
Iraqi Journal of Statistical Sciences (25) 2013
The 6th Scientific Conference of the College of Computer Sciences & Mathematics

pp [118-132]

]118[

Conjugate Gradient Algorithm Based on Meyer Method for
Training Artificial Neural Networks

Dr. Khalil K. Abbo*                                 Dr.Hind H. Mohammed**

Abstract
The difference between the desired output and the actual output of

an multi-layers feed forward neural network produces an error value can
be expressed it as a function of the network weights. Therefore training
the network becomes an optimization problem to minimize the error
function.

This search suggests a new formula for computing learning rate
based on Meyers formula to modify conjugate gradient algorithm (MCG)
for training the FFNN. Typically this method accelerate the method of
Fletcher–Reeves (FRCG) and Polak–Ribere (PRCG) when using it to
solve three different types problems well known in the artificial neural
network (namely, XOR problem, function approximation, and the
Monk1 problem ) with 100 simulations.
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1. Introduction
Learning systems, such as multilayer feed forward neural networks

(MLFFNN) are parallel computational models comprised of densely
interconnected, adaptive processing units, characterized by an inherent
propensity for learning from experience and also discovering new
knowledge. Due to their excellent capability of self-learning and self-
adapting, they have been successfully applied in many areas of artificial
intelligence [Bishop (1995), Haykin (1994), Hmich, etal (2011),
Takeuchi, etal.(2003) and Wu, etal.(1995)] and are often found to be
more efficient and accurate than other classification techniques[Lerner,
etal. (1999)].

The operation of the feed forward neural networks(FNN) is usually
based on the equations:
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Where )(f  is the activation function , l
jnet  is  the  sum  of  the  weight

inputs for the j-th node in the l -th layer (j=1,2,…, lN ), jiw , is the weights
from the i-th neuron to the j-th neuron at the ll ,1 th layer
,respectively, l

jb  is the bias of the j-th neuron at the l-th layer and l
jx is

the output of the j-th neuron which belongs to the l -th layer. The
problem of training a neural network is to iteratively adjust its weights,
in order to minimize a the difference between the actual output of the
network and the desired output of the training set [Rumelhart,
etal.(1986)]. Actually finding such minimum is equivalent to find an
optimal minimization of the error function which defined by:
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The variables iT  and iO  are the desired and the actual  output of the i-
th neuron, respectively. The index j  denotes the particular learning
pattern. The vector w is composed of all weights in the net.

Back propagation (BP) algorithm is the most widely used to train
multilayer feed forward neural networks. The standard back propagation
algorithm adjusts the weight vector w  using steepest descent with
respect to E  such that :

kkk gww 1 , )( kk wEg              ………(3)
Where the constant  is the learning rate belongs to the interval (0,1)

and kw  is a vector representing the weights at iteration (epoch) step k .
Since the steepest descent method has slow convergence rate and the
search for the global minimum often becomes trapped at a poor local
minimum, implies that the back propagation algorithm takes unendurable
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time to adapt the weights between the units in the network. For this
reason many researches proposed to improve this algorithm; several
researches are based on  new adaptive learning rate [Abbo & Tatal
(2011), Abbo & Mohammed (2013) ,Jarmo, etal. (2003), Johansson,
etal.(1990), Kostopoulos, etat.(2004), Plagianakos, et.al.(1998), Sabeur
& Farhat (2008), Zulhadi, etal.(2010)]. The other introduce the
momentum term [Daniel,etal.(1997), Huajin,etal.(2011)], others use  the
alternative cost functions or dynamic adaptation of the learning
parameters [Shahla,etal.(1997), Steven & Narciso (1999)]. Many apply
special techniques of initialization  of weights [Nguyen & Widrow
(1990) ]. Most of them apply the higher order gradient optimization
routines to minimize the appropriately error function [Amir, etal.(2005),
Livieris & Pintelas(2008), Mollar (1993), Rumelhart,etal. (1986), Abbo
& Mohammed (2012)], the multivariable function that depends on the
weights  of  the  network.  However  there  is  still  the  problem  of
accelerating the learning process. Especially when large training sets and
large network are used. The neural networks training can be formulated
as minimization a non-linear unconstrained optimization problem
[Livieris, et.at (2009)].

This search is organized as follows. Section 2 a short description of
the conjugate gradient algorithms. section 3  presents the proposed BP
algorithm (MBP algorithm say). Section 4, repots our experimental
results which are compared of the proposed method with FRCG and
PRCG methods through three different types of problems.

