x, y, z \in X$
- v. $x*y=0 \Rightarrow x=y$; $\forall x, y \in X$
- vi. $(x^*(x^*y))^*y=0$; $\forall x, y \in X$
- vii. (x*y)*z=(x*z)*y; $\forall x, y, z \in X$
- viii. (x*z)*(y*t)=(x*y)*(z*t) ; $\forall x, y, z, t \in X$

Definition (1.15) :[4]

Let X be a BH-algebra. Then the set $X_+ = \{ x \in X : 0 * x = 0 \}$ is called the **BCA-part of X.**

Definition (1.16): [3]

Let X be a BH-algebra. Then the elements of the set $L_K(X)$, where

 $L_K(X) = \{ a \in X_+ \setminus \{0\} : x * a = 0 \implies x = a, \forall x \in X \setminus \{0\} \}$ is called a **K-atom of X.**

Definition (1.17): [12]

A nonempty subset S of a BH-algebra X is called a **Subalgebra** of X if $x * y \in S$, $\forall x, y \in S$.

Definition(1.18): [6]

An ideal I of a BCH-algebra X satisfies the condition $x \in I$ and $a \in X \setminus I$ imply $x*a \in I$, is called a *-ideal of X.

We generalize the concept of a *- ideal to a BH-algebra.

Definition(1.19):

An ideal I of a BH-algebra X satisfies the condition $x \in I$ and $a \in X \setminus I$ imply $x*a \in I$, is called a *-ideal of X.

Theorem (1.20): [2]

In a BCH-algebra X, the following conditions are equivalent:

- 1. Every nonzero element of X is a K-atom of X, i.e. $X = L_K(X) \cup \{0\}$,
- 2. $x*y=x, \forall x, y \in X \text{ with } x\neq y,$
- 3. $x^*(x^*y) = 0, \forall x, y \in X \text{ with } x \neq y,$
- 4. every subalgebra of X is a *-ideal of X.

Definition (1.21): [12]:

Let I be a nonempty subset of a BH-algebra X. Then I is called an **ideal** of X if it satisfies:

i. 0∈I.

ii. $x*y \in I$ and $y \in I$ imply $x \in I$.

Proposition (1.22): [3]

Let $\{I_i, i \in \Gamma\}$ be a family of ideals of a BH-algebra X. Then $\bigcap_{i \in \Gamma} I_i$ is an ideal of X.

Theorem(1.23):[3]

Let $\{I_i, i \in \Gamma\}$ be a chain ideals of a BH-algebra X. Then $\bigcup_{i \in \Gamma} I_i$ is an ideal of X.

Proposition (1.24): [3]

Let $f: X \rightarrow Y$ be a BH- epimorphism, if I is an ideal of X then f(I) is an ideal of Y.

Proposition (1.25): [3]

Let $f: X \rightarrow Y$ be a BH- homomorphism, if I is an ideal of Y then $f^{-1}(I)$ is an ideal of X.

Definition (1.26):[4]

An ideal I of a BH-algebra X is called a **closed ideal** of X, $0*x \in I$, $\forall x \in I$.

Definition (1.27):[4]

Let X be a BH-algebra and I be an ideal of X. Then I is called a **closed ideal with respect to an element** $b \in X$ (denoted **b-closed ideal**) if $b*(0*x) \in I$, $\forall x \in I$.

Definition (1.28):[3]

An ideal I of a BH-algebra is called a **completely closed ideal** if $x * y \in I$, $\forall x, y \in I$.

<u>Definition (1.29)</u>: [6]

An ideal I of a BCH-algebra X is called **a normal ideal** if $x^*(x^*y) \in I$ implies $y^*(y^*x) \in I$, $\forall x, y \in X$.

We generalize the concept of a **normal ideal** to a BH-algebra.

<u>Definition (1.30):</u>

An ideal I of a BH-algebra X is called **a normal ideal** if $x^*(x^*y) \in I$ implies $y^*(y^*x) \in I$, $\forall x, y \in X$.

Definition(1.31):[3]

Let X be a BH-algebra, a non-empty subset N of X is said to be **normal subset** of X if $(x*a)*(y*b)\in N$ for all x*y, $a*b\in N$, $\forall x, y, a, b\in X$.

Definition (1.32):[10]

Let X be a BH-algebra. For a fixed $a \in X$, we define a map R_a : $X \to X$ such that $\mathbf{R_a(x)=x^*a}$, $\forall x \in X$, and call R_a a **right map** on X. The set of all right maps on X is denoted by R(X). A left map L_a is defined by a similar way, we define a map L_a : $X \to X$ such that $\mathbf{L_a(x)=a^*x}$, $\forall x \in X$, and called L_a a **left map** on X. The set of all left maps on X is denoted by L(X).

Definition (1.33): [4]

A nonempty subset I of a BH-algebra X is called an **implicative ideal** of X if:

i. $0 \in I$.

ii. $(x^*(y^*x))^*z \in I$ and $z \in I$ imply $x \in I$, $\forall x, y, z \in X$.

Proposition (1.34) :[4]

Every implicative ideal of a BH-algebra X is an ideal of X.

