Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

Comparison of Genetic Algorithm and Memetic Algorithm for
Bicriteria Permutation Flowshop Scheduling Problem
Adlical CilanY) Al A)al liiaal) dsa)yl oA g Al ol dua) g0y 45 5841
Aoty Adalal) 4 gasl)

Ghassan Adnan Khtan'®, Viean Abdul Muhsin Al-Salihi?, Mohamed Saleh Mehdi®®,
Hussam Abid Ali Mohammed'®
'Department of Mathematics, College of Education for Pure Sceince, University of Kerbala,

2School of Applied Sciences, University of Technology, Baghdad, Iraq.
'29hassanmath@yahoo.com, *’moh.saled81@yahoo.com,

Yhussammath5@agmail.com

Abstract

Flowshop scheduling is a well-known research field for many years. As the problem size gets
bigger, an analytical solution becomes impossible. Here, heuristic solutions come to the stage. In
the literature, generally solutions regarding a multi-objective are developed; and multi-objective
is generally used for three machines. In this paper, the weighted mean completion times and
weighted mean tardiness flowshop machine scheduling have been considered, so heuristic
methods have used: Genetic Algorithms (GA) are a population-based Meta heuristics. They have
been successfully applied to many optimization problems. However, such pure genetic
algorithms that makes them incapable of searching numerous solutions of the problem domain.
A Memetic Algorithm (MA) is an extension of the traditional genetic algorithm. That uses a local
search technique to reduce the Variable Neighborhood Search (VNS). The methods were tested
and gave various experimental results which shows that a pure memetic algorithm performs
better than the pure genetic algorithms for such type of NP-Hard combinatorial problem. And the
hybrid genetic algorithms versions with VNS, give good solutions better than hybrid MA and
both were better than pure algorithms.

galdiall
led sl Jall oy cllisdll ana S LS5 5l B30 dia 45 paall &gl Cllae (e AlpntV) Allisdl) A oa
sa0eiall Jilsally Aalaiall Jslall gl bl & gadl 6 Logee Aiiil) Jslall addins VS oda Jia 8 Jiaiese
5 alad¥) o) Aan Y daus gic) A gan WL cand) 3 3 S O ale Sy Ceadind Jiluall o328 5 tcalaaY)
& (GA) sl el sall ol sdall Sy A 3o Liaadinl 5 dplu) (i1Se SO (ualill dpeaY) Jans sia
o2 Jio clld e ALY Jlae (o aaal)l o plasy cida 8 @il) saamie o685 Gl 5SS aaine (el
Jxiel A (MA) Gaaslsall ol s Allaa) o3¢d saaie Jsla alaal g 3ale Lelaad Zalall 23, cila) sl
(VNS) sial) sall Cany Aol gy Cargll Alla A Juli] cdaall Caal) 2585 andinsd Al Al 350 6l 3)) sall
(GA) 4) 53 (30 Juabl zilis aad Adliall (MA) de) 53 &gl il 5 daliae meilis cuaef 5 < sl (5 5kl o2
(VNS) o Al 400) sl e 51 sl () 5 Bt Lgillan (4585 0 5 NP-Hard) dibess (e g sill 138 Jial, 4lall
Adlall Gl) Al e Jiadl WIS LaalilS 5 dimgll (MA) (0 ol 5 Jsla s
Keywords: scheduling, flowshop, memetic algorithm, genetic algorithm

1 Introduction

In the context of manufacturing, scheduling is fundamentally related to the problem of finding
a successive assignment of limited resources to a number of jobs which is optimal in terms of
certain performance measures. On many occasions in manufacturing environments, a set of
processes are needed to be serially performed in several stages before a job is completed. Such
systems are referred to as the flowshop environments. In a flowshop system, a set of n different

196

mailto:1aghassanmath@yahoo.com
mailto:1chussammath5@gmail.com

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

jobs needs to be processed on a sequential set of m machines. That is, each job consists of m
operations where each operation must be performed on a different machine for an amount of
processing time. Each machine can handle only one job at a time and the operation of a machine on
a job usually cannot be preempted.

