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 In this research paper, n jobs have to be scheduled on one-machine to minimize the sum of 

maximum earliness and maximum tardiness. We solved a series of bi-criteria scheduling 

problems that related to minimize the sum of the maximum earliness and tardiness. Three 

new algorithms were presented, two for hierarchical objective and one for the 

simultaneous objective. Using the results of these algorithms, we minimize the sum of 

maximum earliness and maximum tardiness. This objective considered as one of the NP-

hard problem, and it is also irregular, so this objective missed some helpful properties of 

regularity. The proposed algorithms had simple structures, and simple to implement. 

Lastly, they tested for different n.  

Keywords: Scheduling problems, 

Multi-objective function, 
Hierarchical objective, 

Simultaneous objective 

Correspondence: 
Hawzain.A.Salh 
hawzhin.math@gmail.com  
   

DOI: 10.33899/IQJOSS.2022.176202 , ©Authors, 2022, College of Computer  Science and Mathematics, University of Mosul , Mosul, Iraq. 

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction 

Scheduling (sequencing) in the theoretical and practical is an important area of operational research. Since most of the 

scheduling problems have large sizes, it is necessary to find a desirable algorithm for these problems (Werner et al., 

2018). Many researchers considered single objective function, where in the practical the decision maker has to choose 

only a single objective from many objectives (T'kindt and Billaut, 2002). Recently, multi-criteria scheduling problems 

have increased. In general, two structures are existed hierarchical minimization and the simultaneous minimization 

(Hoogeveen, 1992). In the hierarchical the objectives are not in same important, where in the simultaneous the objectives 

have the same important.  

In this paper, scheduling n  jobs on single machine are considered without interruption. Each job has positive processing 

time and due-date. The objective function to be is the sum of maximum earliness and maximum tardiness which first is 

introduced by Amin-Nayeri and Moslehi (Nayeri and Moslehi, 2000). The two criteria were considered by many authors; 

here we introduce some recent works that related to them. Each criterion has been studied in different environments 

individually or composite by many authors. (Jawad et al., 2020) introduced some heuristic approaches to the total 

completion time and the total earliness. Also, (Ali and Jawad, 2020) used local search methods for the total completion 

time and the total earliness. (Cheachan and Kadhim, 2021) applied a branch and bound technique to the problem of the 

total completion time and the maximum earliness where the due dates are triangular fuzzy numbers. (Baker, 2014) 

addressed the stochastic scheduling problem to minimize total expected earliness and tardiness costs. (Chachan and 

Hameed, 2019) used branch and bound method to solve four criteria, completion time, the tardiness, the earliness, and the 

late work.  With unequal release date (Aneed, 2013) found the optimal solution by branch and bound method of the sum 

of completion times, maximum earliness and maximum tardiness.  
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Here, a new algorithm was presented to minimize the sum of maximum earliness and maximum tardiness1/ / ( Emax +
Tmax ). A new algorithm is presented which depends on an optimal solution of some related problems as shown in Figure 

(1). First we solved problem (1) and showed that this solution was the first efficient solution for the problem (3).  Also by 

solving problem (2) we obtained the last efficient solution for the problem (3).  The next step was finding all the efficient 

solutions for problem (3), and then found the sum of each efficient solution obtained the optimal solution of problem (4). 

2.  Notations and Definitions 

In this section the following notations are used 

N = the set {1, 2, 3,…, n}. 

 = the set of permutation schedules. 

 = a permutation schedule. 

pj = processing time for job j.  

dj = due date for job j. 

Cj = completion time for job j. 

Ej  = Max {dj – Cj , 0}; the earliness of job j.  

Emax = Max {Ej}; the maximum earliness.  

Ti = Max {Cj – dj, 0}; the tardiness of job j.  

Tmax = Max {Tj}; the maximum tardiness.  

MST: (minimum slack times) jobs are sequenced in non-decreasing order of minimum slack times sj, where sj = dj - pj. 

