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Abstract

In this paper, we attempt to solve samples of nonlinear partial differential equations (PDE's)
of the form f(u,ux,Ux) using He's Homotopy Perturbation Method (HPM) with time fractional
derivative, which proposed by J. H. He. We present in this paper an algorithm of the new
modification of the homotopy perturbation method to be suitable to be applied in nonlinear
PDE's.
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1. Introduction

In recent years, that many phenomena in fluid mechanics, viscoelasticity, biology, physics,
engineering and other areas of science can be success fully modeled by the use of fractional
derivatives and integrals.

Several analytical and numerical methods have been proposed to solve fractional ordinary
differential equation integral equations and fractional partial differential equations of physical
interest.

The most commonly used ones are; A Domain Decomposition Method (ADM) [15-20], [23]
Variational Iteration Method (VIM) [3], [6-8], [20] Fractional Difference Method (FDM) [3],
Differential Transform Method (DTM) [8], Homotopy Perturbation Method (HPM) [9].

Also there are some classical solution techniques, e.g. Laplace transform, fractional Green's
function method, Mellin transform method and method of orthogonal polynomials [3].

The HPM, proposed first by He [6-7], for solving differential and integral equations, linear and
nonlinear, has been the subject of extensive analytical and numerical studies. The method, which is
a coupling of the traditional perturb method and homotopy in topology, deforms continuously a
simple problem which is easily solved.

This method, which does not require a small parameter in an equation.

The HPM is applied to nonlinear oscillators [11], bifurcation of nonlinear problems [13],
nonlinear wave equations [4], boundary value problems [5], quadratic Riccati differential equation
of fractional order [9], and to other fields [1-2], [6-10], [21-22].

This HPM vyields a very rapid convergence of the solution series in most cases.

This paper is to extend the application of the He's homotopy perturbation method proposed by
He [12-13] to solve nonlinear partial differential equations with time fractional derivative.
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Consider the nonlinear partial differentials equations with time fractional derivative of the form.
Dau(x,t) = f(u,u,,u,),t>0, ...(D)
where m-1<a<m, f is a nonlinear function and D” denotes the differential operator in the sense
of Caputo [14], defined by:
DZf(x)=J""D"f(x)

here D™ is the usual integer differential operator of order and J* is the Rieman-Liouville
integral operator of order o>0.

2. Basic Definitions
We give some basic definitions and properties of the fraction calculus theory which are used
further in this paper.

Definition (2.1): Areal function f(x), x>0 , is said to be in the space C,fi(x)[0,00), and it is said to
be in the space C",, iff {™e C,meN.

Definition (2.2): The Riemann-Liouville fractional integral operator of order >0, of function
f(u,p=>-1), is defined as:

J* f(x)= %i(x —t)* 7 (t)dt, a>0,x>0

I 1(x)=f(x)
Properties of the operator J” can be found in [1,2,3], we mention only the following:
For feC,, 1>-1, a,f>0 and p>-1:

1. J*¥ £(x)=3""%(x)
2. 3°V(x)=0P 1" (x)
3. IX" =T (1T (ot p+1) X7
The Riemann-Liouville derivative has certain disadvantages when trying to model real-world
phenomena with fractional differential equations . Therefore , we shall introduce a modified

fractional differential operator D“« proposed by Caputo in this work on the theory of viscoelasticity
[23].

Definition (2.3):The fractional derivative of f(x) in the Caputo sense is defined as:

D% f(x) =J™*f(x) =ﬁj(x —t)™ £ (™ (t)dt (2

For m-1<a<m, meN, x>0, feC_".
Lemma(2.4): Ifm-1<a<m, meN, x>0 and feC," , z>-1, then
D%J% f(x)=f(X)
m-1 k
And 3D% f(x)=f(x)- 3 £ © (0)% 0.
k=0 -

Consider the first order differential equation:

u’(x) =su(x)+Q(x), u(0)=0
Where s is appositive constant. The analytical solution of (2) is given by:

u(x) f (x) = j Q(x) f (x)dx

where f(x) =™
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The Laplace transformation:

F(S)=L{QM}= [ Qe “dx —{e *u(03] )