Definition (1.35): [5]

A BCI-algebra is said to be an implicative if it satisfies $(x^*(x^*y))^*(y^*x) = y^*(y^*x), \forall x, y \in X$.

We generalize the concept of an **implicative** BCI-algebra to a **BH-algebra**.

Definition (1.36):

A BH -algebra is said to be an implicative if it satisfies $(x^*(x^*y))^*(y^*x) = y^*(y^*x), \forall x, y \in X$.

Example (1.37):

Consider the BH-algebra $X = \{0, 1, 2\}$ with the binary operation '*' defined by the following table:

*	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

Then (X, *, 0) is an implicative BH-algebra.

Theorem (1.38) : [15]

A BCI-algebra is implicative if and only if every closed ideal of X is an implicative.

Definition (1.39):[10]

A BH-algebra (X, *, 0) is said to be **a positive implicative** if it satisfies the condition, $\forall x, y, z \in X$, (x*z)*(y*z) = (x*y)*z.

Remark (1.40):[10]

Let X be a positive implicative BH-algebra and \oplus be a binary operation defined on L(X) by $(L_a \oplus L_b)(x) = L_a(x)^* L_b(x)$ and $(L_a \oplus L_b)(x) = L_{a*b}(x)$; $\forall L_a, L_b \in L(X)$ and $\forall x \in X$

Theorem (1.41):[10]

If X is a positive implicative BH-algebra, then $(L(X), \oplus, L_0)$ is a positive implicative BH-algebra.

Remark (1.42):[13]

Let X and Y be BH-algebras. A mapping $f: X \to Y$ is called a **homomorphism** if $f(x^*y)=f(x)^*f(y)$, $\forall x, y \in X$. A homomorphism f is called a **monomorphism** (resp., **epimorphism**) if it is an injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two BH-algebras X and Y are said to be **isomorphic**, written $X \cong Y$, if there exists an isomorphism $f:X \to Y$. For any homomorphism $f:X \to Y$, the set $\{x \in X : f(x)=0'\}$ is called the **kernel** of f, denoted by f is called the **sernel** of f, denoted by f is called the **mage** of f, denoted by f in f. Notice that f(0)=0', for all homomorphism f.

Definition (1.43):[11]

An ideal A of a BH-algebra X is said to be **a translation ideal** of X if $x * y \in A$ and $y * x \in A$ $\Rightarrow (x*z)*(y*z) \in A$ and $(z*x)*(z*y) \in A$, $\forall x, y, z \in X$.

Remark (1.44):[12]

Let (X, *, 0) be a BH-algebra and let A be a translation ideal of X. Define a relation \sim_A on X by $x \sim_A y$ if and only if $x*y \in A$ and $y*x \in A$, where $x, y \in X$. Then \sim_A is an equivalence relation on X. Denote the equivalence class containing x by $[x]_A$, i.e., $[x]_A = \{y \in X | x \sim_A y\}$ and $X/A = \{[x]_A | x \in X\}$. And define $[x]_A \oplus [y]_A = [x*y]_A$, then $((X/A), \oplus, [0]_A)$ is a BH-algebra.

Theorem(1.45):[12]

Let $f: X \to Y$ be a homomorphism of BH-algebra. Then Ker(f) is a translation ideal of X.

Definition(1.46):[3]

Let X be a BH-algebra, a non-empty subset N of X is said to be **normal subalgebra** of X if i. $(x*a)*(y*b)\in N$, $\forall x*y$, $a*b\in N$, $\forall x, y, a, b\in X$. ii. $x*y\in N$, $\forall x, y\in N$.

Remark (1.47):

Let $(X, ^*, 0)$ be a BH-algebra and let N be a normal subalgebra of X. Define a relation \sim_N on X by $x \sim_N y$ if and only if $x^*y \in N$ and $y^*x \in N$, where $x, y \in X$. Then \sim_N is an equivalence relation on X. Denote the equivalence class containing x by $[x]_A$, i.e., $[x]_N = \{y \in X \mid x \sim_N y\}$ and $X/N = \{[x]_N \mid x \in X\}$. And define $[x]_N \oplus [y]_N = [x^*y]_N$, then $((X/N), \oplus, [0]_N)$ is a BH-algebra.

Remark (1.48):[3]

The BH-algebra X/N is called the quotient BH-algebra of X by N.

Theorem(1.49):[3]

Let N be a normal subalgebra of a BH-algebra X. Then X/N is a BH-algebra.

Definition (1.50) :[4]

Let X be a BH-algebra and $a \in med(X)$. $B(a) = \{x \in X : a*x = 0\}$ is called **a branch subset** of X **determined by a.**

2. The Main Results:

Proposition(2.1):

Let $X = L_K(X) \cup \{0\}$ be a BH-algebra. Then every ideal of X is an implicative ideal.

