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Abstract 
In this paper, we attempt to solve samples of nonlinear partial differential equations (PDE's) 

of the form f(u,ux,uxx) using He's Homotopy Perturbation Method (HPM) with time fractional 

derivative, which proposed by J. H. He. We present in this paper an algorithm of the new 

modification of the homotopy perturbation method to be suitable to be applied in nonlinear 

PDE's. 
 

 خلاصة
باستخذاو طشٌمت  f(u,ux,uxx)فً هزا انبحث َحاول حم ًَارج يٍ انًعادلاث انتفاضهٍت انجضئٍت غٍش انخطٍت يٍ انشكم 

( يع الاشتماق انكسىسي انضيًُ، وانزي سبك واٌ تى Homotopy Perturbation Methodانهىيىتىبً انًضطشبت )

( HPMالتشاحه يٍ لبم جً.اج.هٍض. َمذو فً هزا انبحث خىاسصيٍت جذٌذة يع تحىٌشاث عهى طشٌمت انهىيىتىبً انًضطشبت )

 نتُاسب انتطبٍك عهى انًعادلاث انتفاضهٍت غٍش انخطٍت.
 

1. Introduction 
In recent years, that many phenomena in fluid mechanics, viscoelasticity, biology, physics, 

engineering and other areas of science can be success fully modeled by the use of fractional 

derivatives and integrals. 

Several analytical and numerical methods have been proposed to solve fractional ordinary 

differential equation integral equations and fractional partial differential equations of physical 

interest. 

The most commonly used ones are; A Domain Decomposition Method (ADM) [15-20], [23] 

Variational Iteration Method (VIM) [3], [6-8], [20] Fractional Difference Method (FDM) [3], 

Differential Transform Method (DTM) [8], Homotopy Perturbation Method (HPM) [9]. 

Also there are some classical solution techniques, e.g. Laplace transform, fractional Green's 

function method, Mellin transform method and method of orthogonal polynomials [3]. 

The HPM, proposed first by He [6-7], for solving differential and integral equations, linear and 

nonlinear, has been the subject of extensive analytical and numerical studies. The method, which is 

a coupling of the traditional perturb method and homotopy in topology, deforms continuously a 

simple problem which is easily solved. 

This method, which does not require a small parameter in an equation. 

The HPM is applied to nonlinear oscillators [11], bifurcation of nonlinear problems [13], 

nonlinear wave equations [4], boundary value problems [5], quadratic Riccati differential equation 

of fractional order [9], and to other fields [1-2], [6-10], [21-22]. 

This HPM yields a very rapid convergence of the solution series in most cases. 

This paper is to extend the application of the He's homotopy perturbation method proposed by 

He [12-13] to solve nonlinear partial differential equations with time fractional derivative. 

 
 



Journal of Kerbala University , Vol. 12 No.2 Scientific . 2014 
 
 

050 

Consider the nonlinear partial differentials equations with time fractional derivative of the form. 
 

 ),,,(),(* xxxt uuuftxuD  t>0,        …(1) 
 

where m-1<α<m, f is a nonlinear function and D
α

* denotes the differential operator in the sense 

of Caputo [14], defined by: 
 

)()(* xfDJxfD mm    
 

here D
m
 is the usual integer differential operator of order and J

α
 is the Rieman–Liouville 

integral operator of order α>0. 
 

2. Basic Definitions 
We give some basic definitions and properties of the fraction calculus theory which are used 

further in this paper. 
 

Definition (2.1):  Areal function f(x), x>0 , is said to be in the space Cf1(x)[0,∞), and it is said to 

be in the space C
m
 iff f

(m)
 CmN.  

 

Definition (2.2): The Riemann-Liouville fractional integral operator of order α≥0, of function 

f(,≥-1), is defined as: 

J
α
 f(x)= 




x

dttftx
0

1 )()(
)(

1 


, α>0,x>0 

J
0
 f(x)=f(x) 

Properties of the operator J
α
 can be found in [1,2,3], we mention only the following: 

For fC, ≥-1, α,β≥0 and >-1: 
 

1. J
α
J

β 
f(x)=J

α+β
f(x) 

2. J
α
J

β
f(x)=J

β
J

α
f(x) 

3. J
α
X

 =(Γ(+1)/Γ(α++1)X

α+
 

 

The Riemann-Liouville derivative has certain disadvantages when trying to model real-world 

phenomena with fractional differential equations . Therefore , we shall introduce a modified 

fractional differential operator D
α

* proposed by Caputo in this work on the theory of viscoelasticity 

[23]. 
 

Definition (2.3):The fractional derivative of f(x) in the Caputo sense is defined as: 
 

 D
α

* f(x) =J
m-α 

f(x) = 




x

mm dttftx
m

0

)(1 )()(
)(

1 


     …(2) 

For m-1<α≤m , mN, x>0, fC-1
m
. 

