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Abstract : Selecting active variables for a QR model is difficult. Selecting the right group of predictors often 

improves prediction accuracy. To improve scientific understanding, choose a smaller subset.  Several methods have 

been presented to find the active subset. Estimating model parameters aims to find the best estimators for accurate 

predictions. Estimating all the parameters in the high-dimensional data request yields a weak prediction with large 

correlations between independent variables, resulting in incorrect findings. Variable selection (V.S) is a key challenge 

in modelling high-dimensional data. Linear QR selection variables and estimation are studied using the Bayesian 

hierarchical approach. Regularization bridge and ordinal composite quantile regression are our specialities. This work 

proposes a Bayesian reciprocal adaptive bridge composite quantile regression for ordinal variable selection and 

estimation. A new Gibbs sampling approach is developed for comprehensive conditional posterior distributions. We 

look at how Bayesian reciprocal adaptive bridge composite quantile regression for ordinal data (BrABCQRO) stacks 

up against other Bayesian and non-Bayesian approaches. The posterior, prior, and conditional distributions are all 

talked about together.  For full conditional posterior distributions, a new Gibbs sampling method is created. A real-

world example and many simulation examples show that the suggested methods often work better than standard ones. 

Keywords: Reciprocal adaptive Bridge, Composite Quantile Regression, Gibbs sampler, Ordinal data. 

Introduction: Quantile regression (QReg), proposed by Koeker and Bassett (1978), has garnered attention from 

statisticians, econometricians, and applied researchers. Economics, agriculture, medicine, genetics, sociology, and 

others have employed it "(Alhamzawi (2013), Koenker(2005), and Yu et al.(2003))." 

QReg has various advantages over SReg (Orsini&Bottai, 2011). It detects distinct response variable effects at different 

quantities. Since it does not require a data distribution, it is possible (Liu, Saat, Qin &Barkan, 2013). The estimators 

are insensitive to outliers (Koenker, 2005), and most crucially, they can handle data heterogeneity without 

requirements. "For any τ
th 

 quantile, (0<   τ   <1),  the τ
th

  quantile regression can be defined as  

   ⌉  
( )    

    , 

where    is the response variable,   
  is a K-dimensional vector,    is a coefficient vector of QReg. To estimate the 

coefficient vector (Koenker, and Bassett,1978) proposed this equation". 

∑   (     
   ) 

 
                                                 (1) 

where   ( )   (   (   ))  (   ) is the indicator function. This problem can be minimised by using a linear 

programming algorithm (Koenker, and D'Orey, 1987 ). 
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Figure 1 shows the check function at three quantiles 0.01, 0.10, and 0.15 . Since the above check function is not 

differential at 0 there is no closed-form solution. 

Many researchers employed Bayesian approaches to estimate regression coefficients. 

 QReg parameters are estimated using the Bayesian technique if errors are an asymmetric Laplace distribution (ALD) 

(Yu and Moyeed, 2001). The Bayesian approach to QReg is accurate even with small sample sizes and acceptable for 

ordinal replies (Koenker, 2005). Alhamzawi (2013) provides mathematical hints for using ALD for errors. 

Active variable selection is difficult in QR models. Many times, selecting the right group of predictors improves 

prediction accuracy. Scientifically, a smaller selection improves interpretation.  Reed et al. (2009) and Ji et al. (2011) 

present several methods for obtaining the active subset.  

Koenker (2004) introduced QReg's first regularization method to eliminate random effects. Wang et al. (2007) verified 

QReg's low absolute deviation (LAD) oracle characteristic. A posterior technique that creates a Laplace-independent 

regression parameter hypothesis is a Bayesian lasso. Ordinal response variables complicate things. Many fields use 

ordinal response models, especially in education where data outputs can be sorted. This study simulates the p
th

 

quantile for the latent variable 𝒛  using Rahman's (2016) regression model. 