Proof:

- i. Since I is an ideal of X, so $0 \in I$
- ii. Let I be an ideal of X and x, y, $z \in X$ such that $(x^*(y^*x))^*z \in I$ and $z \in I$.
- $\Rightarrow x^*(y^*x) \in I$ [Since I is an ideal]

We have two cases:

Case1: if x=y, we will have $x^*(y^*x) = x^*(x^*x) = x^*0=x$

[Since X is a BH-algebra; x*x=0 and x*0=x]

 \Rightarrow x \in I [Since $x^*(y^*x) \in I$]. Then I is an implicative ideal of X.

Case2: if $x\neq y$, then x*(y*x) = x*y = x

[Since $X = L_K(X) \cup \{0\}$, then $y^*x = y$, $\forall x, y \in X$ with $x \neq y$; by Theorem (1.20,2)]

 $\Rightarrow x \in I$ [Since $x^*(y^*x) \in I$].

Then I is an implicative ideal of X.

Proposition(2.2):

If X is a BH-algebra satisfies the condition, $\forall \ x$, $y \in X$; $x = x *(y *x) (a_1)$, then every ideal is an implicative ideal of X.

Proof:

Let I be an ideal of X and x, y, $z \in X$ such that $(x^*(y^*x))^*z \in I$ and $z \in I$

 \Rightarrow $x^*(y^*x) \in I$. [Since I is an ideal of X.]

 $\Rightarrow x \in I.$ [By (a₁)]

Then I is an implicative ideal of X. ■

Remark (2.3):

In any BH-algebra, the set I=X is an implicative ideal of X, but the set $I=\{0\}$ may not be an implicative ideal of X, as in the following example ,

Example (2.4):

Consider the BH-algebra $X = \{0, 1, 2, 3\}$ with the binary operation '*'defined by the following table:

*	0	1	2	3
0	0	0	2	3
1	1	0	2	2
2	2	1	0	1
3	3	2	3	0

Then (X,*,0) is a BH-algebra. The subset $I=\{0\}$ is not an implicative ideal of X. Since if x=2, y=0, z=0, then $(2*(0*2))*0 = 0*0=0 \in I$ and $0 \in I$ but $x=2 \notin I$.

Theorem (2.5):

Let X be BH-algebra and let I be an ideal of X. Then I is an implicative ideal of X if and only if $x^*(y^*x) \in I$ imply $x \in I$ (a₂).

Proof:

Let I be an implicative ideal of X and x, $y \in X$ such that $x^*(y^*x) \in I$. Then $(x^*(y^*x))^*0 \in I$.

[Since X is a BH-algebra;
$$x*(y*x) = (x*(y*x))*0$$
]

Now, we have $(x^*(y^*x))^*0 \in I$ and $0 \in I$. Then $x \in I$. [Since I is an implicative ideal of X] Conversely,

Let I be an ideal of X and $x, y, z \in X$ such that $(x^*(y^*x))^*z \in I$ and $z \in I$.

 \Rightarrow x*(y*x) \in I. [Since I is an ideal of X.]

 \Rightarrow x \in I. [By (a2)]

Then I is an implicative ideal of X.■

Proposition(2.6):

Let X be BH-algebra. If $\{0\}$ is an implicative ideal of X, then $0*x \neq x$, $\forall x \in X/\{0\}$.

Proof:

Suppose $I = \{0\}$ be an implicative ideal of X and $x \in X/\{0\}$ such that 0*x=x.

Now,

 \Rightarrow x*(0*x) =x*x=0 [Since X is an associative BH-algebra; x*x=0 and 0*x=x].

We have $(x^*(0^*x))^*0=0\in I$ and $0\in I$

 \Rightarrow x \in I [Since I is an implicative ideal]

 \Rightarrow x=0 [Since I = {0}],

we get a contradiction . [Since $x \in X/\{0\}$]

Then 0*x ≠ x. ■

Remark (2.7):

The converse of proposition (2.6) is not correct in general, as in the following example:

Example (2.8):

Consider the BH-algebra $X = \{0, 1, 2, 3, 4\}$ with the binary operation '*' defined by the following table:

*	0	1	2	3	4
0	0	2	1	0	3
1	1	0	2	1	1
2	2	1	0	2	2
3	3	2	3	0	3
4	4	4	4	4	0

 $0*x \neq x$, $\forall x \in X/\{0\}$, but the set $I=\{0\}$ is not an implicative ideal of X. Since

If x=1, y=2, z=0, then $(1*(2*1))*0 = 1*1 = 0 \in I$, but $x=1 \notin I$.

Theorem(2.9):

Every associative BH- algebra is an implicative BH-algebra.

Proof:

Let X be an associative BH- algebra. Then

 $(x^*(x^*y))^*(y^*x)=((x^*x)^*y)^*(y^*x)$ [Since X is an associative BH-algebra]

=(0*y)*(y*x) [Since X is a BH-algebra; x*x=0] = y*(y*x) [Since X is an associative BH-algebra; 0*y=y, by Theorem (1.14,i)]

Then X is an implicative BH-algebra.

$\underline{\text{Theorem}(2.10)}$:

Let X be a BH-algebra and satisfies the condition, $((x*y)*(x*z))*(z*y)=0, \forall x, y, z \in X$ (a₃).

