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Abstract— The design and simulation of the Spiking Neural Network (SNN) are 
proposed in this paper to control a plant without and with load. The proposed 
controller is performed using Spike Response Model. SNNs are more powerful 
than conventional artificial neural networks since they use fewer nodes to solve 
the same problem. The proposed controller is implemented using SNN to work 
with different structures as P, PI, PD or PID like to control linear and 
nonlinear models. This controller is designed in discrete form and has three 
inputs (error, integral of error and derivative of error) and has one output. The 
type of controller, number of hidden nodes, and number of synapses are set 
using external inputs. Sampling time is set according to the controlled model. 
Social-Spider Optimization algorithm is applied for learning the weights of the 
SNN layers. The proposed controller is tested with different linear and 
nonlinear models and different reference signals. Simulation results proved the 
efficiency of the suggested controller to reach accurate responses with minimum 
Mean Squared Error, small structure and minimum number of epochs under no 
load and load conditions. 

Index Terms— Spiking Neural Network, Social-Spider Optimization, P/PI/PD/PID-like, 
Intelligent control. 

I. INTRODUCTION 

Most biological neurons communicate by sending short and sudden increase in voltage 
(short pulses) between the connections of the neurons. The pulse that is generated is known 
as a “spike”. It refers to short and transient nature. With the coming spikes to the neurons, 
the neurons are influenced and can generate the spike when their membrane potential 
(voltage or state) becomes larger than or equal to the threshold value. These neurons are 
known as spiking neurons and the networks that include these neurons are called Spiking 
Neural Networks (SNNs) [1]. SNN is the third generation of artificial neural networks 
(ANNs). Computationally, the SNNs are more powerful and need fewer nodes to solve the 
same problem than conventional artificial neural networks [2]. Therefore; SNN controller 
can be achieved with a small network size. There are many approaches for training the 
SNNs; such as SpikeProp also called Error Back Propagation (BP) algorithm [3], Spikelm 
(applying the Levenberg-Marquardt (LM) algorithm to SNN) [3], Remote Supervised 
Method (ReSuMe) [4], Resilient Propagation (RProp) and QuickProp [5]. Also evolution 
algorithms like; Particle Swarm Optimization (PSO) or Genetic algorithm (GA) can be used 
as a training algorithm to find the optimal solutions. SSO is better than PSO and GA by 
classification performance that uses various estimation indicators and in wrapper-based 
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feature selection [6]. In recent years, a memorable attention in SNNs has grown and many 
types of researches studied SNNs as a controller.  

Cao et al. (2015) [7] designed a three-layer SNN controller for target tracking of the 
autonomous robots. They used the SRM. The Hebbian learning was used to update the 
weights. The target information, which was supplied to the CCD cameras, ultrasonic 
sensors and encoders, is encoded in the shape of spike trains and integrated signals. The 
controller makes the robot follow the target trajectory without collision with the 
environment. Clawson et al. (2016) [8] presented a flapping micro robot (RoboBee) SNN 
controller that shuts the circle between the locally available sensors and actuators, by 
methods of a leaky integrate-and-fire SNNs, that are adjusted in flight utilizing a reward 
modulated Hebbian plasticity mechanism. Hernandez et al. in 2017 [9] developed a 
neuromorphic system on a Spartan-6 FPGA board to generate locomotion patterns for three 
different legged robots (biped, quadruped, and hexapod) based on spiking neurons. It 
implements the locomotion patterns for different legged robots in FPGA chip. Antonietti et 
al. in 2018 [10] developed the SNN to control NAO Robot. It was a simplified model of the 
neurophysiological cerebellar network, including neural connectivity, plasticity 
mechanisms, and simplified neuron dynamics. The Pavlovian conditioning protocol tested 
the model capability to learn the temporal associations between two stimuli provided to the 
humanoid NAO robot. The developed platform is a real neurorobot which is able to operate 
in a dynamic and noisy environment, dealing with a simple learning motor task. 

In this paper, the design of a SNN as a controller to work with different structures (P, 
PI, PD or PID like), is presented to control linear and nonlinear models, different types of 
reference inputs, different sampling times and different load conditions. The type of 
controller, number of hidden nodes, and number of synapses are set using external inputs. 
The best weights of the SNN are obtained using SSO algorithm. The criterion used in 
obtaining the best weights is the minimum MSE. 