In flowshop scheduling, the processing routes are the same for all the jobs (Solimanpur et al.,
2004). In the permutation flowshop, passing is not allowed. Thus the sequencing of different jobs
that visit a set of machines is in the same order. In the general flowshop, passing is allowed.
Therefore, the job sequence on each machine may be different (Pinedo, 1995).

The multi-objective flowshop scheduling problem has been addressed by some papers on
scheduling. Marett and Wright (1996) compared the performance of simulated annealing and tabu
search by using them for solving a large and complex multi-objective flowshop problem. Sayin and
Karabati (1999) dealt with the scheduling problem in a two machine flowshop environment by
minimizing makespan and sum of completion times simultaneously. Danneberg et al. (1999)
addressed the permutation flowshop scheduling problem with setup times where the jobs are
partitioned into groups or families. Jobs of the same group can be processed together in a batch but
the maximum number of jobs in a batch is limited. The setup time depends on the group of the jobs.
They proposed the makespan as well as the weighted sum of the completion times of the jobs as
objective function. For solving such a problem, they proposed and compared various constructive
and iterative algorithms. Toktas et al. (2004) considered the two machine flowshop scheduling by
minimizing makespan and maximum earliness simultaneously. Cheachan et al. (2010) proposed a
multi-objective algorithm for flowshop scheduling where a minimizing makespan and maximum
tardiness was used. Ravindran et al. (2005) proposed three heuristic algorithms for solving the
flowshop scheduling problem by makespan and total flow. Loukil et al. (2005) proposed multi-
objective simulated annealing algorithm to tackle the multi-objective production scheduling
problems (one machine, parallel machines and permutation flowshops). They considered seven
possible objective functions (the mean weighted completion time, the mean weighted tardiness, the
mean weighted earliness, the maximum completion time (makespan), the maximum tardiness, the
maximum earliness, the number of tardy jobs). They claimed that the proposed multi-objective
simulated annealing algorithm is able to solve any subset of seven possible objective functions.

In this paper, we deal with a multi-objective permutation flowshop scheduling problem. The
weighted mean completion time and weighted mean tardiness are to be optimized simultaneously.
To tackle this problem, an effective multi-objective Genetic Algorithm (GA) and Memetic
algorithm (MA). The remainder of this paper is organized as follows: Section 2 gives the problem
definition. In Section 3, the background of VNS, GA and MA and previous works are summarized.
The experimental results are provided in Section 4. Finally, Section 5 provides conclusions and the
future work.

2 Problem Definition

In this paper, a permutation flowshop problem is considered. The permutation flowshop
represents a particular case of the flowshop scheduling problems, having as its goal achieving a
schedule for a number of jobs on several machines regarding predetermined objective functions and
related constraints.

Consider a hypothetical permutation flowshop scheduling problem in which n jobs are to be
processed on m machines where the machines are ceaselessly ready to be used from time zero
onwards. Each job consists in m operations and the i — th (i = 1,...,n) operation of each job must
be processed on machine j (j =1,2,...,m).

At any time, every job can be processed at most on one machine and every machine can
process at most one job. One job can start on machine j if it is completed on machine j — 1 and if
machine j is free. In addition, preemption is not permitted; i.e., once an operation is started, it must
be completed without interruption.

197

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

For the permutation flowshop the operating sequences of the jobs are the same on every
machine. That is to say, if one job is at the i — th position on machine 1, then this job will be at the
i — th position on all the machines.

Given the known uninterrupted processing time of job i on machine j, p;;, and due date of job
i, d;, and the precedence constraints, the objective is to seek a schedule that minimizes the weighted
mean completion time and the weighted mean tardiness of the manufacturing system.