𝒛    
  + 𝝐  ,                          … .  𝒏                        (2) 

 "where    is a 𝒌 ×   vector of explanatory variables of 𝒛  ,  is a 𝒌 ×   vector for the model parameter,𝝐  is error 

follows ALD. Where a description of the  ordinal response variable by the latent variable 𝒛  can be written  fellow: 

   𝒄       𝒇        𝜹𝒄−  𝒛 ≤ 𝜹𝒄 ;      𝒄    …  𝑪,  

where 𝜹   …  𝜹𝑪 are cut-points, that fall within the period" 

 ∞  𝜹  𝜹  ⋯  𝜹𝑪−  𝜹𝑪  +∞ 
This study's Bayesian hierarchical approach deals with the selection of variables and estimation of the parameters. 

Specifically, we propose a regularization bridge method and ordinal composite quantile regression. 

Rahman (2016) suggested an ordinal Bayesian model for QReg, assuming ALD error and Gibbs sampling to obtain 

parameter posteriors.   

Recently, Zou and Yuan (2008) came up with a "composite quantile regression (CQReg)" to find parameters that work 

better than the average regression by more than 70%. The CQReg is more robust, flexible, and efficient than the single 

QReg because it takes multiple quantities at once. Models using ordinal response variables benefit from CQReg. 

Ordinal QReg complements the standard ordinal model and has been used for years, see Hong and Zhou (2013), Goffe 
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et al. (1994), and Hong and He (2010). The nice theoretical characteristics of CQR apply to ordinal outcome models. 

Medical, ecological, geological, and human and social research use ordinal survey results. Quantiles of ordinal data 

cannot be obtained by inverting the distribution function, making CQR with ordinal outcomes more challenging. 

Koenker (2004) introduced penalty-based parameter estimation using special effects, while Geraci and Bottai (2007) 

used probability dependency. Yu and Moyeed used Monte Carlo to implement ALD. This study's Bayesian hierarchical 

approach deals with the selection of variables and estimation of the parameters. Specifically, we propose a 

regularization bridge method and ordinal composite quantile regression. 

In the classical literature, quantile regression estimators have been used with ordinal data, depending on different 

methods (Kirkpatrick et al., 1983; Goffe et al., 1994). Despite the development of these methods over the years, their 

use with the Bayesian method has not been addressed, Hong and He (2010). 

Rahman (2016)showed a quantile ordinal model that provides a better fit than the classical methods using the 

Bayesian method (Alhamzawi, R , Bayesian model selection in ordinal quantile regression). we propose a new 

Bayesian composite quantile regression method with a Bayesian Reciprocal Adaptive Bridge. the attractiveness of this 

model is shown by suggesting later methods with superior results compared to the existing methods using simulation. 

Section 2 introduces composite quantile regression with bridge penalties, preset model parameters, and the MCMC 

algorithm. Section 3 describes previous assumptions, a Gibbs sampler for model selection, and an ALD-based 

suitability posterel. Section 4: Simulating the selection and assessment model's proposed procedures. Section 5 uses 

ordinal data to demonstrate the methods. 

2. Methods 

2.1 Bayesian Ordinal Composite Quantile Regression Model (BOCQReg) 

Consider the following model 

   𝐛 +   
  + 𝛜  ,         =1, ……….,  ,                        (3) 

 where     is  response variable, 𝒃 the parameter for the quantile intersection where (0<   τ   <1),   
  is the vector of 

explanatory variables,           is a vector for model parameters, 𝝐   is the error of the quantile regression model and 𝒏 is 

several observations. ,  the parameters of the composite regression can be estimated by solving the following equation: 

(𝒃̂  
 𝒃̂ 𝟐

 …… .  𝒃̂ 𝑲
  ̂)  𝐚𝐫𝐠𝒎 𝒏⏟      

𝒃   

∑ {∑   𝒌
(   𝒃 𝒌

   
  )𝒏

   }𝑲
𝒌                     (4) 

where   𝒌
(𝒕)  𝒕( 𝒌   (𝒕   )), is the check function, 𝐼 (.) is indicator function and  𝒌  

𝒌

𝑲+ 
    𝒘𝒉𝒆𝒓𝒆 𝒌  

  𝟐 …  𝑲. 