This paper is structured as follows: Section II represents the model, structure, coding 
and decoding method of feed-forward SNN. Also, section III represents the SSO algorithm, 
while Section IV represents the design and simulation for the proposed controller. Finally, 
the conclusions are given in section V. 

II. SPIKING NEURAL NETWORK 

The third generation of artificial neural networks (ANN) is called a SNN. It is 
introduced by Wolfgang Mass in 1997 [2]. SNN has the same structure of the ANN but has 
synapses between each neuron layers. Fig. 1 shows the neuron model and the synapses in 
feed-forward SNN. 

A. Neuron Model 

There are many models for spiking neuron, for example, integrate and fire neuron, 
Izhikevich model, Spike Response Model, Fitzhugh model and Hodgkin-Huxley (HH) 
model [11]. The most accurate model among these models is HH, but it's very complex. 
SRM is simple due to its arithmetical simplicity and it becomes the most widely contributed 
model [12]. Therefore, SRM is used as a SNN model in this paper. The SRM was 
introduced by Gerstner in 1995. It described the relationship between input spikes and the 
internal state variable. The feed-forward SNN structure shown in Fig. (1-A) consists of 
three layers, input layer (H), hidden layer (I), and output layer (J). Each layer is connected 
with other layers by a set of synapses and every synaptic has various weights and delay 
times, as shown in Fig. (1-B). There are different forms of SRM and according to the choice 
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of suitable Spike Response Functions (SRF). This model can be regulated to watch the 
dynamics of different spiking neurons [13]. It is supposed that every neuron can generate 
only one spike as a maximum through the interval time of the simulation and it fires when 
the interior status variable is greater than or equal to the threshold value. 

 

FIG.1: STRUCTURE OF SNN: (A) FEED-FORWARD SNN, 
(B) CONNECTION OF MULTIPLE DELAYED SYNAPTIC TERMINALS. 

Also, it is assumed that pre-synaptic neuron (݅) fires a spike at time (ݐ௜) and the (ܭ௧௛) 

synapse transfers that spike into the post-synaptic neuron at (ݐ௜ +݀௞). (݀௞) represents the 

delay correlated with the (ܭ௧௛) synapses. The interior status (membrane potential) ( ௝݉ሺݐሻ) 
of the post-synaptic neuron was represented by the following SRF [13]: 

                                          ௝݉ሺݐሻ ൌ ∑ ∑ ௜௝ݓ
௞ ݐሺߝ െ௄

௞ୀଵ
ே
௜ୀଵ ௜ݐ െ ݀௞ሻ                                                (1) 

, where (ܰ) is the pre-synaptic neurons number, (ܭ) is the synapses number, (t) is the 

current time and ሺw୧୨
୩ሻ is the coefficient of the weight between pre-synaptic neuron (i) and 

post-synaptic neuron (݆) for the (ܭ௧௛) synapse. It is trained using SSO algorithm afterwards. 
The SRF ሺߝሺݐሻሻ termed the influence of the pre-synaptic neuron potential on the 
postsynaptic neuron potential [12]. There are different mathematical forms of SRF such as 
the hyperbolic tangent function that is used in this paper, as below [14]: 

ሻݐሺߝ                                                                        ൌ tanh
t

τ
                                             (2) 

and its derivative: 

                                                   
ௗఌ

ௗ௫
=	
ଵ

ఛ
ቀ1 െ ଶ݄݊ܽݐ ቀ

௧

ఛ
ቁቁ                                         (3) 

, where (τ) refers to the time constant that determines growth and decay in this SRF. 