2.1 Weighted Mean Completion Time
The first objective considered is the minimization of the weighted mean completion time. This
objective can be calculated by the following expression:

n
i=1 WiCy j

o &

where C; ; is the completion time for job i on machine j, n is the number of the jobs and w; is
an importance factor related to job i. For instance, it may be equal to a holding cost per unit time.
These importance factors are not required to be less than 1. W is the sum total of jobs” weights; that

IS, ,
w=>w @

i=1

Let Cy, ; denote the completion time of the kth job, (k = 1, 2,...,n) on machine j in an imaginary
permutation © = {m,, ,,..., T, }, the completion time of the kth job in this permutation, which is

equal to Cr, ,,, can be calculated by the following equations:

Cn1,1 =Pr1

Crpr = Cryy 1 + Pyt k=(,..,n)

Crpj = Max{Coy_ i+ Crypjo1} + Py k=(2..,n)andj = (2,3)
Crpm = max{an_l,m + an,m—l} + Prm k=(2,..,n)andm =3

For more of the shortcut will write the completion time C, ; as the following C; ;, therefore the
equation (1) becomes

Z%:l Wka,Tn /
—w
2.2 Weighted Mean Tardiness

Another objective considered is the minimization of the weighted mean tardiness. This
objective is due-date based and calculates how due-dates are being met. That is to say, this objective
takes into account the due dates that are violated. To calculate the value of this objective, the
subsequent expression is used:

n
k=1 hk Tk,m

= 3

Where n is the number of the jobs, Ty ,, is the tardiness for job k on machine m and equals to
max{0, C ., — di} and hy, and H are the same as explained weighted in Section 2.1 equation (2).

It can be easily noticed that the objectives considered are inherently contradicting. To illustrate
the point, one should take into account that the optimization of the first objective in a single
objective problem is performed regardless of the jobs’ due-dates. Hence, the resulting sequences
may have large due-dates violations, thus imposing large penalties to the system. On the other hand,

198

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

while optimizing the second objective, the goal is to schedule jobs as close as possible to their due-
dates. However, the sequence obtained is very likely to cause large penalties to the system due to
the fact that this sequence is formed without regard to the job’s completion times.

3 Methodology

3.1 Variable Neighborhood Search (VNS)

It is clear to solve scheduling problems one tends to use branch and bound (B&B) or Dynamic
programming (DP) to find optimal solutions, however, these approaches has two main
disadvantages:

e |t is mathematically complex and thus a lot of time to be invested.

eWhen it concerns NP-hard problem, the computational time requirements are enormous for large

sized problem.

To avoid these draw backs we can appeal to heuristics methods. In recent year, the
improvement in heuristic methods has becomes under the name 'local search heuristic' are
implemented on the problem of scheduling n of jobs on three machines to minimize the

™ (WiCim/W + hT;n/H) (minimize the weighted mean completion time and weighted mean
tardiness). For the representation of solution the natural representation will be used. For each local
search method a set of parameter setting is necessary for arriving at high performing algorithm.

Conclusions concerning implementation of different setting are discussed.

First we introduce some neighborhoods for a permutation problem, where the step of feasible

solutions is given by the set of permutations of n jobs [10].

e Jump (Ju) In a permutation & = {m, m,,...,m,}, Select an arbitrary job m; and jump it to a
smaller position j, i > j, or to a large position k, k > i. Thus, we have |[N(n)| = (n — 1)

e Pairwise Interchange (PI) In a permutation m select two arbitrary jobs 7; and m;, i # j and
interchange them, and |N ()| = n(n — 1) /2.

e Adjacent Pairwise Interchange (API) This is a special case of both the jump and the pairwise
interchange neighborhood. In a permutation 7z, two adjacent jobs ; and 7, ., (1 <i<n-—1)
are interchanged to generate a neighbor 7, where |[N(m)| = (n — 1).

e Search Dynamic Programming (Dyna) In this move we composed of a set of independent
interchange moves; each such move exchange the jobs at positions i and j, i #j. Two
interchange moves are independent if they don't overlap, that is if for two moves involving
position i, j and k, [we have that min{i, j} = max{k, [} or vice versa.

Now, we propose algorithm AH which is applied at VNS to provide a best solution.