"By assuming the error is asymmetric Laplace distribution (𝝁  𝒃 +   
   𝝈   ) . The probability function of  ALD 

is given by:" 

𝒑( |   𝒃     )   (   )𝒆 𝒑 (   𝒌
(   𝒃 𝒌

   
  ))                           (5) 

The check function is not derivable, hence conventional approaches estimate quantile regression utilizing 

computational and simulation methods with algorithms "(Madsen and Nielsen, 1993; Chen, 2007; Rahman, 2013)." 

Bayesian approaches minimized the loss function (4) and maximized the probability function likelihood. (5). Kozumi 

and Kobayashi (2011) used  a mixture of the standard exponential distribution with the standard normal of the error 

term, suppose that   ~𝑵 (   )    and 𝒗 ~ 𝒆 𝒑 (
 

 ( − )
)  . "Therefore, the error term in (2) can be written as  𝝐  

𝝑𝒗 + √𝝋𝒗          where       𝝑  (  𝟐 )  and 𝝋  𝟐  ." 

The normal-exponential mixture is useful because it gives us access to the normal distribution's properties, which we 

will use in this study. After that, this is the conditional distribution of the quantile variable: 

𝒑(  |  𝒃   𝒗 )  𝒆 𝒑 ( ∑ ∑
 

𝟒𝒗 
(   𝒃 𝒌

   
   𝝑𝒗 )

𝟐𝒏
   

𝑲
𝒌  )∏ (𝟒𝝅𝒗 )

 

𝟐𝒏
           (6)  

where   (   …   𝒏)
  

Quantile regression has been utilized to treat ordinal response variable models by several researchers (Hong, H. G. and 

Zhou, J. (2013), Zhou, L. (2010)).  Composite quantile regression is more efficient and immune to atypical error 

distributions than individual quantile regression "(Zou and M. Yuan, 2008)." The response variable    can be modelled 

through the continuous  latent variable   𝒛  and cut-off point  𝜹  {𝜹  … .  𝜹𝑪}  where we impose    to take C-ordered 

values {𝒄  𝒄𝟐 …  𝒄𝑪}  to be in the following form: 

   {

     𝒇    𝜹 ≤ 𝒛  𝜹 

𝒄     𝒇 𝜹𝒄− ≤ 𝒛   𝜹𝒄;   𝒄  𝟐 …  𝑪   

𝑪    𝒇   𝜹𝑪−  ≤ 𝒛  𝜹𝑪

           (7) 

A continuous latent random variable 𝒛 can be used to show a composite quantile regression for ordinal data as  

𝒛  𝒃 +   
  + 𝝐                                             =1,……,𝒏  where    is  a  𝒌 ×   vector of explanatory variables,  is 
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a 𝒌 ×    vector for model parameters, 𝝐  follows an ALD with pdf (4) and 𝒏 is several observations. Equation (6)  can 

be rewritten as a hierarchical Bayesian model using ordinal composite  quantile regression  

𝒑(𝒛 |  𝒃   𝒗 )  𝒆 𝒑 ( ∑ ∑
 

𝟒𝒗 
(𝒛  𝒃 𝒌

   
   𝝑𝒗 )

𝟐𝒏
   

𝑲
𝒌  )∏ (𝟒𝝅𝒗 )

 

𝟐𝒏
            (8) 

2.2 Bayesian Reciprocal Bridge for Ordinal Composite Quantile Regression (BRBOCQReg) 

The reciprocal bridge estimator can be written by making use of formula (23) with quantile regression (Alhamzawi  

and Mallick,  2020 ) which solves the following: 

𝒂𝒓𝒈𝒎 𝒏⏟      
𝒃   

∑ {∑   𝒌
(𝒛  𝒃 𝒌

   
  )𝑲

𝒌  } + 𝝀∑
 

| 𝒈|
𝜶

𝑮
𝒈   { 𝒈 ≠  }𝒏

                        (9) 

λ represents the regularization parameter for α. A value of zero corresponds to L0, one to reciprocal LASSO, and 2 to 

reciprocal ridge. The Bayesian approach addresses miniaturization in small samples by using the check function 

instead of the loss function. According to Mallick et al. (2020), the inclusion of the penalty factor in equation (8) 

results in bridge estimates that serve as posterior mode estimates when the regression parameters follow an Inverse 

Generalized Gaussian (IGG) pattern. 