2. Conjugate Gradient Methods
Conjugate gradient (CG) methods [Livieris & Pintelas (2008)] are

among the most commonly and efficient used methods for large scale
optimization problems due to their speed and simplicity. In general,
conjugate gradient methods play an important role for efficiently training
neural networks due to their simplicity and their very low memory
requirements, since they don’t require the evaluation of the Hessian
matrix neither the impractical storage of an approximation of it. In the
literature there is a variety of conjugate gradient methods [Birgin &
Martinez(1999), Moller(1993), Livieris & Pintelas(2011) and Abbo
(2010)] that have been intensively used for neural network training in
several applications [Daniel, etal. (1997) and Zoutendijk (1970)].

The main idea for determining the search direction is the linear
combination of the negative gradient vector at the current iteration with
the previous search direction. The way to determine the search direction
can be expressed as follows:
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Conjugate gradient methods differ in their way of defining the
multiplier k . The most famous approaches were proposed by Fletcher–
Reeves (FR), Polak–Ribere (PR) and Hestenes–Stifel (HS):
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  The conjugate gradient methods using FR  update were shown to be
globally convergent [AL-Baali (1999)]. However the corresponding
methods using PR  or HS update are generally more efficient ever
without satisfying the global convergence property. In the convergence
analysis and implementations of CG methods, one often requires the
inexact lien search such as the Wolfe line  search. The standard Wolfe
line search requites k  satisfying:
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or strong Wolfe line search:

k
T
kkkk dgd )(wE)(wE kk                             ………(8a)

kkkk dgdg 1                                                       ………(8b)

where 10

Moreover, an important issue of CG algorithms is that when the
search direction (4) fails to be descent (by Descent, we mean

kdg k
T
k 0 ) directions we restart the algorithm using the negative

gradient direction to grantee convergence . A more sophisticated and
popular restarting is the Powell restart.

2
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Where,  denotes to the Euclidean norm. Other important issue for the
CG methods is that the search directions generated from equation (4) are
conjugate if the objective function is convex and line search is exact i.e:

jidGd j
T
i ,0                            ………(10)

Where, G is the Hessian matrix for the objective function . Dai and Lioa
in [Dai and Liao (2001)] showed that  the equation (10) can be written as
follows:
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which is called pure conjugacy condition  and generalize to the
0,11 tsgtyd k

T
kk
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k   , w- ws k1kk                   ……..(12)

for general objective function with inexact line search.

3. Suggested Conjugate Gradient Algorithm:
 When a sequence or an iterative process is slowly converging a

convergence acceleration process has to be used , Aitken's process is the
most well-known convergence acceleration for linearly converging
sequence. Abbo and Mohammed in  [Abbo & Mohammed(2012)]
suggested a new conjugate gradient (NACG) algorithm to train neural
network based on Aitken's process which guarantees sufficient descent
with Wolfe line search .This algorithm summarize as follows:
The Algorithm NACG

Step1:Initialize 1w  and choose , such that 10 ,
0,),1,0( GE  and maxK , set 1k .

Step 2: Calculate the error function value kE  and its gradient kg .

Step  3:  IF kGk gorEE )(  ,set kww* and kEE*  , return goal is
meet and stop .

Step 4: compute the descent direction :
If 1k  then, kk gd  go to step 6

Else
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1 and then compute:

11 k
NA

kkk dgd  .

Step5:compute the learning rate k  by line search procedure, such the
standard Wolfe conditions (6) and (7)  .

Step 6: update the weights

kkkk dww 1

and set 1kk .
Step 7: If maxkk  return Error goal not meet and stop else go to step

(2).

3.1  Accelerated with Meyer Process
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The convergence acceleration process transforming the slowly
converging sequence in to a new one which, under some assumptions
converges faster to the same limit [Clade & Michela (2007)].

