Synthesis of new poly diimides from reaction of poly acryloyl chloride and diamides.

Entesar O.Al-tamimi *

Luma S.Ahamed **

Date of acceptance 26/3 / 2009

Abstract:

Five N-substituted poly diimides were prepared by two steps. First step was included the preparation of five N-substituted diamides by reaction of adipoyl chloride with different amines .The second step was involved reaction of diamides with poly acryloyl chloride to obtain five new poly diimides having different physical properties which may used in different applications.

Key words: diamides, polydiimides, polyacryloylchloride, adipoylchloride.

Introduction:-

Polyimides are very interesting groups of incredibly strong astoundingly heat and chemical resistant and other properties polymers. Their strength, heat and chemical resistance are so great that these materials often replace glass and metals, such as steel, in many demanding application. industrial Polymers are even used in many everyday applications.

Polyimides are step or condensation polymers derived from both aliphatic or aromatic dianhydries and diamines or their derivatives, and contain a hetero cyclicimide linkage in the repeating units.

Polyimides are often based on stiff aromatic backbones. The chemistry of polyimides is in itself a vast area with a large variety of monomers available to synthesis .However, there has been considerable debate on be various reaction mechanisms involved in different synthesis methods.

The properties of polyimides can be dramatically altered by minor variation in the structure. The subtle variations in the structures of the dianhydride and diamine components have a tremendous effect on the properties of the final polyimide[1-3].

The most widely practical procedure in polyimide synthesis is the two-step poly (amic acid) process. It involves reaction of dianhydride and a diamine at ambient conditions in a dipolar aprotic solvent vield to the corresponding poly (amic acid), which is then cyclized into the final polyimide of significant commercial importance such as kapton[4-6].

Other synthetic routes to polyimide were from diester-acids and diamine[7-9]. Another synthetic routes were from dianhydrides and diisocyanates

This research includes preparing of some N-substituted polydimides through the reaction of acid chloride with amines to yield amides, then the prepared amide was reacted with poly acid chloride (poly acryloyl chloride), as shown in scheme -1-

Materials and Methods:

 Melting points were recorded by using Gallen Kamp MFB-600 capillary melting point apparatus.
 Infrared spectra were recorded on (FT-IR) infrared spectrophotometer as KBr disc in Baghdad University, College of Science, Chemistry Department.

^{*}Prof. assistant, department of chemistry, college of science, university of Baghdad .

^{**}Teaching assistant, department of chemistry, college of science, university of Baghdad .

1-preparation of diamides (1-5) [10,11].

(0.1mol) of adipoyl chloride was diluted with 15ml of pure THF, and a solution of 0.2mol of pure amine in 15 -20ml of the same solvent was added until the odor of the acid chloride has disappeared; excess of the amine was not harmful. The mixture was Shaked with excess of dilute HCl to remove amine and its salts. The ethereal layer was washed with 5-10ml of water, and the solvent was evaporated. The amide was recrystallized from dilute ethanol.

2-preparation of poly [diacryl adip di N-substituted diimide] (6-10)[12].

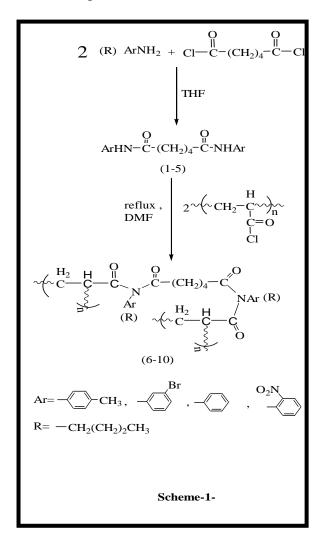
A mixture of poly (acryloyl diamide chloride) (0.2 mol)and (0.1mol) in dimethyl formamide (DMF) 25ml was refluxed for (8-10)hrs. After cooling the excess of solvent was removed under vacuum and the solid separated was filtered and purified by dissolving in suitable solvent (DMF. DMSO) and reprecipitating from another solvent such as (water, ethanol, acetone). Conversion of yielded polymers were (50-82 %)

Results and discussion

Synthesis of some new poly Nsubstituted diimides were achieved from reaction of diamides and poly (acryloyl chloride).scheme-1-

Diamides were prepared through the reaction of adipoyl chloride with two moles of different amines in the same solvent.

Structures of diamides (1-5) were confirmed by physical properties which are listed in table (1).