𝝅( )  ∏
𝝀
 
𝜶

𝟐 𝒈
𝟐𝚪(

 

𝜶
+ )

𝑮
𝒈  𝒆 𝒑 { 

𝝀

| 𝒈|
𝜶}  { 𝒈 ≠  }          (10) 

Armagan, Dunson, and Lee's (2013); Mallick, Alhamzawi, and Svetnik's (2020) representation of the scale mixture of 

normal (SMN) is used by the Gibbs sampler for the Bayesian reciprocal bridge. If we assume that  ~𝑵(  𝒍) (| | >

ɳ),𝒍~𝑬 𝒑 (
𝝃𝟐

𝟐
⁄ ), and" 𝝃~𝑬 𝒑(ɳ), then the inverse double exponential distribution for   with scale parameter 𝝀 >   

arises when ɳ follows Inverse Gamma (2,λ)." 

Where   
 

ɳ
 , 𝒍  (𝒍  …  𝒍𝑮)

 , and 𝝃  (𝝃  …  𝝃𝑮) . To specify a prior distribution for 𝜹  , we follow Alhamzawi 

(2016), we assign order statistics from uniform (𝜹  𝜹𝑪) distribution for the 𝑪    unknown cut-points : 

𝑷𝜹  (𝑪   )! (
 

𝜹𝒎𝒂 −𝜹𝒎 𝒏
)
𝑪− 

 (𝜹 ∈ 𝑯),                  (11) 

Where 𝜹  (𝜹  𝜹  …  𝜹𝑪) and 𝑯  {(𝜹𝒎 𝒏 𝜹  …  𝜹𝒎𝒂 )|𝜹𝒎 𝒏  𝜹  ⋯  𝜹𝑪−  𝜹𝒎𝒂 }.  
To summarize, in our Bayesian hierarchical formulation, we consider the following priors  for all parameters and 

latent variables 

   {

     𝒇    𝜹 ≤ 𝒛  𝜹 

𝒄     𝒇 𝜹𝒄− ≤ 𝒛   𝜹𝒄;   𝒄  𝟐 …  𝑪   

𝑪    𝒇   𝜹𝑪−  ≤ 𝒛  𝜹𝑪

     

𝒛 | ~𝑵𝒏(𝒛 + 𝒃 𝒌
+   

  + 𝝑𝒗 𝟐𝝈𝒗)  

𝑷(𝜹)  (𝑪   )! (
 

𝜹𝒎𝒂 −𝜹𝒎 𝒏
)
𝑪− 

 (𝜹 ∈ 𝑯)when 𝑯  {(𝜹  …  𝜹𝑪)|𝜹  ⋯  𝜹𝑪}.  

 |𝒍~∏ 𝑵(  𝒕𝟐) {| 𝒈|
𝜶

>
 

 𝒈
}𝑮

𝒈  , 

𝒍|𝝃~∏ 𝑬 𝒑(𝝃𝒈
𝟐)𝑮

𝒈  , 

𝝃| ~∏ 𝑬 𝒑 (
 

 𝒈
)𝑮

𝒈  , 

 ~∏ 𝑮𝒂𝒎𝒎𝒂 (𝟐 𝝀) 𝑮
𝒈                                                                                  (12) 

𝝈~𝝈−     
𝝀~𝝀−    
Then the condition posteriors are: 

 |𝒛 ~𝑵𝑷((𝑿 Ω− 𝑿 + 𝑻− )− 𝑿 Ω− (𝒛  𝝑𝒗) (𝑿 Ω− 𝑿 + 𝑻− )− )∏  {| 𝒈|
𝜶

>
 

 𝒈
}  𝑮

𝒈    

𝒗 
− |𝒛 ~ 𝒏𝒗𝒆𝒓𝒔𝒆  𝑮𝒂 𝒔𝒔 𝒂𝒏(

 

𝟐
 

 

|𝒛 +𝒃 𝒌
+  

′ |
 

 

𝟐𝝈
)   