Then X is an implicative if and only if every closed ideal of X is an implicative ideal of X.

Proof: Directly from Theorem (1.6) and (1.38).

Lemma (2.11): Every medial BH- algebra is an implicative BH-algebra.

Proof: Let X be a medial BH- algebra. Then

$$(x^*(x^*y))^*(y^*x) = y^*(y^*x)$$
 [Since X is medial; $x^*(x^*y)=y$].

Then X is an implicative BH-algebra.

Theorem (2.12):

Let X be an implicative BH-algebra satisfies (a₃) and let I be an ideal of X. Then

- i. If $I \subset X_+$, then I is an implicative ideal of X.
- ii. If $L_0(I) \subseteq I$, then I is an implicative ideal of X.
- iii. If X is equal to a branch subset of X determined by "0", then I is an implicative ideal of X.

Proof:

- i. Let $I \subseteq X_+$ and I be an ideal of X.
- \Rightarrow 0 * x = 0 \in I, \forall x \in X.
- \Rightarrow 0 * x = 0 \in I , \forall x \in I. [Since I \subseteq X_+]
- \Rightarrow every ideal of X is a closed ideal of X. [by Definition (1.26)]
- \Rightarrow X is a BCI-algebra. [Since X is BH-algebra and satisfies (a3), By Theorem(1.6)]
- \Rightarrow I is an implicative ideal of X.

[Since every closed ideal of X is an implicative ideal of X. By Theorem (1.38)]. ■

- ii. Let $x \in I$. Then $L_0(x) \in I$. [Since $L_0(I) \subseteq I$]
- $\Rightarrow 0*x \in I$ [Since $L_0(x) = 0*x$]
- \Rightarrow I is a closed ideal of X. [By Definition (1.26)]
- \Rightarrow X is a BCI-algebra. [Since X is BH-algebra and satisfies (a3), By Theorem (1.6)]
- \Rightarrow I is an implicative ideal of X.

[Since every closed ideal of X is an implicative ideal of X. By Theorem (1.38)].

- iii. Let X is equal to a branch subset of X determined by "0" and let I be an ideal of X.
- \Rightarrow X=B(0)
- \Rightarrow 0 * x = 0 \in I, \forall x \in X. [Since X=B(0)]
- \Rightarrow 0 * x = 0 \in I, \forall x \in I. [Since I \in X]
- \Rightarrow I is a closed ideal of X. [By Definition (1.26)]
- \Rightarrow I is an implicative ideal of X.

[Since every closed ideal of X is an implicative ideal of X. By Theorem (2.10)].■

Theorem (2.13):

Let X be an associative BH-algebra. Then

i. every proper subset of X is not an implicative ideal of X.

- ii. X_+ is not an implicative ideal of X.
- iii. a branch subset of X determined by "0" is not an implicative ideal of X.

Proof:

i. Suppose I is an implicative ideal of X and I is a proper subset of X. Then

There exist $x \in X$ such that $x \notin I$ [Since $I \subset X$]

Now, Since X is a BH-algebra, we have x*0=x. So (x*(0*x))*0 = x*(0*x)

= x*x [Since 0*x=x; by Theorem (1.14,i)]

 $= 0 \in I$ [since X is a BH- algebra; x*x=0]

We have

$$(x^*(0^*x))^* 0 \in I$$
 and $0 \in I$.

 \Rightarrow x \in I [since I is an implicative ideal of X]

We get a contradiction (By assumption $I \subset X$, $x \notin I$]

 \Rightarrow I is not an implicative ideal of X.

Then every proper subset of X is not an implicative ideal of X. ■

ii. To prove X_+ is not an implicative ideal of X.

 $X_{+}=\{x\in X\;;\;0*x=0\}=\{0\}$ [since X is an associative; 0*x=x; by Theorem (1.14,i)] Now,

Since $X_{+} \subset X$

Then X_+ is not an implicative ideal of X [by (i)].

iii. To prove a branch subset of X determined by "0" is not an implicative ideal of X.

$$B(0)=\{x\in X; 0*x=0\}=\{0\}$$
 [since X is an associative; $0*x=x$; by Theorem (1.14,i)] Now,

Since $B(0) = X_+$.

 \Rightarrow B(0) is not an implicative ideal of X [by (ii)].

Then a branch subset of X determined by "0" is not an implicative ideal of X.

<u>Corrolary (2.14)</u>: Let X be an associative BH-algebra. Then X is a unique implicative ideal of X.

Proof: Directly by Theorem (2.13,i) and Remark (2.3).

Theorem (2.15):

Let X be a medial BH-algebra and satisfies (a₃). Then every normal ideal of X is an implicative ideal of X.

Proof:

Let I be a normal ideal of X and let $x \in X$. Then

```
(0*x)*((0*x)*0)=(0*x)*(0*x)=0 \in I [Since X is s BH-algebra; x*0=x and x*x=0]
```

- $\Rightarrow 0*(0*(0*x)) \in I$ [Since I is a normal ideal]
- $\Rightarrow 0*x \in I$; $\forall x \in X$ [Since X is a medial; x*(x*y) = y]
- $\Rightarrow 0*x \in I \; ; \quad \forall x \in I$
- \Rightarrow I is a closed ideal of X. [By Definition (1.26)]
- \Rightarrow I is an implicative ideal of X. [Since every closed ideal of X is an implicative ideal of X.