FTIR spectra showed the absorptions at region (3301-3247)cm⁻¹ due to v (N-H) group, (1697-1643)cm⁻¹ for V(C=O) amide ,(1595-1496)cm⁻¹ due to v(C=C) aromatic, (3100-3031) cm⁻¹ for v(C-H)aromatic ,(1414-1334) cm⁻¹ for v(C-N),(2950-2860) cm⁻¹ due

to v(C-H)aliphatic and absorption of 1427 cm⁻¹ due to nitro group (NO₂).All these regions are listed in table(5).

The second step included the reaction of prepared diamide with two mole of poly (acryloyl chloride) in DMF (dimethyl formamide) at reflux temperature in (6-12)hrs.to produce polydiimid.

The structures of (6-10) were confirmed by physical properties which are listed in table (2).

FTIR spectra of compounds (6-10) showed disappearance of absorption band of -NH group at (3301-3247) cm⁻¹ which confirmed conversion to N-substituted imide group, and absorption at (1712-1643) cm⁻¹ due to v(C=O) imide, these and other absorptions are listed in table (6).

Table (1):Phylical properties of the prepared N-sub.diamides							
Comp. No.	Compound Structure	m.p C ⁰	Yield %	Color			
1	$H_{3}C \xrightarrow{O} H_{3}C \xrightarrow{O} H_{3}C \xrightarrow{O} H_{3}C \xrightarrow{O} H_{3}C \xrightarrow{O} H_{3}C \xrightarrow{H} H_{3$	230	85	white			
2	$\begin{array}{c c} Br & O & O \\ & & \\ & & \\ & \\ & \\ & \\ & \\ &$	110-115	58	gray			
3	$ \underbrace{ \begin{array}{c} O & O \\ \parallel \\ -NH-C-(CH_2)_4-C-HN- \end{array} }_{Adip-di anilide} $	220	61	gray			
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	169-173	52	Yellow			
5	$CH_{3}(CH_{2})_{2}CH_{2}-NH \xrightarrow{C-(CH_{2})_{4}-C} NH-CH_{2}(CH_{2})_{2}CH_{3}$ Adip-di <i>n</i> - butyl amide	150-152	87	white			

Table ((1).Phyiscal	properties	of the 1	nrenared	N-sub.diamides
I able (1).1 II y 150ai	properties	or the	proparcu	iv-sub.ulainuucs

Comp	Table (2):Physical properties of the pi	_	POLY IN-	Sub.ummu		
Comp No.	polymer Structure	Time reac. hrs.	Conv. %	Color	s.p.	m.p.
6	$\begin{array}{c} CH_{3} & CH_{3} \\ \downarrow & 0 \\ N - C^{-}(CH_{2})_{4} \cdot C - N \\ \downarrow & CH_{2} - CH \\ r & CH_{2} - CH \\ r & CH_{2} - CH \\ poly[di acryl adip di-{N-(p-tolyl)}]diimide \end{array}$	6	80	white	160-175	>300
7	$Br \qquad O \qquad O \qquad Fr \qquad Br \qquad O \qquad Fr \qquad Br \qquad O \qquad Fr \qquad Br \qquad Fr \qquad Fr \qquad Fr \qquad Fr \qquad Fr \qquad Fr$	12	60	gray	180-190	>300
8	$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & $	8	63	gray	110-122	>300
9	$\begin{array}{c} O_{2}N & 0 & O \\ O_{2}N & U & U \\ O = C & C \\ O = C \\ C = O \\ C = O \\ C = O \\ C = O \\ O = C \\ O$	12	50	Yellow	220-230	>300
10	$CH_{3}(CH_{2})_{2}CH_{2}$ $O = C$ $C^{-}(CH_{2})_{4} = C$ $CH_{2}(CH_{2})_{2}CH_{3}$ $C = O$ $CH_{2} = CH$	8	82	white	200-210	>300

Table (2):Phyisca	l properties	of the prepared	poly N-sub.diimides.
-------------------	--------------	-----------------	----------------------

Conv. = conversion S.P = softening point m.p = melting point

	Table (3): Solubility of the prepared it subs. dialinde									
Comp. .No.	Ethanol	Benzene	CCL4	Acetone	Toluene	DMSO	THF	CHCl ₃	DMF	Cyclohexane
1	V.S	V.S	P.S	S.	Ins.	V.S	S.	Ins.	V.S	Ins.
2	V.S	V.S	Ins.	V.S	P.S	V.S	V.S	S.	V.S	Ins.
3	S.	S.	Ins.	S.	Ins.	V.S	V.S	Ins.	V.S	Ins.
4	V.S	V.S	P.S	V.S	S.	V.S	V.S	V.S	V.S	Ins.
5	V.S	V.S	Ins.	V.S	P.S	V.S	V.S	V.S	V.S	S.