In Mathematics and Computer Science, there exists a large number of
iterative algorithms whose goal is usually to reach a solution to a
problem within a certain tolerance within a given number of iterations.
Iterating means going over a pattern of steps and procedures that can
sometimes be complex and sometimes take a substantial amount of time
even for fast modern computers.[ David  and  William (1982), Meyers A.
and Mathews & Fink (1999)]

As we know, Aitken's process is the most well-known convergence
acceleration for linearly converging sequence and there are three
equivalent forms for this method as follows:
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where ,...2,1,0k

unfortunately, Aitken acceleration need to store  the vectors
12, kk ww and kw  at every iteration. Which is prompting to suggest new

ways to escape from disadvantage. One of these manners is Meyer
method. The steps of this method can be illustrated by the following
way:

 First let us rewrite (13b) by replacing 2kw by )( 1kwf   and 1kw  by
)( kwf . It shows the Aitken formula in another form:
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Let us now construct a sequence Nnny . 0y is the iteration guess start
value, chosen sometimes randomly or with a rough estimation depending
the problem you are trying to solve. 1y  is the first iteration and defined
for the original sequence by )( 01 yfy  then let’s define 10a . We get:

))(()()( 000000001 yyfayyyfyyfy
Let’s apply (14) to 0y  and 1y  to determine 2y :
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If we define:
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and use the fact that 10a  then:
))(( 111012 yyfaayy

In general, Meyers iterative Aitken formula become as:
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It is very important to realize here that it has not been demonstrated
that Nnny  is convergent, nor that it respects the necessary conditions to
be accelerated by the Aitken formula. Although in practice the Meyers
formula works really well in many cases and its convergence is in many
case very impressive, it might be necessary to verify that it applies to the
problem at hand. Nevertheless the advantage of this method is that it
does not require storing all previous values of the sequence and it does
not require more use of the function f  .

3.2 Derivation  of The Proposed Learning Method
In  this  section  we  present  a  new  CG  algorithm  (MCG)  by  simple

multiplicative modification of the learning rate. The idea is to modified
the learning rate of the following form :
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by using Meyers’ method (equation 15) together with Wolfe condition (6
and 7), where   is the learning rate which is  used in a classical BP and it
has constant value, k  (0,1) is the relaxation parameter (computed by
Meyers method) and 0, kgd kk .

3.3  MCG Algorithm
Step1:Initialize 1w  and choose , such that 10 ,

0,),1,0( GE  and maxK , set 1k .

Step 2: Calculate the error function value kE  and its gradient kg .

Step  3:  IF kGk gorEE )(  ,set kww* and kEE*  , return goal is
meet and stop .

Step 4: compute the descent direction :
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If 1k  then, kk gd  and 1k  then go to step 6

Else
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1 and then compute:

11 k
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kkk dgd  .

Step5: compute the learning rate k  using equations(15a,b) then use
the backtracking to satisfy  the standard Wolfe conditions (9)
and (10) .

Step 6: update the weights

kkkk dww 1

and set 1kk .
Step 7: If maxkk  return Error goal not meet and stop else go to step

(2).

4.Experimental Results
In the following section, we will present experimental results in order

to study and evaluate the performance of our proposed conjugate
gradient algorithm MCG in three classical artificial intelligence
problems(XOR problem, Continuous Function Approximation and
Monk1 problem).

In particular, we investigate the performance of gradient methods with
Fletcher-Reeves update (FRCG) and Polack-Ribiere update (PRCG);
(equations 8) then, we compare them with our method MCG. All
conjugate gradient methods have been implemented with the Wolfe line
search conditions (6) and (7). The implementation has been carried out
by using Matlab (2007a) and the Matlab Neural Network Toolbox.

For each test problem, we present a table summarizing the
performance of the algorithms for (100) simulations that reached
solution within a predetermined limit of epochs. The parameters used in
all tables are as follows: Min the minimum number of epochs, Mean, the
mean value of epochs, Max the maximum number of epochs, Tav the
average of total time, FcEv the number of function evaluations and Succ.
The simulation succeeded out of 100 trials within predetermined error
limit.

Worth mentioning, for each algorithm, the networks has resaved the
same input samples and the same initial weights and if an algorithm fails
to converge within the above limit considered, then it fails to train the
FFNN, and its epochs are not included in the statically analysis of the
algorithm.
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4.1 Problem (1):XOR Problem
The XOR problem is considered as one of the well-known test

function to train neural network. This function maps two binary inputs to
a single binary output. As it is well known, this function is not linearly
separable. The network architectures for this binary classification
problem consists of two hidden layers with 2 and 3 neurons,
respectively, with one neuron in the output layer. The termination
criterion is set to E  0.001 within the limit of 1000 epochs.