By Theorem(2.10)]].■

Theorem (2.16):

Let X be an implicative BH-algebra and satisfies (a₃). Then every completely closed ideal of X is an implicative ideal of X.

Proof:

Let I be a completely closed ideal of X. Then I is an ideal of X. [By definition (1.28)]

Let $y \in X$, if x=0

 \Rightarrow 0*y \in I, \forall y \in X.

 \Rightarrow 0*v \in I, \forall v \in I.

Then I is a closed ideal of X.

 \Rightarrow I is an implicative ideal of X. [Since every closed ideal of X is an implicative ideal of X.

By Theorem (2.10)].■

Proposition (2.17):

Let X be a normal BH-algebra such that X=X₊ and let I be an implicative ideal of X. Then I is a completely closed ideal of X.

Proof:

Let I be a an implicative ideal of X. Then I is an ideal of X. [By proposition(1.34)]

Let $x, y \in I$. Then

$$\begin{array}{ll} ((x^*y)^*(0^*(x^*y)))^*x = ((x^*y)^*0)^*x & [Since \ 0^*(x^*y) = 0 \ ; \ X = X_+. \ By \ Definition \ (1.15)] \\ = (x^*y)^*x & [Since \ X \ is \ a \ BH-algebra \ . \ x^*0 = x] \\ = 0^*y & [Since \ X \ is \ a \ normal, \ By \ Definition \ (1.\ 10, \ ii)] \\ = 0 \in I & [Since \ X = X_+. \ By \ Definition \ (1.\ 15) \] \\ \end{array}$$

 \Rightarrow $((x*y)*(0*(x*y)))*x \in I$ and $x \in I \Rightarrow x*y \in I$. [Since I is an implicative ideal of X]

Therefore, I is a completely closed ideal of X.■

Theorem (2.18):

Let $\{I_i, i \in \Gamma\}$ be a family of implicative ideals of a BH-algebra X. Then $\bigcap_{i \in \Gamma} I_i$ is an implicative

ideal of X.

Proof:

To prove that $\bigcap_{i \in \Gamma} I_i$ is an implicative ideal of X.

i. $0 \in I_i, \forall i \in \Gamma$ [Since each I_i is an implicative ideal of $X, \forall i \in \Gamma$. By Definition(1.33)]

$$\Rightarrow 0 \in \bigcap_{i=\Gamma} I$$

$$\Rightarrow 0 \in \bigcap_{i \in \Gamma} I_{i}$$
ii. Let $(x^{*}(y^{*}x))^{*}z \in \bigcap_{i \in \Gamma} I_{i}$ and $z \in \bigcap_{i \in \Gamma} I_{i}$

$$\Rightarrow (x^{*}(y^{*}x))^{*}z \in I_{i} \text{ and } z \in I_{i}. \forall i \in \Gamma$$

 $\Rightarrow (x^*(y^*x))^*z \in I_i \text{ and } z \in I_i, \forall i \in \Gamma$

[Since each I_i is Implicative ideal of X, $\forall i \in \Gamma$. By Definition(1.33)]

$$\Rightarrow x \in \bigcap_{i \in \Gamma} I_i$$
. Therefore, $\bigcap_{i \in \Gamma} I_i$ is an implicative ideal of X.

Corollary (2.19): Let $X=L_K(X)\cup\{0\}$ and let $\{I_i, i\in\Gamma\}$ be a family of ideals of a BH-algebra X.

Then $\bigcap_{i \in \Gamma} I_i$ is an implicative ideal of X.

<u>Proof:</u> Let $\{I_i, i \in \Gamma\}$ be a family of ideals of X. Then $\bigcap_{i \in \Gamma} I_i$ is an ideal of X. [By Theorem(1.22)].

Therefore, $\bigcap_{i=1}^{\infty} I_i$ is an implicative ideal of X. [Since $X=L_K(X)\cup\{0\}$, by Proposition (2.1)].

Theorem (2.20):

Let $\{I_i, i \in \Gamma\}$ be a chain implicative ideals of a BH-algebra X. Then $\bigcup_{i=\Gamma} I_i$ is an implicative ideal of X.