Table (3): Solubility of the prepared N-subs. diamide

Table (4): Solubility of the prepared poly N-subs. diimides

Comp. No	ethanol	Benzene	CCL4	Acetone	toluene	DMSO	THF	CHCl ₃	DMF	cyclohexane
6	swell	Ins.	Ins.	Ins.	Ins.	swell	Ins.	Ins.	S.	Ins.
7	swell	Ins.	Ins.	Ins.	Ins.	swell	Ins.	Ins.	S.	Ins.
8	swell	Ins.	Ins.	Ins.	Ins.	swell	Ins.	Ins.	P.S	Ins.
9	swell	Ins.	Ins.	Ins.	Ins.	S.	Ins.	Ins.	swell	Ins.
10	swell	swell	Ins.	swell	Ins.	S.	Ins.	swell	swell	Ins.

Subs. = substituted v.s = very soluble p.s = partially soluble Ins. = insoluble DMSO= dimethyl sulfoxide THF = tatrahydrofuran DMF= dimethyl formamide

	$1 \text{ abit } (5) \cdot 1 \cdot 1 \cdot 1 absoir priori$	s (cm	ii) of the prepared is-subs.utainfues.					
Comp.No.	Comp.Structure	υ N-H	υ C=O Amide	υ C=C Aromatic	υ C-H Aromatic	υ C-H Aliphatic	vC-N	Other band
1	$\begin{array}{c} O \\ H_3C - \swarrow - NH - \ddot{C} - (CH_2)_4 \ddot{C} - HN - \swarrow - CH_3 \\ A dip-di-p-toluidide \end{array}$	3301	1658	1595 1519	3050	2923- 2860	1380	
2	$\begin{array}{c} Br & O & O \\ H & H \\ \hline \\ -NH - C - (CH_2)_4 - C - HN - \\ \hline \\ Adip-di m-bromo anilide \end{array} Br$	3260	1659	1589 1527	3031	2947- 2860	1411	
3	$ \begin{array}{c} O & O \\ \parallel \\ - NH - C - (CH_2)_4 - C - HN - \end{array} $ Adip-di anilide	3247	1658	1596 1550	3070	2939- 2869	1338	
4	$\begin{array}{c} NO_2 & O & O & O_2N\\ & & & \\ & & \\ & & \\ & & \\ & \\ Adip-di \ o \ nitro \ anilide \end{array}$	3310	1697	1581 1496	3100	2950 2860	1334	υ C-NO2 1427
5	$\begin{array}{c} CH_3(CH_2)_2CH_2 & \bigcap_{II}^{O} & \bigcap_{II}^{O} \\ N & C^-(CH_2)_4 - C & N \\ H & H \\ A dip-di \ n \ butyl \ amide \end{array}$	3301	1643	-	3100	2945 2869	1350	

Table (5) :FT-IR absorptions (cm⁻¹) of the prepared N-subs.diamides.

Table (6): FTIR absorptions (cm⁻¹) of the prepared N-subs.poly diimides.

Comp. No.	Comp.Structure	υ C=O Amide	υ C=C Aromatic	υ C-H Aromatic	υ C-H Aliphatic	υC-N	Other band
6	$\begin{array}{c} CH_3 & CH_3 \\ O & O \\ O = C \\ \uparrow \\ & \uparrow \\ & \uparrow \\ & \uparrow \\ & CH_2 \\ & \downarrow \\ & \uparrow \\ & CH_2 \\ & \downarrow \\ & \uparrow \\ & \uparrow \\ & CH_2 \\ & -CH \\ & \uparrow \\ & \uparrow \\ & CH_2 \\ & -CH \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & \uparrow \\ & CH_2 \\ & -CH \\ & \downarrow $	1695	1596 1519	3039	2947 2869	1373	
7	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	1697	1635 1495	3080	2940 2856	1404	
8	$ \xrightarrow{O=C} \xrightarrow{N-C^{-}(CH_{2})_{4}-C-N}_{n^{-}CH_{2}-CH} \xrightarrow{C=O} \xrightarrow{C} \xrightarrow{C=O} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} C$	1667	1596 1550	3070	2947 2880	1388	
9	$\begin{array}{c} O & O \\ O_2N & H \\ O & H \\ O & H \\ O & H \\ O & CH_2 - CH \\ m \\ O & CH_2 - CH \\ $	1712	1580 1520	3010	2954	1411	υ C-NO2 1450
10	$\begin{array}{c} CH_3(CH_2)_2CH_2 \\ & & $	1643	-	-	2952 2931	1373	