SPT: (shortest processing time) they are in non-decreasing order of pj. 

EDD- rule: (Early due date) they are sequenced in non-decreasing order of dj. 

 

Definition (1) (Jouni, 2000): Consider a problem P , a schedule  (where  is the set of all schedules) is said to be 

feasible, if it satisfies the constraints of P. 

 

Definition (2) (Aneed, 2013): A feasible schedule π∗ is efficient, with respect to the criteria ( f and g ) if there is no any 

feasible schedule π such that   f(π)≤ f(π∗)  and   g(π)≤ g(π∗), and at least one of the inequalities is strict. 

3. Mathematical Formulations 

Here, some problems are considered which constructed by two objectives as shown in the Figure (1). 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): Sub-problems 

 

 The problem can be stated as: n jobs are available for processing at time 0, and their parameters are known in advance. 

The key parameters in the model include the processing time for job j (pj) and the due date (dj). In the actual schedule, job 

j completes at time Cj ( Baker, 2014). The two objectives under consideration are the maximum tardiness and maximum 

earliness. For a sequence  of the jobs, earliness E(j), and the tardiness T(j)  are given by: 

C(1)= p(1), 

C(j)= C(j-1)+ p(j),                                            j= 2, 3, ..., n, 

E(j)= max{d(j)- C(j), 0},                      j= 1, 2, ..., n, 

T(j)= max{C(j)- d(j), 0},                      j= 1, 2, ..., n. 

 

So the mathematical form of this problem can be formulated as: 

 

 Z = min{Emax(π) + Tmax(π)} 

s. t. 
Eπ(j) ≥ 0,                                       j = 1, 2, … , n.                 

𝑇𝑚𝑎𝑥 

s.t.  
𝐸𝑚𝑎𝑥 
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Tπ(j) ≥ 0,                                       j = 1, 2, … , n.        ... (P) 

Eπ(j) ≥ dπ(j) −  Cπ(j),                    j = 1, 2, … , n. 

Tπ(j) ≥ Cπ(j) −  dπ(j),                    j = 1, 2, … , n. 

 

 

 

 

4. Combine Conflicting Criteria   

To solve problem (P), two structures are available to combine conflicting criteria, namely hierarchical and simultaneous 

(Hoogeveen, 1992). For the hierarchical case, the criteria are ranked according to their importance, where for the 

simultaneous case the criteria have the same importance (Hoogeveen and Velde, 1996).   

 

4.1. Problems (1) and (2) 

The problem (1) and (2) can be written as: 

1/ / Lex (Tmax, Emax) and 1/ / Lex (Emax, Tmax) respectively and they are not solved yet.  The optimal schedules of  Emax 

and  Tmax are given by MST-rule and EDD-rule respectively (Abdul-Razaq and Mohammed, 2016), but there are no any 

direct method to solve the composition of them. So, we will present two new algorithms. 

  

An Algorithm (1) 

Algorithm (1) for problem (1) is a modification of Smith’s algorithm (Smith, 1956), and Lawler’s algorithm (Lawler, 

1973).   

Step (1): Set    R= pj, N= {1, 2, ..., n}, k = n,  j = 1, 2, ..., n. 

Step (2): Find a job j* such that   R- dj* ≤ Tmax (EDD). If there exist a tie, order these jobs by MST rule. Assign job 

j* in position k . 

Step (3): Set R = R - pj, N = N - {j*}, k = k-1. If k = 0, stop. Else, go to step (2). 

          

Proposition (1): Algorithm (1) gives optimal schedule for problem (1). 

Proof:  The job j* in step (2) of algorithm (1) satisfies the condition Tj* ≤ Tmax (EDD). Also, if there exists a tie, then 

choose the job j* with largest sj*. Hence the constructed schedule gives optimal for problem (1).∎ 

 

An Algorithm (2) 

Algorithm (2) for problem (2) is a modification of the algorithm of Hoogeveen and Van de Velde (Hoogeveen and Velde, 

1990). 