3. He's homotopy Perturbation Method
To illustrate the homotopy perturbation method (HPM), He [18], considered the following
nonlinear differential equation

A)=f(r), reQ ..(4)
With boundary conditions:
B(u,au/ar)=0, rel’ ..(5

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic
function, I is the boundary of the domain. The operator A can be divided into two parts x and N.
Therefore (4) can be rewritten as follows:

L(u)+N(u)=f(r), reQ ...(6)

with boundary conditions.
The He's homotopy perturbation technique[6,7] constructed a homotopy:
v(r,p):£4[0,1] —H which satisfies:
H(v,p)=(1-p)[L(v)-L(uo)]*+p[L(V)+N(v)-f(r)]=0 (7
or
H(v,p)=L(v)-L(uo)-pL(v)+pL(uo)+pL(V)+pN(v)-pf(r)
H(p,v)=L(v)-L(uo)+pL (uo)+p[N(v)-f(r)]=0 --(8)

Where re® and pe[0,1]is an imbedding parameter, up is an initial approximation which satisfies
the boundary conditions. Obviously, from equation (8), we have:

H(v,0)=L(Vv)-L(u)+0*L(uo)+0*pN(v)-0*f(r)

H(v,0)=L(v)-L(uo)=0 ...(a)
H(v,1)=L(v)-L(uo)+L(uo)+N(v)-f(r)
H(v,1)=L(v)+N(v)-f(r)=0 ...(b)

and the changing process of p from 0 to 1, is just that of H(v,p) from L(v)-L(up) to A(u)-f(r)
(i.e up to u(r)). In topology, this is called deformation, L(v)-L(up) and A(u)-f(r) are called
homotopic.

Applying the perturbation technique [8], due to the fact that 0<p<1 can be considered as a small
parameter, we can assume that the solution of (7) or (8) can be expressed as a series in p, as follows:

V=Vo+pvi+p2vo+pivat. .. ...(9)

When p—1, (7) or (8) corresponds to (a)and(b)becomes the approximate solution of (9), i.e,

u=|im P =Vo+vitvs... ...(10)

The ps;ries (10) is convergent for most cases, and also the rate of convergence depends on A(v),[9].
L(v)-L(uo)+pLIN(r)-QIL(v)-L(uo)*+pL(uo)+PIN(r)-Q]=0

N(u)=u’(x)

L(v)-L(uo)+pL (uo)+p[N(v)-Q]=0,

or

PV’ (x)-Q(X)]-sVo(X)+SUo(X)-psuo(x)=0
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p°:L(Vo)-L(uo)=0, p:L(v4)+L(uo)*+N(vo)-Q=0, p*:L(v2)+N(v1)=0,
p2:L(Va)+N(V2)=0 ,..., P L (Vne1) +N(v,)=0

F(x):L[Q(x)]:TQ(x)eS*dx:{e“ivi(x)}}

=00

=0

L[Q(X)]=TQ(X)9_SXdX={e_sxivi(x)}} _

Example (3.1):Let Q(x)=x".

By choosing ug(x)=0, we have

1, n . -
Vo(X)=0, vl(x):—gx ,V2(X):—S—2X L va(X)=— X",

I
Vn+1(X)=— % , Vi(X)=0, i=n+2,n+3,...

Therefore

F(s):L[x“]:L[Q(x)]:{e-“ivi(x)}} =

4. Laplace Transform

We consider He's homotopy perturbation method, suppose:

L(u)=-su(x) and N(u)=u’(x), in other word, we construct the following simple homotopy
L(v)-L(uo)+pL(Uo)+p[N(v)-Q]=0 -..(11)
or

PV’ (x)-Q(X)]-sv(X)+sUo(x)-psuo(x)=0

substituting (9) into (11), and equating the terms with the identical powers of p, we have:
p_: L(vo)-L(Uo)=0, p": L(vi)+L(uo)+N(v0)-Q=0, p*: L(v2)+N(v1)=0,

p%: L(va)+N(v2)=0, ..., p™™ L(Vns1)+N(v,)=0

therefore according to (3 ) and (10 ) we have:

F(X)=L[Q(X)]=TQ(X)G_SXdX={e_sxivi(X)}} _

Example(4.1): Let Q(x)=x".