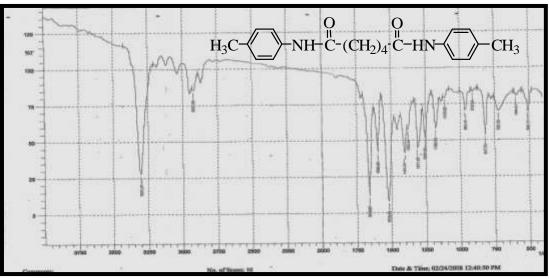


Fig. (1): FTIR spectrum of compound (1)

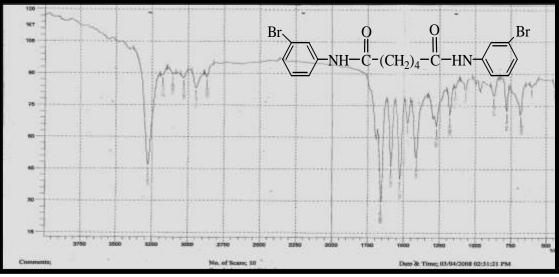


Fig. (2): FTIR spectrum of compound (2)

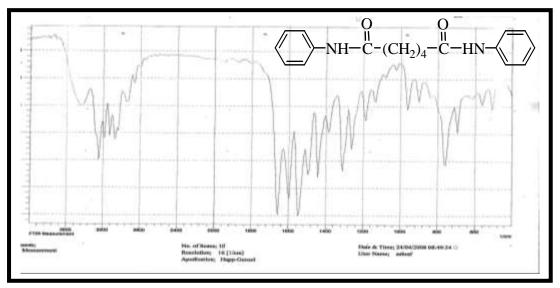


Fig. (3): FTIR spectrum of compound (3)

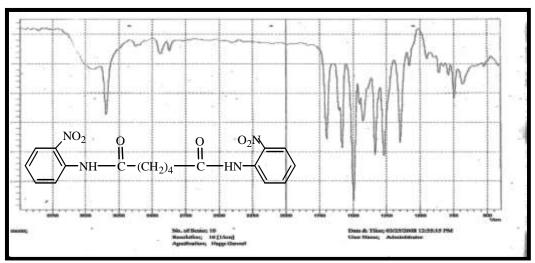


Fig. (4): FTIR spectrum of compound (4)

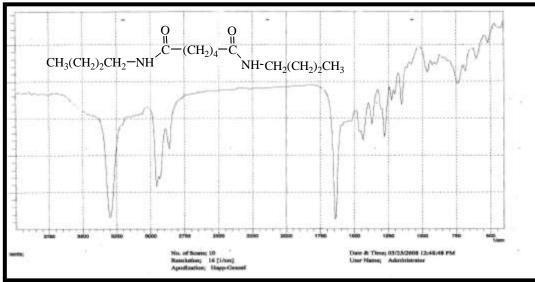


Fig.(5):FTIR spectrum of compound (5)

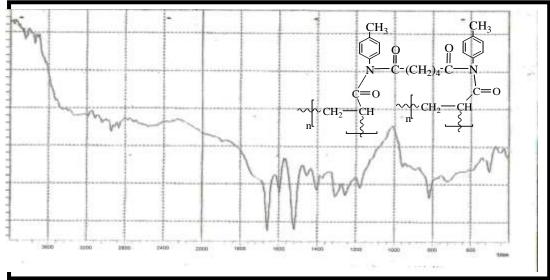
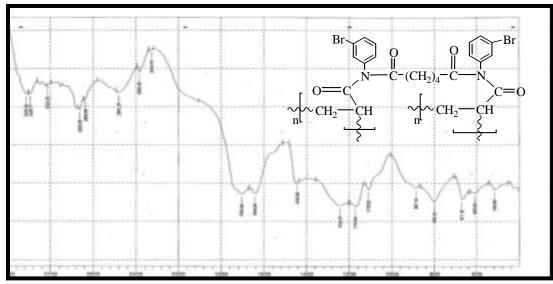
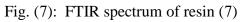




Fig. (6): FTIR spectrum of resin (6)