Step (1): Find Emax (MST) = E*. 

Step (2): k = 1, rj = max {sj–E*, 0} j N, σ = (φ), σ be the schedule jobs. 

Step (3): Find a job j*N with minimum rj such that rj* ≤ Ck-1 (if a tie exists, choose the 

job j* with smallest dj*. 

Step (4): N=N-{j*}, σ = (σ, σ (k)). If N= φ go to step (5), Else k=k+1, go to step (3). 

Step (5): stop. 

 

Proposition (2): Algorithm (2) gives optimal schedule for problem (2). 

Proof: The job j* in step (3) of algorithm (2) satisfies the condition Ej* ≤ Emax (MST). Also, if there exists a tie, then 

choose the job j* with smallest dj*. Hence the constructed schedule gives optimal for problem (2).∎ 

4.2. Problems (3)  

This problem is a simultaneous case, and it can be written as follows: 1/ / F (Emax, Tmax), 

i.e., minimize a function F of two criteria with the same important. So, the optimal solution doesn’t make sense, because 

there exists no such solution that minimizes both criteria simultaneously. Here, we will present a new algorithm to find all 

the efficient solutions. MST-rule doesn’t give efficient solution for the problem (3) (Kawi and Abdul-Razaq, 2017) 

because there exists   such that Emax () = Emax (MST) and  Tmax ()  Tmax (MST) as illustrate in the following 

example 

 

Example (1):  Consider 4- jobs problem 

i 1 2 3 4 
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MST- sequence (4, 1, 2, 3) gives Emax = 11, Tmax = 12, where the sequence (4, 3, 2, 1) gives Emax = 11, Tmax = 19. 

Therefore, the sequence (4, 3, 2, 1) dominates the sequence is (4, 1, 2, 3). To find such  (say *), it is exactly the optimal 

solution of problem (2). 

 

Proposition (3): * is the first efficient solution of problem (3). 

Proof: Since Emax (*) = Emax (MST) from algorithm (2), and if a tie exist during the algorithm, choose the job j* with 

smallest dj*. So * is efficient solution for problem (3). 

 

An Algorithm (3) 

This algorithm finds all the efficient solutions of the problem (3) which depends on the known algorithm (Van 

Wassenhove and Gelders, 1980). 

 

Step (1): Find    by using algorithm (2).  is the first efficient solution of problem (3), 

 = Tmax ()-1. 

Step (2): Set R= pj, N= {1, 2, ..., n}, k = n,  j = 1, 2, ..., n. 

Step (3): Find a job j* such that   R- dj* ≤ . If there exist a tie, order these jobs by MST rule. Assign job j* in 

position k. 

Step (4): Set R = R - pj*, N = N - {j*}, k = k-1. If k = 0, * is a solution, go to step (5). 

Else, go to step (3).         

Step (5):   = Tmax (*)-1, go to step (2). 

Note that the algorithm stops whenever Tmax reached Tmax (EDD). This gives the following proposition. 

Proposition (4): The solution of problem (1) is the last efficient solution of problem (3). 

Proof:  Let  be the optimal solution of problem (1), i.e., Tmax () = Tmax (EDD). To prove that  is efficient for 

problem (3). For , Tmax () = Tmax (EDD)  Tmax (*)  * . Also, gives minimum Emax ().∎ 

 

4.3. Optimal Schedule for Problem (4) 

After characterized all the efficient solution for problem (3). Now it is clear that one of the sum of the efficient solutions 

is optimal schedule for problem (4). To illustrate the algorithms consider again the example (1) 

 

j 1 2 3 4 

pj 1 5 12 19 

dj 18 21 25 30 

 

Using algorithm (2) to solve problem (2), we have Emax (MST) = 11, and  s1= 17, s2 = 16, s3= 13, and s4 = 11; r1= 17, r2 = 