Proof: To prove that $\bigcup_{i \in \Gamma} I_i$ is an implicative ideal of X.

i. $0 \in I_i$, $\forall i \in \Gamma$

[Since each I_i is an implicative ideal of X, $\forall i \in \Gamma$. By Definition(1.33)]

$$\Rightarrow 0 \! \in \bigcup_{i \in \Gamma} \! I_{i}$$

ii. Let
$$(x^*(y^*x))^*z \in \bigcup_{i \in \Gamma} I_i$$
 and $z \in \bigcup_{i \in \Gamma} I_i$

 $\exists~I_j\,,\,I_k\in\{~I_i~\}_{i\in\Gamma}\text{, such that }(x^*(y^*x))^*z\in I_j\text{ and }z\in I_k\text{ ,}$

$$\begin{array}{lll} \Rightarrow \text{ either } I_j \subseteq \ I_k \ \text{ or } I_k \subseteq \ I_j \\ \Rightarrow \text{ either } (x^*(y^*x))^*z \in I_j \ \text{ and } z \in I_j \end{array} \qquad \begin{array}{ll} [\ \text{Since } \{I_i\}_{i \in \Gamma} \text{ is a chain }] \\ \Rightarrow \text{ either } (x^*(y^*x))^*z \in I_k \ \text{and } z \in I_k \end{array}$$

$$\Rightarrow$$
 either $(x^*(y^*x))^*z \in I_i$ and $z \in I_i$ or $(x^*(y^*x))^*z \in I_k$ and $z \in I_k$

$$\Rightarrow$$
 either $x \in I_i$ or $x \in I_k$

[Since I_j and I_k are implicative ideals of X. By Definition(1.33)]

$$\Rightarrow$$
X $\in \bigcup_{i \in \Gamma} I_i$. Therefore $\bigcup_{i \in \Gamma} I_i$ is an implicative ideal of X. \blacksquare

Corollary (2.21): Let $X=L_K(X)\cup\{0\}$ and let $\{I_i, i\in\Gamma\}$ be a Chain of ideals of a BH-algebra X. Then $\bigcup_{i=1}^{n} I_i$ is an implicative ideal of X.

Proof: Let $\{I_i, i \in \Gamma\}$ be a chain of ideals of X. Then $\bigcup_{i \in \Gamma} I_i$ is an ideal of X. [by Theorem(1.23)]

Therefore, $\bigcup_{i=\Gamma} I_i$ is an implicative ideal of X.[Since $X=L_K(X)\cup\{0\}$, by Proposition (2.1)].

Proposition (2.22):

Let $f: (X, *, 0) \rightarrow (Y, *', 0')$ be a BH- epimorphism. If I is an implicative ideal of X, then f(I) is an implicative ideal of Y.

Proof:

Let I be an implicative ideal of X. Then

i.
$$f(0) = 0'$$
, [Since f is an epimorphism, by Remark(1.42)]

$$\Rightarrow$$
 0' \in f(I)

ii. Let
$$(x^*'(y^*'x))^*'z \in f(I)$$
 and $z \in f(I)$

$$\Rightarrow \exists a, b \in I \text{ and } c \in I \text{ such that } f(a)=x, f(b)=y \text{ and } f(c)=z$$

$$\Rightarrow$$
 ($x^*'(y^*'x))^*'z = [f(a)^*'(f(b)^*'f(a))]^*'f(c) = f((a^*(b^*a))^*c) \in f(I)$ [Since f is an epimorphism]

- \Rightarrow $(a*(b*a))*c \in I$ and $c \in I$ [Since $f(I)=\{f(x); x \in I\}$]
- \Rightarrow a \in I [Since I is an implicative ideal of X]
- \Rightarrow f(a) \in f(I).

Then f(I) is an implicative ideal of Y.

Proposition (2.23):

Let **f**: $(X,*,0) \rightarrow (Y,*',0')$ be a BH- homomorphism and I is an implicative ideal of Y. Then $f^{-1}(I)$ is an implicative ideal of X.

Proof:

Let I be an implicative ideal of Y. Then

- i. f(0) = 0' [Since f is a homomorphism, by Remark(1.42)]
- $\Rightarrow 0=f^{-1}(0')\in f^{-1}(I)$
 - ii. Let $x, y, z \in X$ such that $(x^*(y^*x))^*z \in f^{-1}(I)$ and $z \in f^{-1}(I)$
- \Rightarrow f((x*(y*x))*z) \in I and f(z) \in I
- \Rightarrow f((x*(y*x))*z)=(f(x)*'(f(y)*'f(x)))*'f(z)∈I and f(z) ∈I [Since f is a homomorphism, by Remark(1.42)]
- \Rightarrow f(x) \in I [Since I is an implicative ideal of Y]
- $\Rightarrow x \in f^{-1}(I)$.

Then $f^{-1}(I)$ is an implicative ideal of X.

Theorem (2.24):

Let X be a BH-algebra and N be a normal subalgebra. If I is an ideal of X, then I/N is an ideal of X/N.

Proof:

Let I be an ideal of X. Then

- i. Since $0 \in I \Rightarrow [0]_N \in I/N$.
- ii. Let $[x]_N, [y]_N \in X/N$.
- \Rightarrow [x]_N*[y]_N \in I/N and [y]_N \in I/N [Since[x]_N*[y]_N=[x*y]_N, By remark(1.47)].
- $\Rightarrow [x^*y]_N \in I/N \text{ and } [y]_N \in I/N$
- $\Rightarrow x^*y \in I \text{ and } y \in I$ [Since I/N={[x]_N | x \in I}, By remark(1.47)]
- \Rightarrow x \in I [Since I is an ideal of X].
- \Rightarrow [x]_N \in I/N. Then I/N is an ideal of X/N.