B. Coding and Decoding with SRM 

The feed-forward SNN comprises three layers, input layer (H), hidden layer (I), and 
output layer (J). The transmitting of the data through SRM of SNN is described in the 
following steps [14]: 
1. Data pass to the input layer neurons is encoded into spikes time and is computed using 

the following equation [12]:  

௛ݐ                                     
௙ሺܫ௜௡ሻ ൌ ௠ܶ௔௫ െ ݀݊ݑ݋ݎ ቀ ௠ܶ௜௡ ൅

ሺூ೔೙ିூ೘೔೙ሻሺ ೘்ೌೣି்೘೔೙ሻ

ூ೘ೌೣିூ೘೔೙
ቁ                         (4)  

where ൫ݐ௛
௙൯	is	the firing time for input neurons, ( ௠ܶ௔௫) is the maximum spike time and ( ௠ܶ௜௡) is 

the minimum spike time. (ܫ௠௔௫) is the largest value in the input data, (ܫ௠௜௡) is the lowest value in 
the input data, and (ܫ௜௡) is the present value of the input data. 

2. Every hidden layer neuron is tested if it is spiked or not spiked. At most, every neuron 
can spike once just amid the time interval, when its membrane potential (݉௜) is greater 

than or equals the threshold (ߴ). When neuron (݅) is spiked at time		ሺݐ௜
௙ሻ, the algorithm 
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goes to the next neuron (݅+1) in the current layer. Otherwise, the membrane potential 
(݉௜ሺݐሻ) is computed by the following equation [13]: 

                                  	݉௜ሺݐሻ ൌ ∑ ∑ ௛௜ݓ
௞ ሺݐሻߝሺݐ െ ௛ݐ

௙஽௡
௞ୀଵ

ு௡
௛ୀଵ െ ݀௞ሻ                         (5) 

, where (ܪ௡) is the number of the i/p layer neurons, (D୬) is the number of sub-synaptic, 

ሺݓ௛௜
௞ ሻ	is the weight between neurons in the input layer and hidden layer, (d୩	) denotes to 

the delay of the connection and εሺt െ t୦
୤ െ d୩ሻ is the response function. When (݉௜ሺݐሻ) 

exceeds the threshold value at instant (ݐ), the neuron (݅) will be prohibited from spiking 
more in the remaining time interval (T), otherwise it will be reset in the next instant (ݐ ൅
1). When the neurons of the hidden layer are finished, the same algorithm is repeated to 
the output layer (݆), but in this case the spikes of the hidden layer will be the inputs to the 
neurons of the output layer. The membrane potential ( ௝݉ሺݐሻ) is calculated as [12]: 

                                       ௝݉ሺݐሻ ൌ ∑ ∑ ௜௝ݓ
௞ ݐሺߝ െ ௜ݐ

௙஽௡
௞ୀଵ

ூ௡
௜ୀଵ െ ݀௞ሻ                            (6) 

, where (ܫ௡) is the neurons number in the hidden layer, ሺݐ௜
௙ሻ	is the firing time for hidden 

layer (݅) and (ݐ௝
௙ሻ is the firing time of output layer (݆). 

3. Finally, the output information of SNN is converted from time to real number using 
equation (7), which is extracted from the coding equation (4): 

௝ݐቀܫܴ                                                
௙ቁ ൌ

ቀ ೘்ೌೣି௧ೕ
೑ି்೘೔೙ቁ∗ሺூ೘ೌೣିூ೘೔೙ሻ

ሺ ೘்ೌೣି்೘೔೙ሻ
                              (7) 

, where ܴܫቀݐ௝
௙ቁ	is the real information for the firing time of the output layer (j). After 

completing the feed-forward calculations, the error is computed using Mean Squares 
Error (MSE) [12]: 

ܧܵܯ                                                           ൌ ∑ ቀݐ௝
௙ െ ௝ݐ

ௗቁ
ଶ

௝∈௃                                         (8) 

, where (ݐ௝
ௗሻ is training target spike time for output neuron (j).    