By choosing ug(x)=0, we have

Vo(X)=0,

Vl(x):—%)(n , Va(X)= _Sﬂzx“, v3(x)=—n(n—3_1)x”’2,..., vn+1(x)=—srn]—£l , Vi(X)=0, i=n+2,n+3,...
Therefore

F(s)=LIX"]= L[Q(x)]:{e'“ivi(x)}} = S?L

Example(4.2): Let Q(x)=sin(ax). By choosing uy(x)=0, we have:

Vo(X)=0, v1(X)=— %sin(ax) , Vo(X)=— ;izcos(ax) , Va(X)=— <':—isin(ax) :

a3
v4(X)= —S—4cos(ax) yre

Therefore
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: z ™ a & a° a
F(s)=L[sin(ax)]={e™> > v.(x =242 2 L=
(s)=L[sin(ax)]={ ;.()}lo 2Tt Y
u=sin(ax), du=acos(ax)

B e
dv=e"%dx, v=
-

L[sin(ax)]= Tsin(ax)e“dx

—SX

:{sm(ax)e“T_Iacos(ax)e dx

- x=0

:O+§{cos(ax)e_ } ~ 8T _asin(ax)®—dx

S SO -3

:_Siz[cos(ax)(o)_(l)(l)]_Z‘_stin(ax)eSde

a a’

=— —— L[sin(ax)]
s* s

L[sin(ax)] [1+ 2—22] = %

S

L[sin(@0)] [52 ;az}%

S

L[sin(ax)] :;iz (sziazj:[sz iazj

The convergence of the series (10), has been proved in [6,7].

5. New Interpretation

Anew interpretation of the concept of constant expansion in the Homotopy perturbation method
is given in [20]. Toillustrate the new interpretation of the parameter-expansion, He [8] considered
the nonlinear oscillator.

u"+eu°=0, u(0)=A, u’(0)=0, .(12)

Where the parameter ¢is not required to be small, 0<g<co.
For the first—order approximate solution, we construct a homotopy in the form:

u"+( &’ +pcy)u+peu*=0,u(0)=A, u'(0)=0,p<[0,1], ..(13)
where

w*+pci=0 ..(14)
The homotopy parameter p always changes from zero to unity.
In case p=0, equation (13) becomes the linearized equation:

u"+a?u=0, u(0)=A, u'(0)=0, ...(15)
put p=1,
U"+( e’ +C1)u+eu’=0,
u(0)=A, u’(0)=0, p<[0,1],
U=Ug+pU1+p2Us, (since u'=u’g+pu’1+p2U’s, u’(0)=0 this condition above).
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6. Modified Homotopy Perturbation Method

We present the algorithm of the new modification of the homotopy perturbation method. To
illustrate the basic ideas of the new modification, we consider the following nonlinear differential
equation of fraction order.

D”%u(t)+L(u(t))+N(u(t))=f(t), t>0, m-1<a<m, ...(16)

or

DU (X,t)+L(U,Uy, Uxx) +N(U, Uy, Ux)=F(x,t), t>0,

Where L is alinear operator which might include other fractional derivatives of order less than a, N
is a nonlinear operator which also might include other fractional derivatives of order less than «, f
is a known analytic function and D’ the Caputo fractional derivative of order a, subject to the
initial conditions:

u“(0)=cy, k=0,1,2,....m-1, or u*(x,0)=gx(x), ..(17)
In view of the homotopy technique, we can construct the following homotopy:
u™+L(u)-f(t)=p[u™-N(u)-D*%u}, pe[0,1], ...(18)
or

u™-f(t)=p[u™-L(u)-N(u)-D*%u}, pe[0,1], ..(19)

The homotopy parameter p always changes from zero to unity.
In case p=0, equation (18) becomes the linearized equation:

d’u +L(u)_ f(t) ...(20)
and equation (20)becomes the linearized equation
d™u
= f(t .21
=0 1)

And when it is one, equation (18) or (19) turns out to be the original fractional differential
equation(16). The basic assumption is that the solution of equation (18) or (19) can be written as a
power series in p

U=Ug+pus+pu+piust... ..(22)