3.1.1 Algorithm AH [10]

Step (1) Select an initial solution m;,; = {m,,,..., m,} obtain from the arbitrary sequence and
calculate objective value of m;,,; say f (i) = fini-

Step (2) In this step will be change the initial sequence m;,,; by the others neighborhoods and
calculate values function for every one i.e.

a. For the neighbor Ju, have m,, and f},,.

b. For the neighbor PI, have tp; and fp;.

c. For the neighbor API, have rtyp; and fyp;.

d. For the neighbor Dyna, have mtpyp, and fpyng.

Step (3) Now choose f* = min(fy, for, fart, foynas fini) and

Tt = min(Ty np,,nAPI,nDyna,nlm-), then set f;,,; = frand mp,; = "

Now, we give details about local search methods (Meta-heuristic methods) which are used to solve
F3 1 X (wiCim/W + hTy/H) problems.

199

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

3.2 Genetic Algorithm Approach

The genetic algorithm (GA) is an optimization and search technique based on the principles of
genetics and natural selection. A GA lets a population made up of many individuals to evolve under
specified selection rules to a state that maximizes the “fitness” (i.e., maximizes the benefit
function).

The figure below [11] shows a basic model of a genetic algorithm, one of the main techniques
in artificial evolution. From an initial population (population of parents). Crossover and mutation
are possible to give children. Until the evolution is stopped, children are selected to become parents
and so on. This basic model can be modified to match the requirements of the problem to solve.

[Generation of initial population]

v

> “Parent” population

A 4
Reproduction of generation

Select two parents

Gene ration of new “parent” population A
Reproduction of parents

from “children” population

Mutation of children

\ 4

“Children” population

No

Stop evolution

Get solution from
“children” population

Fig.: Basic genetic algorithm

Proposed genetic algorithm: in this research, the chromosome or the individual that stands for a
solution has two main components: the sequence itself and the idle times inserted at the beginning
of the schedule. For example [5] [4,1,2,3] indicates that the processing order is: jobs 4, 1, 2 and 3,
with first job starting at time 6. The genetic operators used were:

e Crossover: Two different crossover operators were implemented. The first is the well-known
Order crossover (OX) [10]. After choosing two parents, a fragment of the chromosome from one
of them is randomly selected and copied in to the offspring. In the second phase, the offspring‘s
empty positions are sequentially filled according to the chromosome of the other parent.

The second crossover calls homogeneous mixture crossover (HMX) was proposed by
Mohammed et al. [12], given by the mixture the two chromosomes from parents uniformly by
making a set from genes M, they introduced the way for the mixture, first; the odd position from

200

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

the first parents and the even position from the second parents. Then separate genes without
repetition gene, since we read the set M from the left, if the gene j does not existing in the first
child put it, otherwise we put gene j in the second child until final M. This way also gives a new
two chromosomes.

Mutation: In our implementation a traditional mutation strategy based as indicated at (3.1.1
Algorithm AH). According to it, we choose minimum value from AH.

Outline of the Basic Genetic Algorithm (GA):

Initialization: In the first step of GA many individual solutions are randomly generated to form
an initial population. The population initial generation depends on the nature of the problem, but
typically contains several hundreds of possible solutions. Traditionally, the initial population is
produced randomly, it allows the entire range of possible solutions (the search space).
Sometimes, the solutions may be “seeded” in areas where optimal solutions are likely to be
found.

Selection: During each successive generation, a population of the existing population is selected
to create a new generation. Individual solutions are selected through a fitness-based process,
where fitter solutions (as measured by a fitness function) are typically more likely to be selected.
Certain selection methods rate the fitness of each solution and preferentially select the best
solutions. Other methods rate only a random sample of the population, as the latter process may
be very time-consuming.

Reproduction: The next step is to breed a second generation population of solutions from those
selected through genetic. For each new solution to be created, a pair of “parent” solutions is
selected for generating from the pool selected previously. By breeding a "child" solution using
the above methods of crossover and mutation, a new solution is produced which typically shares
many of the characteristics of its "parents”. New parents are selected for each new child, and the
process continues until a new generation of solutions of appropriate size is generated. Although
reproduction methods that are based on the use of two parents are more similar to nature of
biology, some research suggests more than two “parents” are better to be reproduce a good
quality child [13].