III. SOCIAL SPIDER OPTIMIZATION (SSO) ALGORITHM 

Social spider optimization (SSO) is a swarm optimization algorithm that was introduced by 
Erik Cuevas et al. in 2013. The SSO algorithm mimics the social attitude of the spiders 
colony in nature [6]. Colonies are created fundamentally from two elements. The first one is 
the spiders and the second one is a communal web. It represents the web by the domain of 
the searching field and representing the problem solutions [15]. SSO algorithm is applied in 
many optimization problems, but it is different from other optimization methods. It applies 
simple mathematical operators and does not require complex operators where its time and 
space complexity are not expensive [16]. This algorithm mimics the collective behavior of 
social spiders and works according to the two different search operators, which are known 
as females and males [17]. Spiders are divided by gender (male and female) and each one 
has a different behavior in the colony. The number of females ( ௙ܰ) is chosen at random 

within the range (65% - 90%) of the number of spiders [6]: 
                                      ௙ܰ= floor ((0.9 − rand ∗ 0.25)*	 ௦ܰ)                                  (9) 

, while the number of male spiders (ܰ௠) is calculated using the following equation [6]: 
                                                           ܰ௠ ൌ ௦ܰ െ ௙ܰ                                            (10) 

, where ( ௦ܰ) is the number of spiders, (floor) maps a real number to an integer number and 
(rand) is a number that is generated randomly between	ሾ0,1ሿ.  
The total population denoted by (S) is divided into two groups; the female group denoted by 
(F) that consists of female members (ܨ ൌ ݂1, ݂2, ݂3, … . , ݂ ௙ܰሻ and the male group that 
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consists of male members (ܯ ൌ ݉1,݉2,݉3,… . ,݉ܰ௠ሻ and denoted by (M). The position 
of the female spider (fi) with the position of the male spider (mi) is selected randomly 

between the initial parameters ሺ݌௟௢௪ሻ	ܽ݊݀	ሺ݌௛௜௚௛ሻthat represent the lower bound and upper 
bound, respectively [6]. 

௜݂,௝
௧ ൌ ௝݌

௟௢௪ ൅ ݀݊ܽݎ ∗ ቀ݌௝
௛௜௚௛ െ ௝݌

௟௢௪	ቁ	                            (11)    

                        ݉௜,௝
௧ ൌ ௝݌

௟௢௪ ൅ ݀݊ܽݎ ∗ ቀ݌௝
௛௜௚௛ െ ௝݌

௟௢௪ቁ		                         (12)                          

, where (݅) is the parameter index and (݆) is the individual index. Now, it must calculate the 
fitness evaluation using the fitness function for each spider (WI). It represents the solution 

(in this paper (WI) consists of ሺݓ௛௜
௞ ሻ and	ሺݓ௜௝

௞ )). This calculation is done using [6]: 

                                                        ூܹୀ
௃ሺೄ೔ሻି௪௢௥௦௧ೞ
௕௘௦௧ೞି௪௢௥௦௧ೞ

                                             (13) 

, where (ܵ݅) is the spider position and (ܬሺௌ௜ሻ) is the fitness value that has been obtained for 
this position (ܵ݅), the values of bests and worsts are the minimum and the maximum values 
for the solution in the population (minim value problem) as defined in equations (14) and 
(15), respectively [6]: 
௦ݐݏܾ݁																																																																		 ൌ ݉݅݊௜ఢሾଵ,ଶ,ଷ,…,ேሿ(ܬሺ࢏࢙ሻሻ                           (14)        

௦ݐݏݎ݋ݓ																																																																	 ൌ  ሻሻ                           (15)࢏࢙ሺܬ)௜ఢሾଵ,ଶ,ଷ,…,ேሿݔܽ݉

The mechanism used to send information through the colony members is communal web. 
This information is encoded as small vibrations. They depend on the distance and weight of 
each spider which has created them. The vibrations spotted by the spider (݅) from spider (݆) 
are defined as [6]: 

                                                   ௜ܸ	ܾ௜,௝ = ݓ௝	. ݁
ି	ௗ೔,ೕ

మ
                                               (16) 

, where (݀௜,௝) represents the distance (Euclidian) between the spiders (݅) and spiders (݆), 

where ݀௜,௝=ฮݏ௜ െ  .௝ฮ. Any pair of spiders has three relations of vibrations between themݏ

These vibrations are used with the SSO algorithm. The first one is denoted by (ܸܾ݅ܿ݅) that 
represents the vibrations of the spider (݅) with the member	ܿሺݏ௖ሻ that is the nearest 
individual to the spider (݅) with a higher weight. (ܸܾ݅ܿ݅) is described in equation (17) [6]. 
The second one is denoted by (ܸܾܾ݅݅) which represents the vibrations of the spider (݅) with 
the member ܾሺݏ௕ሻ that is the best fitness (weight) value of the total population (ܵ). ሺܸܾܾ݅݅)  
is described in equation (18) [6]. The third one is denoted by (ܸܾ݂݅݅), which represents the 
vibrations of the spider (݅) with the nearest female member ݂ሺݏ௙ሻ, as can be described in 

equation (19) [6]. 