 

Lemma(2.4): Ifm-1<α≤m, mN, x>0 and fC
m
 , ≥-1, then 

D
α

*J
α
 f(x)=f(x) 

And J
α
D

α
x f(x)=f(x)-





1

0

)(

!
)0(

m

k

k
k

k

x
f , x>0. 

Consider the first order differential equation: 

u(x) =su(x)+Q(x), u(0)=0 

Where s is appositive constant. The analytical solution of (2) is given by: 

 dxxfxQxfxu )()()()(  

where f(x) =e
-sx

. 
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The Laplace transformation: 

F(s)=L{Q(x)}=  







 
x

x

sxsx xuedxexQ
0

0

)}({)(       …(3)  

 

3. He's homotopy Perturbation Method  
To illustrate the homotopy perturbation method (HPM), He [18], considered the following 

nonlinear differential equation 
  

 A(u)=f(r), rΩ         …(4) 
 

With boundary conditions: 
 

 B(u,əu/ər)=0, rΓ         …(5) 
 

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic 

function, Γ is the boundary of the domain. The operator A can be divided into two parts  and N. 

Therefore (4) can be rewritten as follows: 
 

L(u)+N(u)=f(r), rΩ         …(6) 
 

 with boundary conditions. 

The He's homotopy perturbation technique[6,7] constructed a homotopy: 

v(r,p):Ωx[0,1]H which satisfies: 
 

H(v,p)=(1-p)[L(v)-L(u0)]+p[L(v)+N(v)-f(r)]=0     …(7)  

or 

H(v,p)=L(v)-L(u0)-pL(v)+pL(u0)+pL(v)+pN(v)-pf(r) 

 H(p,v)=L(v)-L(u0)+pL(u0)+p[N(v)-f(r)]=0      …(8) 
 

Where rΩ and p[0,1]is an imbedding parameter, u0 is an initial approximation which satisfies 

the boundary conditions. Obviously, from equation (8), we have: 
 

H(v,0)=L(v)-L(u0)+0*L(u0)+0*pN(v)-0*f(r) 

 H(v,0)=L(v)-L(u0)=0         …(a) 

H(v,1)=L(v)-L(u0)+L(u0)+N(v)-f(r) 

 H(v,1)=L(v)+N(v)-f(r)=0        ...(b) 
 

and the changing process of p from 0 to 1, is just that of H(v,p) from L(v)-L(u0) to A(u)-f(r)                     

(i.e u0 to u(r)). In topology, this is called deformation, L(v)-L(u0) and A(u)–f(r) are called 

homotopic. 

Applying the perturbation technique [8], due to the fact that 0≤p≤1 can be considered as a small 

parameter, we can assume that the solution of (7) or (8) can be expressed as a series in p, as follows: 
 

V=V0+pv1+p
2
v2+p

3
v3+…         …(9) 

 

When p1, (7) or (8) corresponds to (a)and(b)becomes the approximate solution of (9), i.e,  
 

u= p
p

lim
1

=v0+v1+v3…        …(10) 

The series (10) is convergent for most cases, and also the rate of convergence depends on A(v),[9]. 

L(v)-L(u0)+pL[N(r)-Q]L(v)-L(u0)+pL(u0)+p[N(r)-Q]=0 

N(u)=u(x) 

L(v)-L(u0)+pL(u0)+p[N(v)-Q]=0, 

or 

p[v(x)-Q(x)]-sv0(x)+su0(x)-psu0(x)=0 
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p
0
:L(v0)-L(u0)=0, p

1
:L(v1)+L(u0)+N(v0)-Q=0, p

2
:L(v2)+N(v1)=0, 

p
3
:L(v3)+N(v2)=0 ,…, p

n+1
:L(vn+1)+N(vn)=0 

F(x)=L[Q(x)]=



















 

x

xi

i

sxsx xvedxexQ
000

})({)(  

L[Q(x)]=



















 

x

xi

i

sxsx xvedxexQ
000

})({)(  

 

Example (3.1):Let Q(x)=x
n
. 