Theorem (2.25):

Let X be a BH-algebra and N be a normal subalgebra. If I is an implicative ideal of X, then I/N is an implicative of X/N.

Proof:

Let I be an implicative ideal of X. To prove I/N is an implicative ideal of X/N.

- \Rightarrow I is an ideal of X. [By proposition(1.34)]
- \Rightarrow I/N is an ideal of X/N. [By proposition(2.24)]
- i. Since $0 \in I \Longrightarrow [0]_N \in I/N$.
- ii. Let $[x]_N, [y]_N, [z]_N \in X/N$.
- \Rightarrow ([x]_N*([y]_N * [x]_N)) *[z]_N \in I/N and [z]_N \in I/N
- \Rightarrow ([x]_N*[y*x]_N) *[z]_N \in I/N and [z]_N \in I/N [Since[x]_N*[y]_N=[x*y]_N, By remark(1.47)]
- \Rightarrow [x*(y*x)]_N *[z]_N \in I/N and [z]_N \in I/N

- $\Rightarrow [(x^*(y^*x))^*z]_N \in I/N \text{ and } [z]_N \in I/N$
- \Rightarrow $(x^*(y^*x))^*z \in I$ and $z \in I$ [Since $I/N = \{[x]_N | x \in I\}$, By remark(1.47)]
- \Rightarrow x \in I [Since I is an implicative ideal of X]
- $\Rightarrow [x]_N \in I/N$.

Then I/N is an implicative ideal of X/N.■

Theorem (2.26):

Let X be a BH-algebra and A be a translation ideal of X. If I is an ideal of X, then I/A is an ideal of X/A.

Proof:

Let I be an ideal of X. To prove I/A is an ideal of X/A.

- i. Since $0 \in I \Rightarrow [0] \in I/A$.
- ii. Let $[x]_A,[y]_A \in X/A$.
- \Rightarrow [x]_A \oplus [y]_A \in I/A and [y]_A \in I/A [Since[x]_A \oplus [y]_A=[x*y]_A. By remark(1.44)]
- $\Rightarrow [x^*y]_A \in I/A \text{ and } [y]_A \in I/A$
- \Rightarrow x*y \in I and y \in I [Since I/A={[x]_A | x \in I}. By Remark(1.44)]
- \Rightarrow x \in I [Since I is an ideal of X]
- $\Rightarrow [x]_A \in I/A$

Then I/A is an ideal of X/A.

Proposition(2.27):

Let X be a BH-algebra and A be a translation ideal. If I is an implicative ideal of X, then I/A is an implicative of X/A.

Proof:

Let I be an implicative ideal of X. To prove I/A is an implicative ideal of X/A.

- i. Since $0 \in I \Rightarrow [0] \in I/A$.
- ii. Let $[x]_A, [y]_A, [z]_A \in X/A$.
- \Rightarrow ([x]_A \oplus ([y]_A \oplus [x]_A)) \oplus [z]_A \in I/A and [z]_A \in I/A
- \Rightarrow ([x]_A \oplus [y*x]_A) \oplus [z]_A \in I/A and [z]_A \in I/A [Since[x]_A \oplus [y]_A=[x*y]_A. By remark(1.44)]
- \Rightarrow [x*(y*x)]_A \oplus [z]_A \in I/A and [z]_A \in I/A
- $\Rightarrow [(x^*(y^*x))^*z]_A \in I/A \text{ and } [z]_A \in I/A$
- \Rightarrow $(x^*(y^*x))^*z \in I$ and $z \in I$ [Since I/A={[x]_A | x \in I}. By Remark(1.44)]
- \Rightarrow x \in I [Since I is an ideal of X]
- \Rightarrow [x]_A \in I/A .Then I/A is an implicative ideal of X/A.

Corollary (2.28):

Let X be a BH-algebra. If I is an implicative ideal of X, then I/Ker(f) is an implicative of X/Ker(f).

Proof:

Let I be an implicative ideal of X. To prove I/Ker(f) is an implicative ideal of X/Ker(f).

Since Ker(f) is translation ideal. [By Theorem(1.45)]

 \Rightarrow I/ Ker(f) is an implicative ideal of X/ Ker(f). [By Theorem(2.27)].

Remark (2.29):

Let X be a BH-algebra and let I be a subset of X. we will define to the set $\{L_a \in L(X) ; a \in I\}$ by L(I).

Theorem (2.30):

Let X be a positive implicative BH-algebra. If I is an ideal of X. Then L(I) is an ideal of $(L(X), \oplus, L_0)$.

Proof:

Let I be an ideal of X. To prove L(I) is an ideal of $(L(X), \oplus, L_0)$.

i. $0 \in I \Rightarrow L_0 \in L(I)$

[By Remark (2.29)]

ii. Let $L_a \oplus L_b$, $L_b \in L(I)$.

We have $L_a \oplus L_b = L_{a*b}$, where $a, b \in I$

 $\Rightarrow a*b \in I \text{ and } b \in I$

 \Rightarrow a \in I

[Since I is an ideal of X]

 \Rightarrow L_a \in L(I) .Then L(I) is an ideal of (L(X), \oplus ,L₀).