݁ .	௖ݓ=ܾܸ݅ܿ݅                                                                
ି	ௗ೔,೎

మ
                                                 (17)

݁ .	௕ݓ=ܾܾܸ݅݅	                                       
ି	ௗ೔,್

మ
                                   (18)  

݁ .	௙ݓ=݂ܾܸ݅݅																																																																								
ି	ௗ೔,೑

మ
                                              (19) 

In the female cooperative process, female spiders offer attraction or disfavor to the other 
spiders regardless of their gender. The vibrations rely on the spider distance and weight 
which has created them. The powerful vibrations are generated via big or other neighboring 
spiders existing nearby the individual. The random number (ݎ௠) is created between [0,1]. 
When the (ݎ௠) value is less than the threshold value (ܲܨ) the movement of attraction is 
produced. The movement of repulsion is generated when the (ݎ௠) value is less than the 
threshold value (ܲܨ), as given by the equation below [6]: 
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                    f୧
୲ାଵ ൌ

ە
ۖ
۔

ۖ
ۓ f୧

୲൅∝. Vibci. ൫sୡ െ f୧
୲൯ ൅ β. Vibbi. ൫sୠ െ f୧

୲൯
൅δ. ሺrand െ 0.5ሻ, with	probability	ሺPFሻ
f୧
୲ െ α. Vibci. ൫sୡ െ f୧

୲൯ െ β. vibbi. ൫sୠ െ f୧
୲൯

൅δ. ሺrand െ 0.5ሻ, with	probability	ሺ1 െ PFሻ

			                (20) 

, where (t) is the iteration number and (α, β, δ) are random constants created with the 
range	ሾ0,1ሿ. In male cooperative process, the spiders of male are classified into two types: 
dominant spiders (D) and non-dominant spiders (ND) with respect to their positions with 
reference to the median member. In the communal web, the dominant males are pulled into 
the closest female spider. If the weight value of the male members is larger than the median 
value of the male population, then the male members are called dominant spiders (D). 
Otherwise, the male members are called non dominant spiders (ND), when the weight value 
of the other males members is lower than the median value of the male population, 
therefore; it is considered as the median male member and it has the weight (	ݓ ௙ܰା௠). 

Next, changing positions of the male spider (ܰ௠) can be defined as shown in eq. (21) [6]. 

                     ݉௜
௧ାଵ ൌ

ە
ۖ
۔

ۖ
௜݉ۓ

௧ ൅ .ߙ ܸܾ݂݅݅. ൫ݏ௖ െ ݉௜
௧൯ ൅ .ߜ ሺ݀݊ܽݎ െ 0.5ሻ,

ݓ	݂݅ ௙ܰା௜	 ൐ ݓ	 ௙ܰା௠

݉௜
௧ െ .ߙ ൬

∑ ௠೓
೟ .௪ே೑శ೓

ಿ೘
೓సభ

∑ ௪ே೑శ೓
ಿ೘
೓సభ

െ ݉௜
௧൰ ,

ݓ	݂݅ ௙ܰା௜	 ൑ ݓ	 ௙ܰା௠

	               (21) 

Where (
∑ ௠೓

೟ .௪ே೑శ೓
ಿ೘
೓సభ

∑ ௪ே೑శ೓
ಿ೘
೓సభ

) represents the weighted mean of the male population (M). Finally, in 

the mating process, the female members and dominant males execute mating in social 
spider colony. Thus, an overwhelming male (݉௚) spider finds a set (ܧ௚) of female 

individuals inside a specific extend (ݎ), which mates and shapes a new offspring (s୬ୣ୵). It 
is significant to increase that if the set (ܧ௚) is unfilled, the mating task is dropped. The 
range (ݎ) is defined as a radius which relies upon the size of the inquiry space, which is 
computed as follows (22) [6]. 