𝒍− |𝒛 ~∏  𝒏𝒗𝒆𝒓𝒔𝒆  𝑮𝒂 𝒔𝒔 𝒂𝒏(
 

𝟐
 √

𝝃𝒈
𝟐

 𝒈
𝟐  𝝃𝒈

𝟐)  𝑮
𝒈     

𝝃|𝒛 ~∏ 𝑮𝒂𝒎𝒎𝒂(| 𝒈|
𝜶

+
 

 𝒈
)  𝑮

𝒈    



QJAE,  Volume 25, Issue 4 (2023)                                                                           

271  

 |𝒛 ~ ∏ 𝑬 𝒑𝒐𝒏𝒆𝒏𝒕 𝒂𝒍(𝝀) { 𝒈 >
 

| 𝒈|
𝜶}𝑮

𝒈     

𝝈|𝒛 ~ 𝒏𝒗𝒆𝒓𝒔𝒆  𝑮𝒂𝒎𝒎𝒂(𝒂 +
𝟑𝒏

𝟐
 𝒃 +

 

𝟒
(𝒛  𝒃 𝒌

   
   𝝑𝒗)

 
𝑽− (𝒛  𝒃 𝒌

   
   𝝑𝒗))    

𝝀|𝒛 ~𝑮𝒂𝒎𝒎𝒂(𝜸 + 𝟐𝒑 𝒅 + ∑
 

| 𝒈|
𝜶

𝑮
𝒈  )   

Where 𝑳  𝒅 𝒂𝒈(𝒍  …  𝒍𝑮), Ω  𝒅 𝒂𝒈((𝟐𝝈𝒗 ) …  (𝟐𝝈𝒗𝒏)),𝜸 𝒑 𝒂𝒏𝒅 𝒅 are fixed hyperparameters.   

"Algorithm 1. MCMC sampling for the Bayesian reciprocal Bridge composite quantile regression (SMN)" 

Input: (z, x ) 

Initialize: (𝒃    𝝈 𝒗   𝝀 𝜶) 

For  𝒕    …  (𝒕𝒎𝒂 + 𝒕𝒃 𝒓𝒏− 𝒏) do 

1. sample 𝒗|.~ ∏  𝒏
    𝒏𝒗𝒆𝒓𝒔𝒆 𝑮𝒂 𝒔𝒔 𝒂𝒏(

 

𝟐𝝈
 

 

|𝒛 −𝒃 𝒌
−  

′ |
  

 

𝟐𝝈
) 

2. sample   |.  ~∏ 𝑬 𝒑𝒐𝒏𝒆𝒏𝒕 𝒂𝒍𝑮
𝒈  (𝝀) { 𝒈 >

 

| 𝒈|
𝜶} 

3. sample 𝒍|.~∏  𝒏𝒗𝒆𝒓𝒔𝒆  𝑮𝒂 𝒔𝒔 𝒏(
 

𝟐
 √

𝝃𝒌
𝟐

 𝒌
𝟐  𝝃𝒌

𝟐)𝑮
𝒈                                      

4.  sample𝝃 |. ~∏ 𝑮𝒂𝒎𝒎𝒂 (𝟐 (| 𝒈|
𝜶

+
 

 𝒈
))𝑮

𝒈      

 

5. "sample  |. From a truncated multivariate normal proportional to  

𝑵𝑷((𝑿 Ω− 𝑿 + 𝑻− )− 𝑿 Ω− (𝒛  𝝑𝒗) (𝑿 Ω− 𝑿 + 𝑻− )− )∏  {| 𝒌| >
 

 𝒌
}

𝒑
𝒌  ," 

 ̂  (∑ ∑
 ′ 

𝟐𝝈𝒗 

𝑲
𝒌  

𝒏
   ) and  ̂  𝑩̂ (∑ ∑

(  (𝒛 −𝒃 𝒌
−  

′ −𝝑𝒗 ))

𝟐𝝈𝒗 

𝑲
𝒌  

𝒏
   )  

6. sample𝒃 |.~𝑵(
∑ ∑ (𝒛 −𝒃 𝒌

−  
′ −𝝑𝒗 )

𝑲
𝒌= 

𝒏
 = 

∑  
𝟐𝝈𝒗 

⁄𝒏
 = 

 
 

∑  
𝟐𝝈𝒗 

⁄𝒏
 = 

) 