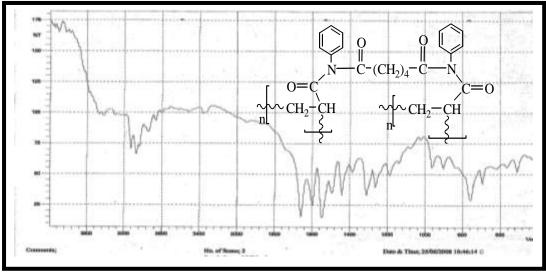
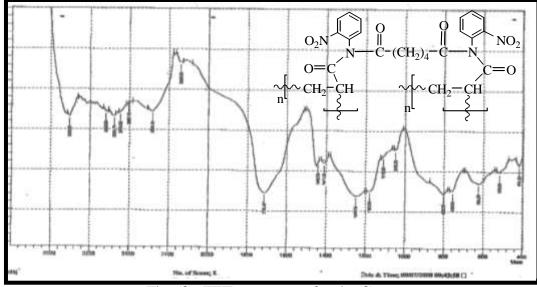
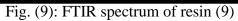




Fig. (8): FTIR spectrum of resin (8)

References

- 1. Takayuki,M.,Kiyomi,T.and Hisakazu N.2002.Preparation of polyimide–polyamide random copolymer thin film by sequential vapor deposition polymerization,Japanese Journal of Applied Physics. 41:746-748
- 2. Fryd, M.1984. " polyimides: synthesis, characterization and properties", vol. 1, Ed. Mittal K.L., Plenum New York, p377.
- **3.** Alazzawi ,A.M.and Ali, M. S.2006.Synthesis of novel Nsubstituted phthalimidyl esters and their applications as plasticizers for PVC.Journal of Um-salama for science. 3(4):677.
- 4. Takekoshi,T. 1996. "polyimides-Fundamentals and Applications" chapter 2 Edts. Ghosh, M.k. and Mittal, K.L. Marcel, New York.:216-226
- Bessonov, M.I., Koton, M. M., kudryartsev, V.V. and Laius, L. A. 1987. In "polyimides:Thermally stable polymers"2ndEd., PLeum, New York: 319-334
- 6. Alazzawi,A.M.and Ali, M.S.2007. Modification of phthalimidyl phenol- formaldehyde resins via

esterification. Journal of Al-Nahrain university .10(1):38.

- Alazzawi,A.M.and Ali, M.S.2008.Synthesis and curing of novel phenol –formaldehyde resins containing pendant cirtaconimides .Journal of Al-Nahrain university.11(3) :15.
- Liaw D.-J.; Liaw B.-Y.and Chen Y.-S. 1999 .Synthesis and properties of new soluble poly (amide-imide)s from 3,3',5,5'-tetramethyl-2,2-bis[4-(4trimellitimidophenoxy) phenyl] propane with various diamines .Polymer. 40(14): 4041-4047.
- **9.** Xiu, L. Z., XiGao, J., Lian,Z.C. 2002. Synthesis of methylsubstituted phthalazinone-based aromatic poly (amide imides)s. Chinese chemical letters. 13(9):824-825.
- John Wiley and Sons, Inc 1963. J. Rab,"organic synthesis" Volume (V), P.478.
- **11.** Vogel, A.I. 1974. "Atext book of practical organic chemistry "3^{td} Ed. Iongman group limited London,pp.361.
- Al-Tamimi, E.O. and AL.Biaty, S.J. 2006. "Synthesis of Poly (N-Substituted imine) Acryl Amides Derivatives". (NJC) National Journal of Chemistry, 21:40-52.

تحضير بولي ثنائي ايمايدات جديدة من تفاعل بولي كلوريد الاكريلويل مع مركبات ثنائي اميد

لمى سامى احمد **

انتصار عبيد التميمي*

* كلية العلوم/ قسم الكيمياء/جامعة بغداد **كلية العلوم/ قسم الكيمياء /جامعة بغداد

الخلاصة :-

تم تحضير خمس بوليمرات جديدة من نوع ثنائي الايمايد وتضمن هذا التحضير خطوتين ، الخطوة الاولى تحضير خمس مركبات من نوع ثنائي الامايدات من تفاعل كلوريد الاديبويل مع امينات مختلفة .اما الخطوة الأانية فتضمنت مفاعلة ثنائي الامايد مع بوليمر كلوريد الاكريلويل ليعطي بوليمرات من نوع ثنائي الاميدات ذات مواصفات فيزيائية جديدة ممايسمح باستخدامها في تطبيقات مختلفة.