ݎ                                                     ൌ
∑ ሺ௣ೕ

೓೔೒೓೙
ೕసభ ି௣ೕ

೗೚ೢሻ

ଶ∗௡
                                          (22) 

At last, the mating procedure is done. The spiders with heavier weight will probably impact 
the new offspring. The impact likelihood (݌௦௜) of every part is allotted by the roulette wheel 
method, which is characterized as shown in equation in eq. (23) [6]: 

௦௜݌                                                          ൌ
௪೔

∑ ௪ೕೕ∈೅೒
                                       (23) 

Where (ܶ௚) are all the elements generated by (ܧ௚ 	∪ 	݉௚) and (i ∈ ܶ௚ሻ. The flowchart of 

the SSO algorithm is described in (Fig. 2). 

IV. DESIGN AND SIMULATION FOR THE PROPOSED CONTROLLER 

The proposed SNN controller, shown in Fig. 3, has three neurons in the input layer (H), and 
one neuron in the output layer (J). Each connection between neurons consists of certain 
number of synapses. The first input of the controller represents the error, the second input is 
integral of error and the third one is derivative of error. The controller uses two selection 
lines (c1 and c2) to select the type of the controller (see Table 1). Moreover, there are three 
selection lines (h1, h2 and h3) to choose the number of the neurons in the hidden layer (I) 
and three selection lines (s1, s2 and s3) to select the number of synapses in each sub 
connection (see Table 2). The controller is designed in discrete form with different 
sampling times according to the model to be controlled. The number of hidden nodes, 
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number of synapses, decay time constant (τ), threshold value (th), maximum time interval 
(T_max) and minimum time interval (T_min) are selected using trial and error to obtain the 
best output time response. 

Start

Calculate the female spiders no. (Nf) and male 
spiders no. (Nm) and initialize randomly

Determine the weight for each 
spider

Calculate Vibci & 
Vibbi

Calculate the median male number and Vibfi

Complete the mating operation and generate the 
new population by using roulette method

  If stopping criteria is
  Satisfied?

              
                 

               NO

Give the best solution

      YES

 

FIG. 2:  FLOWCHART OF THE SSO ALGORITHM. 

In this paper, linear and nonlinear models are connected with the P/PI/PD/PID-like 
SNN controller, (see Fig. 4). The type of the controller is specified according to the 
required output response of the controlled system. Set-point input is applied with applying 
sudden loads. The parameters of SNN and the SSO algorithm are initialized. The weights of 
the hidden and output layers for SNN are trained using SSO algorithm. The weights for 
each spider (weights of SNN) are set in the SNN controlled system and the MSE (see 
equation 8) is calculated. The training algorithm stops when the best weights are obtained. 
That is, reaching the minimum MSE with minimum number of iterations. Finally, the best 
weights are set in the SNN and the controller is tested under no load and load conditions.  

 

FIG. 3: BLOCK DIAGRAM OF THE PROPOSED SNN CONTROLLED SYSTEM. 

Three models (linear and nonlinear) are taken to test the efficiency of the proposed 
controller for variable set-point inputs and different structure controllers. For the two linear 
models below, the following SNN parameters are selected: τ= 6msec, th= 0.8, T୫ୟ୶= 
20msec and T୫୧୬=1 msec. The delay interval of the connection is 3 msec. Thus; the 
synaptic delays are from 1 to 4 msec. For SSO algorithm, the following parameters are 
selected: Ns= 25 spiders, the upper and lower initial weights are within (-10,10). After 
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several trials for all the tested models, it is found that the best values for the parameters of 
SNN are six neurons in hidden layer (I) with four synapses for each node. As a result, there 
are 96 weights trained in each iteration to give the best weights.  

TABLE 1: SELECTION LINES FOR THE TYPE OF CONTROLLER. 

Control   signals 
C2 C1 

Controller type 

0    0 P-Like SNN 
0    1 PD-Like SNN 
1    0 PI-Like SNN 
1    1 PID-Like SNN 

TABLE 2: SELECTION LINES FOR THE NUMBER OF SYNAPSES AND HIDDEN NODES USED IN SNN. 