7. sample 𝝈|. ~ 𝒏𝒗𝒆𝒓𝒔𝒆 𝑮𝒂𝒎𝒎𝒂 (𝒂 
𝟑𝒏

𝟐
 𝒃 +

 

𝟒
∑ ∑  𝒌

𝑲  
𝒏
   (𝒛  𝒃 𝒌

+   
   𝝑𝒗 )

 
𝑽− ∑ ∑  𝑲

𝒌  
𝒏
   (𝒛  

𝒃 𝒌
+   

   𝝑𝒗 )) 

8. sample  𝝀|. ~𝑮𝒂𝒎𝒎𝒂 (𝜸 + 𝟐𝒑 𝒅 + ∑
 

| 𝒈|
𝜶

𝑮
𝒈  ) 

9. sample 𝜹𝒄,  with 𝒄  from 1 to 𝑪   , from a uniform distribution over the interval  

(
𝒎 𝒏 {𝒎 𝒏(𝒛 |   𝒄 +  ) 𝜹𝒄+  𝜹𝑪} 

𝒎𝒂 {𝒎𝒂 (𝒛 |   𝒄)} 𝜹𝒄−  𝜹 
).              

10. Sample 𝒛   𝒇𝒐𝒓   𝒇𝒓𝒐𝒎   𝒕𝒐 𝒏, from truncated normal (TN) distribution  

𝑻𝑵(𝜹𝒄−  𝜹𝒄)
(𝒛 + 𝒃 𝒌

+   
  + 𝝑𝒗 𝟐𝝈𝒗). 

end for  

2.3  "Bayesian Reciprocal  Adaptive Bridge for Ordinal Composite Quantile Regression (BRABOCQReg)" 

To demonstrate ordinal composite quantile regression using the adaptive bridge penalty function with a reciprocal 

parameter, we solve the following equation: 

𝒂𝒓𝒈𝒎 𝒏⏟      
𝒃   

∑ {∑   𝒋
(𝒛  𝒃 𝒌

  ́  )𝑲
𝒌  }𝒏

   + ∑
𝝀𝒈

| 𝒈|
𝜶

𝑮
𝒈   { 𝒈 ≠  }                       (13) 

Where 𝝀𝒈 ≥     g=1,…,G . By utilizing the scale combination described in (11), it is able to create the Gibbs sampler 

for the Bayesian reciprocal adaptive Bridge,  

𝝀𝒈

 
𝜶

𝟐 𝒈
𝟐𝚪(

 

𝜶
+ )

𝒆−𝝀| 𝒈|
−𝜶

 
𝝀𝒈

 
𝜶

𝟐 𝒈
𝟐𝚪(

 

𝜶
+ )

∫ 𝝀𝒈𝒆−𝝀𝒈 𝒈
 

 𝒈>| |−𝜶                             (14) 

Under (10), the hierarchical model for the reciprocal adaptive Bridge is the same as (12) with λ replaced with 𝝀𝒈’s as 

follows : 

 𝒈|𝝀𝒈~𝑮𝒂𝒎𝒎𝒂(𝟐 𝝀𝒈)   

𝝀𝒈~𝝀𝒈
−   

"Algorithm 2. MCMC sampling for the Bayesian reciprocal adaptive Bridge composite quantile regression (SMN)" 
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Input: (z,x ) 

Initialize: (𝒃    𝝈 𝒗   𝝀 𝜶) 

For 𝒕    …  (𝒕𝒎𝒂 + 𝒕𝒃 𝒓𝒏− 𝒏) 𝒅𝒐                                     

1. Sample 𝒗|.~ ∏  𝒏
    𝒏𝒗𝒆𝒓𝒔𝒆 𝑮𝒂 𝒔𝒔 𝒂𝒏(

 

𝟐𝝈
 

 

|𝒛 −𝒃 𝒌
−  

′ |
  

 

𝟐𝝈
) 