By choosing u0(x)=0, we have  

v0(x)=0, v1(x)=
nx

s

1
 , v2(x)=

1

2

 nx
s

n
, v3(x)=

2

3

)1( 
 nx

s

nn
, …,  

vn+1(x)=
1

!



ns

n
, vi(x)=0, i=n+2,n+3,… 

Therefore 

F(s)=L[x
n
]=L[Q(x)]=

1

00

!
})({











 



 n

x

xi

i

sx

s

n
xve  

 

4. Laplace Transform 
We consider He's homotopy perturbation method, suppose: 

L(u)=-su(x) and N(u)=u(x), in other word, we construct the following simple homotopy 

L(v)-L(u0)+pL(u0)+p[N(v)-Q]=0       …(11) 

or 

p[v(x)-Q(x)]-sv(x)+su0(x)-psu0(x)=0 

substituting (9) into (11), and equating the terms with the identical powers of p, we have: 

p
0
: L(v0)-L(u0)=0, p

1
: L(v1)+L(u0)+N(v0)-Q=0, p

2
: L(v2)+N(v1)=0, 

p
3
: L(v3)+N(v2)=0, … , p

n+1
: L(vn+1)+N(vn)=0 

therefore according to (3 ) and (10 ) we have: 

F(x)=L[Q(x)]=



















 

x

xi

i

sxsx xvedxexQ
000

})({)(                                                                       

 

Example(4.1): Let Q(x)=x
n
. 

By choosing u0(x)=0, we have  

v0(x)=0, 

v1(x)=
nx

s

1
 , v2(x)=

1

2

 nx
s

n
, v3(x)=

2

3

)1( 
 nx

s

nn
,…, vn+1(x)=

1

!



ns

n
, vi(x)=0, i=n+2,n+3,… 

Therefore  

F(s)=L[x
n
]= L[Q(x)]=

1

00

!
})({











 



 n

x

xi

i

sx

s

n
xve  

 

Example(4.2): Let Q(x)=sin(ax). By choosing u0(x)=0, we have: 

v0(x)=0, v1(x)= )sin(
1

ax
s

 , v2(x)= )cos(
2

ax
s

a
 , v3(x)= )sin(

3

2

ax
s

a
 , 

v4(x)= )cos(
4

3

ax
s

a
 ,… 

Therefore  
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F(s)=L[sin(ax)]=
226

5

4

3

2

00

})({
as

a

s

a

s

a

s

a
xve

x

xi

i

sx















    

u=sin(ax), du= )cos(axa  

dv= dxe sx , v=
s

e sx





 

L[sin(ax)]=

 

 




0

sin dxeax sx
 

=    
 



















00

cossin dx
s

e
axa

s

e
ax

sx
x

x

sx

 

=    
 





















00

sincos0 dx
s

e
axa

s

a

s

e
ax

s

a sx
x

x

sx

 

=         



0

2

2

2
sin110cos dxeax

s

a
ax

s

a sx
 

=
2

2

2 s

a

s

a
  L[sin(ax)] 

L[sin(ax)] 









2

2

1
s

a
=

2s

a
 

L[sin(ax)] 






 
2

22

s

as
=

2s

a
 

L[sin(ax)] =
2s

a









 22

2

as

s
= 









 22 as

a
 

The convergence of the series (10), has been proved in [6,7]. 
 

5. New Interpretation 
Anew interpretation of the concept of constant expansion in the Homotopy perturbation method 

is given in [20]. Toillustrate the new interpretation of the parameter-expansion, He [8] considered 

the nonlinear oscillator. 
 

 u+u3
=0, u(0)=A, u(0)=0,        …(12) 

 

Where the parameter  is not required to be small, 0<<∞.  

For the first–order approximate solution, we construct a homotopy in the form: 
 

 u+(2
+pc1)u+pu3

=0,u(0)=A, u(0)=0,p[0,1],     …(13) 
 

where 
 

 2
+pc1=0          …(14) 

The homotopy parameter p always changes from zero to unity. 

In case p=0, equation (13) becomes the linearized equation: 

 u+2
u=0, u(0)=A, u(0)=0,        …(15) 

put p=1, 

u+(2
+c1)u+u3

=0, 

u(0)=A, u(0)=0, p[0,1], 

u=u0+pu1+p
2
u2 (since u=u0+pu1+p

2
u2, u(0)=0 this condition above). 
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6. Modified Homotopy Perturbation Method  
We present the algorithm of the new modification of the homotopy perturbation method. To 

illustrate the basic ideas of the new modification, we consider the following nonlinear differential 

equation of fraction order.  
 

D
α

*u(t)+L(u(t))+N(u(t))=f(t), t>0, m-1<α<m,       …(16) 

or 

D
α

*u(x,t)+L(u,ux,uxx)+N(u,ux,uxx)=f(x,t), t>0, 

Where L is alinear operator which might include other fractional derivatives of order less than α, N 

is a nonlinear operator which also might include other fractional derivatives  of order less than α, f  

is a known analytic function and D
α

* the Caputo  fractional derivative of order α, subject to the 

initial conditions: 
 

u
k
(0)=ck, k=0,1,2,…,m-1, or u

k
(x,0)=gk(x),      …(17) 

In view of the homotopy technique, we can construct the following homotopy: 
 

u
(m)

+L(u)-f(t)=p[u
(m)

-N(u)-D
α

*u}, p[0,1],      …(18) 

or 

u
(m)

-f(t)=p[u
(m)

-L(u)-N(u)-D
α

*u}, p[0,1],      …(19) 

 

The homotopy parameter p always changes from zero to unity. 