These processes eventually result in the next generation population of offspring that is different
from the initial generation. Generally speaking the average fitness will have increased by this
procedure for the population, since only the best organisms from the first generation are selected
for generating, along with a small proportion of less fit solutions, for reasons already mentioned
above.

Crossover and mutation are the most famous genetic operators but it is possible to use other
operators such as regrouping, colonization-extinction, or migration in genetic algorithms.
Termination: This generational process is repeated until a termination condition has been
reached. Common terminating conditions are:

A solution is found that satisfies minimum criteria.

Fixed number of generations reached.

Allocated budget (computation time /money) reached.

The highest level solutions fitness is reaching or has reached a plateau such that successive
iterations no longer produce better results.

Manual inspection.

Combinations of the above.

Simple generational genetic algorithm procedure:

Choose the initial population of individuals.

Evaluate the fitness of each individual in that population.

Repeat on this generation until termination (time limit, sufficient fitness achieved, etc.)

Select the best-fit individuals for reproduction.

Generating new individuals through crossover and mutation operations to give birth to offspring.

201

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

e Evaluate the individual fitness of new individuals.
e Replace least-fit population with new individuals.

3.3 Memetic Algorithm Approach

The memetic algorithms [14] can be viewed as a marriage between a population-based global
technique and a local search made by each of the individuals. They are a special kind of genetic
algorithms with a local hill climbing. Like genetic algorithms, memetic algorithms are a population-
based approach. They have shown that they are orders of magnitude faster than traditional genetic
algorithms for some problem domains. In a memetic algorithm a population structure approach
based on a ternary tree was chosen. In contrast with a non-structured population it divides the
individuals in clusters and restricts crossover possibilities.

o}
]

(o) o) 0 Leader
N IN [/INY) L e
0O 0o 0 o0 o \og0,0,/*| Cluster

. N (-
Support

L4 —

Population structure

The structure consists of several clusters and each cluster consists of a leader and three
supporter solutions. The leader is chosen as the best individual of the cluster. The number of
individuals in the population is defined by a number of nodes in the ternary tree, i.e., it is necessary

13 individuals to make a ternary tree with 3 levels, 40 individuals to 4 levels and so on.

e Representation: For the permutation flowshop scheduling problem the representation we have
chosen is quite intuitive, with a solution being represented as a chromosome with the alleles
assuming different integer values in the [1, n] interval, where n is the number of jobs.

e Crossover: As indicated in section 3.2 is the same crossovers in GA.

e Mutation: As indicated in section 3.2 is the same mutation in GA.

e Fitness Function: As in this problem the goal is to minimize the weighted mean completion
time and weighted mean tardiness, the fitness function was chosen as randomly.

e Offspring Insertion in Population: Once the leader and one supporter are selected, the
recombination, mutation and local search take place and an offspring is generated. If the fitness
of the offspring is better than the leader, the new individual takes its place. Otherwise it takes the
place of the supporter that took part in the recombination. If the new individual is already present
in the population, it is not inserted. We adopted a policy of not allowing duplicated individuals to
reduce loss of diversity. After all individuals were inserted, the population is restructured. The
fitness of the leader of a group must be lower than the fitness of the leader of the group just
above it. Following this policy, the higher subgroups will have leaders with better fitness than
the lower groups and the best solution will be the leader of the root subgroup. The adjustment is
made by comparing the leader of each subgroup with the leader of the subgroup just above. If the
leader in the level below turns out to be better, they swap their places.

4 Computational Experience
4.1 Test Problems

In this section a number of experiments are carried out which outlines the effectiveness of both
the algorithm described above. The purpose of these experiments is to compare the performance of
memetic algorithm approach with genetic algorithm approach for the Permutation Flowshop

202

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

Scheduling Problem. The experiments were conducted on Pentium IV at 2.2GHz, 2GB computer
using ‘Matlab’ language.