Substituting equation(22) into (18) or (19), and equating the terms with identical powers of p,
we can obtain a series of linear equation of the form:

p’: ddn;:o + Ly (Up) = f(t), U(0)=ci, |
o' ddr:m FL (U l)_d Up (Ug) - D2u, , U(0)=0,
> .(23)
P ddm:Z +L,(Uy, Uy, Uy) =£:1— N, (Up. ) = D"y, u(0)=0,
" dt
p3:dd::3 + L, (ug, g, uy,U,) = dd :2 N (U, U, U;) = DUy, U (0)=0, J
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or the form:
00 - o _ £(1), uK(0)=0, A

dt

d™, d"u Y
pl : dtml = dtm0 - LO (UO)_ Nl(uo)_ D, uO ! uk(O):O’

> ...(24)

2. dmuz dmul a k —

'dt—m: dt™ _Ll(uovul)_N1(uo’u1)_D* u,u (0)—0,
3.d"u, d"u, " Koy

g = gen 2 (o Ui Uz) = No (U, Uy, Up) = DU, U1H(0)=0,

Respectively, where the terms Lo,L;,Lo,..., and Ng,N1,N>,... satisfy the following equations:
L(uo+pu1+p22u2+pzu3+. )= Lo(u0)+pL1(uo,u1)+p2I2_2(u0,u1,u2)+. .
N(uotpus+p uztp ust...)= No(Ug)+pN1(Ug,us)+p“N2(Uo,Us,U2)+...

Setting p=1 in equation(22) yields the solution of equation(16). It obvious that the linear
equation in (23)or equation (24) are easy to solve, and the components determined up, n>0 of the
homotopy perturbation method can be completely determined, and the series solution are thus
entirely determined.

Finally, we approximate the solutionu(t) = Zun (t) by the truncated series:
n=0

o ()= u, (1) .(25)

7. Numerical Experiments

We shall illustrate the new algorithm of HPM by several examples.

These examples are somewhat artificial in the sense that the exact answer, for the special cases
o=1or 2, is known in advance and the initial and boundary condition are directly taken from this
answer.

Nonetheless, such an approach is needed to evaluate the accuracy of the analytical technique
and examine the effect of varying the order of the time—fractional derivative on the behavior of the
solution.

Also, a comparison is made with the results obtained in [3].

Using variational iteration method and A domain decomposition method. All the resulted are
calculated by using the symbolic calculus software mathematica.

Example(7.1):

Consider the nonlinear time-fractional Fisher's equation [16]:
D%=ux(X,t)+6u(x,t)(1-u(x,t)) ...(26)
t>0, xeR, 0<o<1.

Subject to the initial condition:

1
ux,0)=—— (27
(x,0) o) 27)
In view of equation (19), the homotopy for equation (26) can be constructed as:
ou ou
—=p|—+u, +6u(l—u)—Dsu ...(28
p p{ o " Us TOud—U)—Dx } (28)

Substituting (22) and the initial condition (27) into (28), we obtain the following set of linear partial
differential equation:
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ou, 1 ou ou

—0 -0, u(x0)=———, —L=p| —+(u,).. +6u,(1—u,)—D%u, |, ui(x,0)=0.
e 0, U0~z T ) ), 0,00~ D, )
ou ou .

Ez = p|:El+(u1)xx +6u1(1_u1)_ D*tu1i|

u2(x,0)=0.

Consequently the first few components of the homotopy perturbation solution for equation (26) we
derived as follows:

X

1 e
——, u,(x,t)=10
(1+e)? (1) (1+e)*

e~ t2 1

+
(1+e")°T@-a) (@1+e)°
+(10e* +30e** +30e®* +10e*)t]

Uo(X,t) = t,

u,(x,t) =—10 [-200e%t® + (50e™ + 75> —25¢*)

8. Concluding Remarks

The modified homotopy perturbation method suggested is an efficient method for calculating
approximate solution for nonlinear partial differential equation of fractional order.

The solution obtained using the suggested method has a very high accuracy comparing with
variation method and the A domain decomposition method. The method produces the same solution
as the variational iteration method with the proper choice of the initial approximation.
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