2. Sample   |.  ~∏ 𝑬 𝒑𝒐𝒏𝒆𝒏𝒕 𝒂𝒍𝑮
𝒈  (𝝀𝒈) { 𝒈 >

 

| 𝒈|
𝜶} 

3. Sample 𝒍|.~ ∏  𝒏𝒗𝒆𝒓𝒔𝒆  𝑮𝒂 𝒔𝒔 𝒏(
 

𝟐
 √

𝝃𝒌
𝟐

 𝒌
𝟐  𝝃𝒌

𝟐)𝑮
𝒈                                      

4.  Sample𝝃 |. ~ ∏ 𝑮𝒂𝒎𝒎𝒂(𝟐 (| 𝒈|
𝜶

+
 

 𝒈
))𝑮

𝒈      

5. Sample  |. From a truncated multivariate normal proportional to  

𝑵𝑷((𝑿 Ω− 𝑿 + 𝑻− )− 𝑿 Ω− (𝒛  𝝑𝒗) (𝑿 Ω− 𝑿 + 𝑻− )− )∏  {| 𝒌| >
 

 𝒌
}

𝒑
𝒌  , 

 ̂  (∑ ∑
 ′ 

𝟐𝝈𝒗 

𝑲
𝒌  

𝒏
   ) and  ̂  𝑩̂ (∑ ∑

(  (𝒛 −𝒃 𝒌
−  

′ −𝝑𝒗 ))

𝟐𝝈𝒗 

𝑲
𝒌  

𝒏
   )  

6. Sample𝒃 |.~𝑵(
∑ ∑ (𝒛 −𝒃 𝒌

−  
′ −𝝑𝒗 )

𝑲
𝒌= 

𝒏
 = 

∑  
𝟐𝝈𝒗 

⁄𝒏
 = 

 
 

∑  
𝟐𝝈𝒗 

⁄𝒏
 = 

) 

7. Sample 𝝈|. ~ 𝒏𝒗𝒆𝒓𝒔𝒆 𝑮𝒂𝒎𝒎𝒂 (𝒂 
𝟑𝒏

𝟐
 𝒃 +

 

𝟒
∑ ∑  𝒌

𝑲  
𝒏
   (𝒛  𝒃 𝒌

+   
   𝝑𝒗 )

 
𝑽− ∑ ∑  𝑲

𝒌  
𝒏
   (𝒛  𝒃 𝒌

+

  
   𝝑𝒗 )) 

8. Sample  𝝀|. ~𝑮𝒂𝒎𝒎𝒂 (𝜸 + 𝒑 𝒅 +
 

| 𝒈|
𝜶) 

9. Sample 𝜹𝒄,  with 𝒄  from 1 to 𝑪   , from a uniform distribution over the interval 

(
𝒎 𝒏 {𝒎 𝒏(𝒛 |   𝒄 +  ) 𝜹𝒄+  𝜹𝑪} 

𝒎𝒂 {𝒎𝒂 (𝒛 |   𝒄)} 𝜹𝒄−  𝜹 
).             

10. Sample 𝒛   𝒇𝒐𝒓   𝒇𝒓𝒐𝒎   𝒕𝒐 𝒏, from truncated normal (TN) distribution  

𝑻𝑵(𝜹𝒄−  𝜹𝒄)(𝒛 + 𝒃 𝒌
+   

  + 𝝑𝒗 𝟐𝝈𝒗). 

end for  

3 Simulation Studies 
    Here, we conduct simulation simulations to evaluate our method, "Bayesian reciprocal adaptive bridge composite 

quantile regression for ordinal data," or "BrABCQRO," in contrast to other Bayesian and non-Bayesian methods. The 

following methods are compared here: 

 Bayesian QReg for ordinal models 

 Bayesian model selection Ordinal QR . 

    Akaike Information Criterion   AIC  

 Bayesian Information Criterion    BIC 

2 Simulation Studies 

       Our reciprocal adaptive Bridge ordinal composite quantile regression (rABOCQR) technique was tested in three 

simulation simulations. Compare the proposed method to Bayeian ordinal quantile regression (Rahman, 2016) and 

Bayeian model selection in ordinal quantile regression (Alhamzawi, 2016). 