A set of test problem was created to compare the performance of the algorithms. The main
characteristics of a problem are its size as measured by the number of machines, and the number of
jobs. And the degree of correlation in the processing times for each jobs are likely to effect the
efficiency of algorithm which find near optimal solutions. A sample of test problems was generated
with three machines and 10, 20, 30, 40, 50, 75, 100, 150, 200, 500, 1000 and 2000 jobs. This
method of processing time p;;, pi» and p;3 in the test problems were randomly sampled from a
uniform distribution on the integers defined on [1,10] and the due dates where generated from
uniform distribution [(1 —TF — RDD/2)SP,(1 —TF + RDD/2)SP] such that SP =Y7 k;
where k; = (p;1 + piz + vi3)/3, TF = 0.2, 0.4, RDD = 0.2, 0.4, 0.6, 0.8, 1, and the due date
generation follow that given in [7] and integer weights w; and tardiness penalty h; are drawn from
distribution in the range [1, 10]. For each value of n jobs we have average 10 problems.

4.2 Comparative Results

In this section we will report on the results of our computational tests to show the effectiveness
of our local search methods. We are going to compare the results which we have pure versions of
pure genetic algorithm (GA,,,-) and pure memetic algorithm (MA,,,,). In table (1) we compare the
efficiency GA,,, and MA,,,, have been approached in terms of comparable average of value (V)
and average of time (T,,4) in case of without using the VNS. The MA,,, is the best in case of
values test problem but for the time; GA,,,,- and MA,,,,- almost the same.

Table (1) Compare between GA,,,- and MA,,,,- for F3 || Y (WiCim/W + h;T;p/H) problem
without using VNS

GApur MAL ¢

n Vavg Tavg Vavg Tavg
10 51.84193 | 0.124905 | 51.09262 | 0.124704
20 75.99547 | 0.176598 | 73.85434 | 0.176486
30 115.078 | 0.235044 | 109.0408 | 0.237384
40 144.3009 | 0.293423 | 141.016 | 0.293873
50 176.0374 | 0.349932 | 171.1646 | 0.353946
75 247.7387 | 0.517809 | 243.9867 | 0.503806

100 334.5184 | 0.68767 | 327.6341 | 0.677696
150 486.9344 | 1.043307 | 476.5341 | 1.028668
200 632.6442 | 1.451246 | 624.7556 | 1.479306
500 1524.405 | 4.989597 | 1516.281 | 5.015494
1000 3006.417 | 13.87517 | 2983.928 | 13.99025
2000 5939.021 | 47.15903 | 5902.931 | 42.60472

n: number of jobs.
Tavg- average time in seq.
Vavg: average value of the objective function.

203

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

In the following table (2) shows the efficiency local search heuristic methods (Genetic algorithm
(GAy,) and Memetic algorithm (MAy,)) have been approached in terms of comparable rate of
value and time with hybrid versions with VNS. The VNS is taking from the algorithm HA. The
GAy, is the almost best value for jobs since they are goods except (10, 20, 30, 2000) jobs and also
for the time; The GAy, is better than the MAy 4.

Table (2) Compare between GAy, and MAy 4 for F3 || Z?ﬂ(wiCi,m/W + hiTi,m/H) problem with
using VNS
GApa MAy4
n Vzwg Tavg V;wg Tavg
10 48.20147 | 0.128141 | 48.04437 | 0.12578
20 68.89549 [0.183678 | 68.35036 | 0.180783
30 102.7427 | 0.237143 | 101.7414 | 0.236342
40 130.9945 | 0.296141 | 130.1191 | 0.31677
50 156.6596 | 0.349918 | 157.9709 | 0.409337
75 226.4671 | 0.505848 | 226.9081 | 0.527959
100 306.4692 | 0.759616 | 306.6347 | 0.667848
150 447.3711 | 1.020531 | 448.7808 | 1.029536
200 589.7393 | 1.470041 | 593.1156 | 1.445019
500 1455.018 | 4.992128 | 1459.727 | 4.939721
1000 2916.17 | 14.13807 | 2917.381 | 13.91558
2000 5827.962 | 43.6308 | 5825.517 | 42.66788
GAy,: hybrid genetic algorithm.
MAy 4: hybrid memetic algorithm.