Selection lines 
S3      S2      S1 
h3      h2      h1 

No. of synapses (S) / 
No. of hidden nodes (h) 

0        0         1           One 

0        1         0           Two 

0        1         1           Three 

1        0         0           Four 

1        0         1           Five 

1        1         0           Six 

1        1         1           Seven 

 
The linear and nonlinear models that are simulated are shown below: 
1) DC Motor Linear First Order Model: 

The speed control of DC motor is vastly used in control systems, like electric vehicles, 
machines, robots etc. The high tracking behavior, no overshoot and no oscillation are the 
main properties required for DC motor systems. The transfer function of the speed control 
of DC motor is [18]: 

ሺ௦ሻܩ                                                                    ൌ
௄೟

௃ௌା஻		
	                                             (24) 

, where (ܬ) is the moment of inertia, (ܤሻ is the damping coefficient and (ܭ௧) is the torque 
constant. The nominal parameters of the model with the external load disturbance (Td) 
equals to (0 Nm) are [18]: 

∗ܬ	                                                             ൌ5.77ൈ 10ିଶ	ܰ݉ݏଶ 
∗ܤ                                                                    ൌ 8.8 ൈ 10ିଷܰ݉݀ܽݎ/ݏ 
௧ܭ                                                                   

∗ ൌ  ܣ/0.667ܰ݉

 

FIG. 4: SIMULINK STRUCTURE OF P/PI/PD/PID-LIKE SNN CONTROLLER. 
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By taking J=3*ܬ∗ , B=ܤ∗	and  ܭ௧ ൌ ௧ܭ
∗ , with a sampling time TS= 0.1sec, the transfer 

function in discrete form is: 

ሺ௭ሻܩ                                                                ൌ
଴.ଷ଼ସଷ

௭ି଴.ଽଽସଽ
	                                       (25) 

The closed loop controlled system is trained to work as a P-like SNN controller. Afterword, 
the closed loop controlled system is tested by a unit step input applied without applying a 
load to the system using a P-like SNN controller. The step response is shown in Fig. (5-A). 
Moreover, the same reference input is applied with applying a sudden load of 10% of the 
reference input at the time of 8 sec and removed at the time of 14 sec, see Fig. (5-B). In this 
system, the MSE equals to (1) after 50 iterations. 

 
(A) 

 
(B) 

FIG. 5: SIMULATION OF P-LIKE SNN FOR A DC MOTOR FIRST ORDER LINEAR MODEL: A) WITHOUT LOAD (B) WITH LOAD. 

2) Second Order Linear Model: 
The following 2nd order linear transfer function is used as another model to simulate 

and test the proposed controller:  

ሺ௦ሻܩ                                                                ൌ
ଶ

௦మାସ∗௦ାଷ		
					                                   (26) 

By using a sampling time TS=0.05sec, the transfer function in discrete form is: 

ሺ௭ሻܩ                                                            ൌ
଴.଴଴ଶଷସ௭ା଴.଴଴ଶଵ଼ଽ

௭మିଵ.଼ଵଶ∗௭ା଴.଼ଵ଼଻
                                (27) 

The closed loop controlled system is trained to work as a PI-like SNN controller. A sine 
wave reference input, ሾ0.5 ൅ 0.5 sinwtሿ is applied with w=1 rad/sec. A sudden load equals 
to (10%) is applied at the time of 5 sec and removed at the time of 11sec. The SNN 
controller reached the best weights with MSE=2 after 80 iteration (see Fig. 7).  

In addition, the closed loop controlled system is tested by applying a unit step input 
with the effect of applying sudden load of 10% of the reference input at the time of 5 sec 
and it was removed at the time of 12sec. The output response is shown in Fig. 8. 