2.1 Simulation 1 

Consider data generated from the ordinal regression model, 

𝒛    
  + 𝜺      …     ,                              (15) 

" where     (     )
 and    (  𝟒) ,  including the intercept.    The variable  x1i is produced using the 

conventional normal distribution. We included eleven noise variables in the model. N10(0, Σx) was used as a model 

independently for these variables, using (Σx)gh = 0.75|g−h|, where gh is the (g, h)th element of Σx. εi ≈ N(0, 1) in this 

simulation investigation. Based on the cut-point vector δ = (0.5, 2, 3.5)J, the outcome of interest y was produced, 

resulting in four categories. There are 150 data produced, with n = 100 observations in each data set. For our 

suggested approach, we use K = 3. We use the median to test alternative approaches. Additionally, rABOCQR's 

performance is contrasted with the AIC (Akaike, 1998) and BIC (Schwarz et al.)" 

Table 1: Comparing average numbers of correct and wrong zeros for different methods in Simulation example 1, 

averaged over 150 replications. The standard deviations are listed in parentheses. 
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1978). Here, AIC and BIC are respectively given by 

AIC = 2k − 2 ln(L), 

and 

BIC = k ln(n) − 2 ln(L), 

     where L is the subset-specific maximum of the likelihood function. The models with the smallest AIC or BIC are 

favoured when multiple options are provided. Based on a sample of 150 synthetic data sets, Table 1 compares the 

proportion of correct to incorrect zero regression parameters for the best model. The average number of right and 

wrong zeros shows that the proposed strategy performs quite well. 

2.2 Simulation 2 

This Simulation example is similar to Simulation 1 except that we set 

𝒛    
  + 𝜺      …     ,                           (16) 

where    (       𝟐   𝟑 )
  and  (  𝟒 𝟐  𝟐) , including the  intercept.The normal distribution standard is used 

to create the variables x1i, x2i, and x3i. We included eleven noise variables in the model. The independent simulation 

of these variables was done using N10(0, Σx) and (Σx)gh = 0.75|g−h|, where gh is the (g, h)th element of Σx. Based on 

150 created datasets, the number of true and false zero regression coefficients is compared in Table 2. Once more, the 

outcomes demonstrate how well the suggested strategy performs in terms of the average numbers of accurate and 

incorrect zeros.  

Table 2: In Simulation Example 2, compare the average numbers of genuine zeros and false zeros for various 

approaches, averaged across 150 replications. The parenthesis include a list of the standard deviations. 

 
4    A real data example 

      "Work of the rABOCQR method is shown here. The national research (NLSY79) gave it BOQR and BMOQR on 

academic accomplishment, as modelled by Alhamzawi (2016) and Rahman (2016). Over 12,000 youth were 

interviewed annually by the NLSY on demographic topics starting in 1979. This dataset was subsampled by 

Alhamzawi (2016). This subsample has 11 independent factors and one dependent variable, education. The square root 

of family income (x1), mother's education (x2), father's education (x3), mother's working position (x4), gender (x5), 

race (x6), and whether the youngster resided in an urban area (x7) or the South at 14 (x8) are regressors To account for 

age cohort effects, three dummy variables are used to reflect an individual's 1979 age (age cohort 2 (x9), 3 (x10), and 

4 (x11)). Interest outcomes include four categories: (1) less than high school, (2) high school, (3) some college, and (4) 

graduate degree (Jeliazkov et al., 2008). The outcome variable categories have 897, 1392, 876, and 758 observations, 

respectively. As in simulation research, we choose K = 3 and compare it with different media techniques. The results 

are in Table 3. The DIC-based model selection study found rABOCQR, BOQR, and BMOQR to be 9337.19, 9781.02, 

and 9568.31. These data show that the recommended strategy works well. Thus, simulations and real data analysis 

support the proposed approach." 



QJAE,  Volume 25, Issue 4 (2023)                                                                           

274  

Table 3: estimates for the model parameters used in the application for educational achievement. 

 
 

To address the need for concurrent estimation and variable selection in ordinal models, we present the Bayesian 

reciprocal adaptive bridge composite quantile regression. This approach yields a sparse solution and takes advantage 

of the computational benefits of the reciprocal bridge.  To draw samples from the whole conditional posterior 

distributions, a novel Gibbs sampling procedure is developed. Extensive illustrative examples from both simulation 

and real data show that the proposed methods routinely outperform the state-of-the-art alternatives. 
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