Corollary (2.31):

Let X be a positive implicative BH-algebra. If I is an implicative ideal of X. Then L(I) is an implicative ideal of $(L(X), \oplus, L_0)$.

Proof:

Let I be an implicative ideal of X. Then I is an ideal of X.

 \Rightarrow L(I) is an ideal of L(X). [By Theorem(2.30)]

i. $0 \in I \implies L_0 \in L(I)$ [Since I is an ideal of X]

ii. Let $(L_a \oplus (L_b \oplus L_a)) \oplus L_c \in L(I)$ and $L_c \in L(I)$

 $\Rightarrow (a*(b*a))*c \in I \quad \text{ and } c \in I \quad [Since (L_a \oplus (L_b \oplus L_a)) \oplus L_c = L_{(a*(b*a))*c} \in L(I)]$

 \Rightarrow a \in I [Since I is an implicative ideal of X]

 \Rightarrow L_a \in L(I). Then L(I) is an implicative ideal of (L(X), \oplus ,L₀).

Theorem (2.31):

If $X=L_K(X)\cup\{0\}$ be a BH-algebra satisfies (a_4) and S be a subalgebra of X, then S is an implicative ideal of X.

Proof:

Since X be a BH-algebra satisfies (a₄), then X is a BCH-algebra. [by Theorem(1.7)]

Let S is a subalgebra of X. Then S is a *-ideal.

[By Theorem(1.20,4)]

 \Rightarrow S is an ideal. [every *-ideal is an ideal. By Definition (1.19)] To prove S is an implicative ideal of X.

i) $0 \in S$ [Since S is an ideal]

- ii) Let $x, y, z \in X$ such that $(x^*(y^*x))^*z \in S$ and $z \in S$.
- $\Rightarrow x^*(y^*x) \in S$. [Since S is an ideal of X]

We have two cases:

Case 1: if x=y, then $x*(x*x) \in S$

 \Rightarrow x*0 \in S [Since X is a BH-algebra; x*x=0]

 \Rightarrow x \in S [Since X is a BH-algebra; x*0=x]

Then S is an implicative ideal of X.

Case 2: if $x\neq y$, then x*(y*x) = x*y = x

 \Rightarrow x*y \in S [Since X = L_K(X) \cup {0}, then y*x=y; \forall x, y \in X with x \neq y, by Theorem (1.20, 2)]

 $\Rightarrow x \in S$ [Since $x^*y=x$]

Then S is an implicative ideal of X.■

References:

- [1] A. B. Saeid and A. Namdar, "On n-fold Ideals in BCH-algebras and Computation Algorithms", World Applied Sciences Journal 7 (Special Issue for Applied Math): 64-69, 2009.
- [2] A. B. Saeid, A. Namdar and R.A. Borzooei, "Ideal Theory of BCH-Algebras", World Applied Sciences Journal 7 (11): 1446-1455, 2009.
- [3]H. H. Abbass and H. A. Dahham," Some Types of Fuzzy Ideals with Respect to an Element of a BG-algebra", Kufa University, M.s. cthesis, 2012.
- [4]H. H. Abbass and H. M. A. Saeed, "The Fuzzy Closed BCH-algebra with Respect to an Element of a BH-algebra", Kufa University, M.s. cthesis, 2011.
- [5]J. Meng and X.L.X, "Implicative BCI-algebra", Pure Apple, In China: 8:2,99-103,1992
- [6]K. ISEKI, "An Algebra Related with a Propositional Calculus", Proc. Japan Acad. 42, 26-29, 1966.
- [7] M.A. Chaudhry and H. Fakhar-Ud-Din, "Ideals and Filters in BCH-algebra", Math. japonica 44, No. 1, 101-112, 1996.
- [8]Q. P. Hu and X. Li, "On BCH-algebras", Math. Seminar Notes Kobe University No. 2, Part 2, 11: 313-320, 1983.
- [9]Q. Zhang, Y. B. Jun and E. H. Roh, "On the Branch of BH-algebras", Scientiae Mathematicae Japonicae 54(2), 363–367, 2001.
- [10]S. S. Ahn and H. S. Kim, "R-maps and L-maps in BH-algebras", Journal of the Chungcheong Mathematical Society, Vol.13, No. 2, pp.53-59, 2000.
- [11]S. S. Ahn and J. H. Lee, "Rough Strong Ideals in BH-algebras", HonamMath. Journal,32, pp.203-215,2010.
- [12]Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae 1(1), 347–354, 1998.
- [13]Y. B. Jun, H. S. Kim and M. Kondo "On BH-relations in BH-algebras", Scientiae Mathematice Japonice Online, Vol.9,pp.91–94,2003.
- [14]Y. IMAI and K. ISEKI, "On Axiom System of Propositional Calculi XIV, Proc. Japan Acad. 42, 19-20, 1966.
- [15]Y. L. Liu, J. Meng, "Fuzzy Ideals in BCI-algebra" Fuzzy sets and Systems, 123, 227-237.2001.