5 Conclusion
This paper has developed a number of solution procedures for three machines flowshop

scheduling minimizing X7, (w;C;m/W + h;Tym/H).

e For the pure algorithms show that pure memetic algorithm performs better than the pure genetic
algorithms for all results.

e The hybrid genetic algorithms versions with VNS, gives good solutions better than hybrid memetic
algorithm and both were better than pure algorithms.

e The local search methods used to solve all the large problems, the results show the robustness and
flexibility of local search heuristics.
Future work Some suggestions for future research are described as follows:

e First, the extensions propose of the exact for F3 || zggl(wici,m/w + hiTl-,m/H) problem by
driving a good lower bound or using the dominance rule in branch and bound algorithm.

e Second, using the local search heuristic should be explored finding an improvement potential of
various polynomially bounded scheduling heuristic.

204

Journal of Kerbala University , Vol. 12 No.3 Scientific . 2014

Reference

[1] Solimanpur M., Vrat P. and Shankar R., (2004): A neuro-tabu search heuristic for flowshop
scheduling problem. Computers & Operations Research 31:2151-2164.

[2] Pinedo M., (1995): Scheduling: theory algorithms and systems. Englewood Cliffs, Prentice-
Hall, New Jersey.

[3] Marett R. and Wright M., (1996): A comparison of neighborhood search techniques for multi-
objective combinatorial problems. Computers & Operations Research 23:465-483.

[4] Sayin S. and Karabati S., (1999): A bicriteria approach to the two-machine flowshop
scheduling problem. European Journal of Operational Research 113:435-449.

[5] Danneberg D., Tautenhahn T. and Werner F., (1999): A comparison of heuristic algorithms for
flowshop scheduling problems with setup times and limited batch size. Math Comput Model
29:101-126.

[6] Toktas B., Azizoglu M. and Koksalan S. K., (2004): Two-machine flowshop scheduling with
two criteria: maximum earliness and makespan. European Journal of Operational Research
157:286-295.

[7] Cheachan H. A., Mohammed H. A. and Khtan Q. A., (2010): Scheduling flowshop machines to
minimize the multi-objective functions. Iragi Journal for Administrative Sciences 637—657.

[8] Ravindran D., Noorul Haq A., Selvakuar S. J. and Sivaraman R., (2005): Flowshop scheduling
with multiple objective of minimizing makespan and total flow time. Int J Adv Manufacturing
Tech 25:1007-1012.

[9] Loukil T., Teghem J. and Tuyttens D., (2005): Solving multi-objective production scheduling
problems using metaheuristics. European Journal of Operational Research 161:42-61.

[10] Mohammed H. A., Cheachan H. A. and Khtan Q. A., (2009): Single machine scheduling to
minimizing sum penalty number of late jobs subject to minimize the sum weight of completion
time. Journal of Kerbala University. 7(1):163-173.

[11] Yousefi M. and Yusuff R. M., (2012): Minimizing earliness and tardiness penalties in a single
machine scheduling against common due date using genetic algorithm. Research Journal of
Applied Sciences, Engineering and Technology 4(9): 1205-1210.

[12] Mohammed H. A., Hassan A. S., Saloomi M. H. and Khtan Q. A., (2012): Memetic Algorithm
and Genetic Algorithm for the Single Machine Scheduling Problem with Linear Earliness and
Quadratic Tardiness Costs. Journal of Kerbala University. 7(1):163-173.

[13] Ting, Chuan-Kang (2005): On Mean Convergence Time of Multi-parent Genetic Algorithms
without Selection. Advances in Artificial Life, pp: 403-412. ISBN 978-3-540-28848.

[14]Murata T., Ishibuchi H. and Tanaka H., (1996): Multi-objective genetic algorithm and its
applications to flowshop scheduling. Computers and Industrial Engineering 30:957-968.

205