In case p=0, equation (18) becomes the linearized equation: 
 

 )()( tfuL
dt

ud
m

m

                                …(20) 

and equation (20)becomes the linearized equation 

 )(tf
dt

ud
m

m

          …(21) 

And when it is one, equation (18) or (19) turns out to be the original fractional differential 

equation(16). The basic assumption is that the solution of equation (18) or (19) can be written as a 

power series in p 
 

 u=u0+pu1+p
2
u2+p

3
u3+…        …(22) 

 

Substituting equation(22) into (18) or (19), and equating the terms with identical powers of p, 

we can obtain a series of linear equation of the form: 

 

p
0
 : )()( 00

0 tfuL
dt

ud
m

m

 , u
k
(0)=ck, 

p
1
 : 0*01

0
101

1 )(),( uDuN
dt

ud
uuL

dt

ud
m

m

m

m
 , u

k
(0)=0, 

    …(23) 

p
2
 : 1*101

1
2102

2 ),(),,( uDuuN
dt

ud
uuuL

dt

ud
m

m

m

m
 , u

k
(0)=0, 

p
3
 : 2*2102

2
32103

3 ),,(),,,( uDuuuN
dt

ud
uuuuL

dt

ud
m

m

m

m
 , u

k
(0)=0, 
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or the form: 

p
0
 : )(0 tf

dt

ud
m

m

 , u
k
(0)=0, 

p
1
 : 0*0100

01 )()( uDuNuL
dt

ud

dt

ud
m

m

m

m
 , u

k
(0)=0, 

    …(24) 

p
2
 : 1*101101

12 ),(),( uDuuNuuL
dt

ud

dt

ud
m

m

m

m
 , u

k
(0)=0, 

p
3
 : 2*21022102

23 ),,(),,( uDuuuNuuuL
dt

ud

dt

ud
m

m

m

m
 , u

k
(0)=0, 

 

Respectively, where the terms L0,L1,L2,…, and N0,N1,N2,... satisfy the following equations: 

L(u0+pu1+p
2
u2+p

3
u3+…)= L0(u0)+pL1(u0,u1)+p

2
L2(u0,u1,u2)+…  

N(u0+pu1+p
2
u2+p

3
u3+…)= N0(u0)+pN1(u0,u1)+p

2
N2(u0,u1,u2)+…  

 

Setting p=1 in equation(22) yields the solution of equation(16). It obvious that the linear 

equation in (23)or equation (24) are easy to solve, and the components determined un, n≥0 of the 

homotopy perturbation method  can be completely determined, and the series solution are thus 

entirely determined. 

Finally, we approximate the solution 





0

)()(
n

n tutu by the truncated series: 







1

0

)()(
N

n

nN tut          …(25) 

 

7. Numerical Experiments 
We shall illustrate the new algorithm of HPM by several examples.  

These examples are somewhat artificial in the sense that the exact answer, for the special cases 

α=1or 2, is known in advance and the initial and boundary condition are directly taken from this 

answer. 

Nonetheless, such an approach is needed to evaluate the accuracy of the analytical technique 

and examine the effect of varying the order of the time–fractional derivative on the behavior of the 

solution. 

Also, a comparison is made with the results obtained in [3]. 

Using variational iteration method and A domain decomposition method. All the resulted are 

calculated by using the symbolic calculus software mathematica.  
 

Example(7.1): 

Consider the nonlinear time-fractional Fisher's equation [16]: 

D
α

*=uxx(x,t)+6u(x,t)(1-u(x,t))        …(26) 

t>0, xR, 01. 

Subject to the initial condition: 

2)1(

1
)0,(

xe
xu


          …(27) 

In view of equation (19), the homotopy for equation (26) can be constructed as: 



















uDuuu

t

u
p

t

u
txx


*)1(6        …(28) 

Substituting (22) and the initial condition (27) into (28), we obtain the following set of linear partial 

differential equation: 
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00 




t

u
, 

2)1(

1
)0,(

xe
xu


 , 


















0*000

01 )1(6)( uDuuu
t

u
p

t

u
txx

 , u1(x,0)=0. 



















1*111

12 )1(6)( uDuuu
t

u
p

t

u
txx

  

u2(x,0)=0. 

Consequently the first few components of the homotopy perturbation solution for equation (26) we 

derived as follows: 
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8. Concluding Remarks  
The modified homotopy perturbation method suggested is an efficient method for calculating 

approximate solution for nonlinear partial differential equation of fractional order. 

The solution obtained using the suggested method has a very high accuracy comparing with 

variation method and the A domain decomposition method. The method produces the same solution 

as the variational iteration method with the proper choice of the initial approximation. 
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