16, r3= 13, and r4 = 11. From rj (j=1, 2, 3, 4), choose r4 and assign it in position 1, then job 1, 2, 3. So, get the schedule (4, 

1, 2, 3) with Emax= 11 and Tmax = 12. This solution is the first efficient solution for the problem (3). Using algorithm (1) to 

solve problem (1), we have R= pj= 37, N= {1, 2, 3, 4}, k = 4, j = 1, 2, 3, 4, Tmax (EDD) = 7. Find that job 4 satisfies the 

condition, so assign job 4 in position 4, R= 37- p4= 18. Continue to choose jobs 1, 2, 3. So the sequence (3, 2, 1, 4) is 

optimal with Emax= 13 and Tmax = 7. It is also the last efficient solution for problem (3). 

To find the efficient solutions for the problem (3), use algorithm (3) stating with the schedule (4, 1, 2, 3) with Emax= 11 

and Tmax = 12.   = 12-1=11. Job 4 satisfies the condition, R=37-19=18. Continue with ordering the jobs according to 

MST-rule if there exist a tie. We get the schedule (3, 2, 1, 4) with Emax= 13 and Tmax = 7. Optimal solution for problem (4) 

is one of the efficient solutions namely (3, 2, 1, 4) with value 20. 

5. Computational Results 

Here, the results are introduced via computational tests to show the ability of the proposed algorithm. The problems were 

generated as follows:  pj are generated from the uniform distribution [1, 10]. Also, dj is generated from the uniform 

distribution [0, ∑ pj
n
j=1 ]. The algorithm was coding by Matlab 8.1 (R2013a) and implemented on Intel (R) Pentium (R) 

CPU 2117U@ 1.80 GHZ, with RAM 4.00 GB personal computer. 

pi 1 5 12 19 

di 18 21 25 30 
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6. Conclusion 

In this paper, three algorithms were presented to find optimal schedule for the problem of minimizing the sum of 

maximum earliness and maximum tardiness during solving some problems related to these objectives Emax and Tmax. This 

objective is an NP-hard and it is irregular, so some properties of regular objective are missed. Therefore, we can conclude 

that this objective is difficult to solve, especially in the case where the range between Tmax (MST) and Tmax (EDD) is large 

or between Emax (MST) and Emax (EDD). The proposed algorithms were easy to run and had a simple structure. To 

evaluate the ability of the algorithm, it was tested on some examples with different n.  
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 مناهج إرشادية لحل مشاكل جدولة آلة مفردة ثنائية الهدف
 

 

 هاوزين احمد صالح   و   اياد محمد رمضان
 

 السليمانية، السليمانية، العراق قسم الرياضيات، كلية العلوم ، جامعة  
 

من الوظائف على آلة واحدة لتقليل مجموع الحد الأقصى من التبكير والتأخير الأقصى. لقد حللنا سلسلة    nفي ورقة البحث هذه ، يجب جدولة عدد  الخلاصة:  
، اثن الحد الأقصى من التبكير والتأخير. تم تقديم ثلاث خوارزميات جديدة  الجدولة ثنائية المعايير التي تتعلق بتقليل مجموع  تان للهدف الهرمي من مشاكل 

 NP-hardمشكلات    وواحدة للهدف المتزامن. باستخدام نتائج هذه الخوارزميات ، نقوم بتقليل مجموع التبكير الأقصى والتأخير الأقصى. يعتبر هذا الهدف أحد
نفيذ. أخيرًا ،  ، وهو أيضًا غير منتظم ، لذلك فقد هذا الهدف بعض الخصائص المفيدة للانتظام. تحتوي الخوارزميات المقترحة على هياكل بسيطة وسهلة الت

 مختلفة. nقاموا باختبار 
 جدولة المشكلات ، الوظيفة متعددة الأهداف ، الهدف الهرمي ، الهدف المتزامن  : الكلمات المفتاحية

 
 