 
FIG. 7: SIMULATION OF PI-LIKE SNN CONTROLLER FOR A SECOND ORDER MODEL USING SINE WAVE INPUT AND A LOAD OF 

(10%). 
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FIG. 8: SIMULATION OF PI-LIKE SNN CONTROLLER FOR A SECOND ORDER MODEL USING UNIT STEP INPUT AND A LOAD OF 

(10%). 
3) Nonlinear servo motor: 
The mathematical model of the servo motor system is represented by the second order 
dynamic system with friction [19]: 

ܬ                                                         ൌ ݑ െ ܨ െ  (28)                      																		ܮܶ

Where (ܬ) is the moment of inertia, (	 ሷܺ ) is the servo motor acceleration,	ሺݑ) is the control 
input torque,	ሺܨ) is the friction torque and (ܶܮ) is the load torque. The friction torque is 
consisted of coulomb friction (ܨ௖ሻ, stiction friction (ܨ௖ሻ, and the viscous friction (ߪሻ [19] : 

ܨ                                  ൌ ቊܨ௦݁
ିሺ

೉ሶ

೉ೞሶ
ሻଶ
൅ ௖ܨ ቆ1 െ ݁

ି൬
೉ሶ

೉ೞሶ
൰ଶ
ቇ ൅ หߪ ሶܺ หቋ ∗ ሺ݊݃ݏ ሶܺ ሻ  (29) 

Where ሶܺ௦		is the stribeck velocity. By substituting these two equations:  ݁ଵ ൌ ܺ െ ܺௗ and 

݁ଶ ൌ ሶܺ െ ሶܺௗ  into eq. (28), the following state-space equations are obtained [19]: 
																																																																																		 ሶ݁ଵ ൌ ݁ଶ                                           (30)                      

																																																																									 ሶ݁ ଶ ൌ ቀଵ
௃
ቁ ሺݑ െ ܨ െ ሻܮܶ െ ሷܺௗ                          (31) 

Where ܺௗ, ሶܺௗ‚ and ሷܺௗ are the desired position‚ velocity and acceleration, respectively. The 
nominal parameters for the system that will be used in the simulation are given in Table 3 
[19] with a sampling time TS=0.01sec and TL=2 ܰ. For this model, the following SNN 
parameters are selected: τ= 7msec, th= 0.8, T୫ୟ୶= 15msec and T୫୧୬=1 msec. The delay 
interval of the connection is 5 msec. Thus; the synaptic delays are from 1 to 6 msec. For 
SSO algorithm, the following parameters are selected: Ns= 37 spiders, the upper and lower 
initial weights are within (-50, 50). After several trials, it is found that the best values for 
the parameters of SNN are nine neurons in hidden layer with six synapses for each node.  

TABLE 3: THE NOMINAL PARAMETERS VALUE OF SERVO MOTOR. 

Nominal Parameters Definition Value    Unit 

 ଶ݉݃ܭ Moment of inertia 0.2 °ࡶ

°࢙ࡲ  Stiction friction 2.190 ܰ݉ 

࡯ࡲ
°  Coulomb friction 16.690 ܰ݉ 

ሶࢄ °࢙  Stribeck velocity 0.010 rad/sec 

 Viscous friction 0.650 ܰ݉.sec/rad °࣌

 
As a result, there are 216 weights which are trained in each iteration to give the best 
weights. The closed loop controlled system is trained to work as a PID-like SNN controller 
by applying a unit step input and a load of 30% of the reference input at the time of 10 sec 
and removing it at the time of 20sec. The friction applied in this system has a high 
nonlinearity, see Fig. (9-a). The MSE reaches the minimum value of (5) at 150 iterations 
and the output response is shown in Fig. (9-b). 
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(A) 

 
(B) 

FIG. 9: (A) APPLIED FRICTION OF NONLINEAR SYSTEM WITH HIGH NONLINEARITY. (B) SIMULATION OF PID-LIKE SNN 

CONTROLLER FOR NONLINEAR SYSTEM WITH LOAD OF (30%). 

V. CONCLUTIONS 

In this paper, the SNN controller is designed to work with different structures; as a P, PI, PD or PID 
like. It is tested on the linear and nonlinear models using different reference input signals under no 
load and sudden load conditions. SNN has the advantage of using smaller network size and as a result 
fast feed-forward calculations as compared with second generation neural networks. The SSO 
algorithm succeeded to converge and obtain the best weights of the SNN for different types of models 
and different types of reference inputs in a minimum number of iterations and more speed to reach the 
target goal as compared with different training algorithms for the SNN. Moreover, the proposed 
controller has an advantage of a free choice for the type of the desired controller. 
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