Table (1) summarize the average performance of the presented
algorithms  for  the  XOR  problem.  Clearly  that  FRCG  and  PRCG
algorithms exhibit excellent probability (93%) of successful training for
network architectures. Thus, computational cost is probably the most
appropriate indicator for measuring the efficiency of the algorithms.
Therefore the FRCG algorithm exhibit, the best performance, since it
reports the least average number of epochs to converge, time and the
number of function evaluations.

Algorithms Min Mean Max Tav FcEv Succ
FRCG 4.0 55.226 648.0 0.71874 114.19 93%
PRCG 3.0 66.151 1000.0 1.0014 155.46 93%
MCG 5.0 23.628 159.0 0.63406 64.349 86%

Finally, Figure (1) present the performance profiles of our
proposed conjugate gradient algorithm (MCG) together with FRCG and
PRCG with using XOR problem. The interpretation of this Figure show
that  our  proposed  method  (MCG)  is  the  best  algorithm  with  respect  to
the number of epochs corresponding with other algorithms.

Table(1): Comparative the Results of the XOR Problem

with Fixing Initial Weights
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Figure (1):XOR Performance Comparison for Training a FFNN
Using FRCG,PRCG and MCG

Figure (2):Function Approximation Performance Comparison
for Training a FFNN Using FRCG, PRCG and MCG
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4.2 Problem (2): Continuous Function  Approximation
The second test problem is the Continuous Function  Approximation.

We consider the approximation of the continuous trigonometric function
as:

)x3cos(*)xsin()x(f  , where x [- , ]
The network architecture for this problem is 1-15-1 FNN (thirty

weights, sixteen biases) is trained to approximate the function and the
network is trained until the sum of the squares of the errors becomes less
than the error goal 0.001 within the limit of 2000 epochs. The activation
function of the hidden neurons is the logistic function with biases and a
linear function in the output neuron with bias.

Tables (2) present the performance comparison of the algorithms
FRCG, PRCG and MCG for the continuous function approximation
problem. All algorithms exhibit excellent probability (100%) of
successful training for network architectures using the same initial
weights. Thus, computational cost is probably the most appropriate
indicator for measuring the efficiency of the algorithms. The new
method  (MCG)  improved  the  result  of  FRCG  and  PRCG,  since  The
MCG significantly outperforms all algorithms in terms of the average
number of epochs and the number of function evaluations.

Algorithms Min Mean Max Tav FcEv Succ
FRCG 52 89.41 187 0.8925 148.08 100%
PRCG 59.0 95.76 224.0 1.0636 181.79 100%
MCG 43.0 78.08 165.0 1.6291 130.85 100%

 Table(2): Comparative the Results of the Function Approximation
Problem with Fixing Weights

Graphically, Figure (2) present the performance profiles of our
proposed  conjugate gradient algorithm (MCG) together with FRCG and
PRCG by using function approximation problem. This Figure show that
our proposed method (MCG) is the best algorithm with respect to the
number of epochs corresponding with other algorithms.

4.3 Monk1 Problem
The Monk1 problem [Thrun,et.al.,1991] is a collection of three

binary classification problems relying on the artificial robot domain, in
which robots are described by six different attributes. These benchmarks
are made of a numeric base of examples and of a set of symbolic rules.

Monk-1 consists of 124 patterns which were selected randomly
from the data set for training, while the remaining 308 were used for the
generalization testing.
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Figure (3) present the performance profiles of our proposed
algorithm (MCG) together with FRCG and PRCG with using MONK1
problem. This Figure show that our proposed method (MCG) is the best
algorithm with respect to the number of epochs corresponding with other
algorithms.

Table (3) summarize the average performance of the presented
algorithms for the Monk1 problem. All algorithms exhibit excellent
probability (100%) of successful training for network architectures when
using the same initial weights. Thus, computational cost is probably the
most appropriate indicator for measuring the efficiency of the
algorithms.

 In general MCG algorithm exhibits the best performance since it
report, the least average number of epochs to converge and demonstrate
the highest success rate in the case of training a feed forward neural
network i.e. MCG is the best.

Algorithms Min Mean Max Tav FcEv Succ
FRCG 21.0 47.93 100.0 0.49831 83.36 100%
PRCG 17.0 36.44 68.0 0.44798 84.19 100%
MCG 15.0 32.9 69.0 0.98967 105.38 100%

Table(3.8): Comparative the Results of the Monk1 Problem with Fixing Initial
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