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Abstract: 
Interval methods for verified integration of initial value problems (IVPs) for 

ODEs have been used for more than 40 years. For many classes of IVPs, these 

methods have the ability to compute guaranteed error bounds for the flow of an ODE, 

where traditional methods provide only approximations to a solution. Overestimation, 

however, is a potential drawback of verified methods. For some problems, the 

computed error bounds become overly pessimistic, or integration even breaks down. 

The dependency problem and the wrapping effect are particular sources of 

overestimations in interval computations.  

Berz (see [1]) and his co-workers have developed Taylor model methods, which 

extend interval arithmetic with symbolic computations. The latter is an effective tool 

for reducing both the dependency problem and the wrapping effect. By construction, 

Taylor model methods appear particularly suitable for integrating nonlinear ODEs. In 

this paper, we analyze Taylor model based integration of ODEs and compare Taylor 

model with traditional enclosure methods for IVPs for ODEs. 

More advanced Taylor model integration methods are discussed in the algorithm 

(1). For clarity, we summarize the major steps of the naive Taylor model method as 

algorithm 1.  
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Introduction 
Taylor model methods use 

multivariate polynomials in the initial 

values plus a small interval remainder 

term to represent the flow of an IVP. 

Thus, it is possible to work with 

nonlinear boundary curves. Including 

non-convex enclosure sets for crescent-

shaped or twisted flows. For non linear 

ODEs, this increased flexibility to 

admissible boundary curves is an 

intrinsic advantage of Taylor model 

methods over traditional interval 

methods, making Taylor methods very 

effective in some cases in reducing the  

wrapping effect. 

We refer to recent paper of 

Makino and Berz[2] for the general 

description of Taylor model methods 

for ODEs. Our intention here is to 

explain the fundamental difference 

between interval methods and Taylor 

model methods with a simple nonlinear 

examples.       

Shrink Wrapping and 

Preconditioning 

For successful integration over 

long time spans, sophisticated 

treatment of the interval terms is 

required. For this purpose, Berz and 

Makino see [3] invented two schemes 

which they call shrink wrapping and 

preconditioning. Shrink wrapping is a 

method to absorb the interval reminder 

term into the symbolic part of the 

Taylor model. From a geometric 

viewpoint, it resembles the 

parallelepiped method. Shrink 

wrapping use the same linear map as 
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the parallelepiped at maintaining a 

small condition number for the shrink 

wrapping map. Thus it stabilizes the 

integration process, like the QR 

interval method does. 

For clarity of the presentation, 

we describe the shrink wrapping and 

preconditioning for the special case of 

linear autonomous ODEs. The 

generalization to nonlinear ODEs are 

straightforward. We refer to [4] for 

more details.  

Taylor Model Methods for 

Linear ODEs 

For a linear ODE, the flow of an 

interval IVP is a parallelepiped for all 

time, so Taylor models seems to have 

no obvious advantage over interval 

methods. On the other hand, if Taylor 

model methods failed on linear ODEs, 

they would probably not be effective 

for nonlinear ODEs. The purpose of 

this selection is to show that they can 

be as good as interval methods for 

linear ODEs.  

Consider the linear autonomous 

ODE: 

0U)0(U

BUU




………..(1) 

Where B is a given real matrix, x 

is a given interval vector, and  

U0 = Pn(x), x  x, is a Taylor model 

vector with zero remainder interval 

describing the initial set. x is used to 

denote the vector of the step space 

variables. Assume that the enclosure 

step in the Taylor model method is 

feasible with some constant step size  

h > 0 and some order n  N. 

Naive Taylor Model method 

In the first integration step, 

Picard integration of order n is used to 

compute the multivariate Taylor 

polynomial: 

)x(P )tB(P:U nnn,1   
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
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introducing T : = Pn(hB), the 

verification step consists of finding an 

interval i1 such that:  
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holds for all x  x (see for example [2, 

ch.6]. At t1=h, the flow of the IVP (1) 

is then enclosed by the Taylor model  

U1 : = TPn(x) + i1……….(2)  

Subsequent integration steps are 

performed in the same manner, but 

with a slight modification in the 

verification step. In the j
th

 integration 

step, j ≥ 2, ij is sought such that the 

inclusion  
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Is fulfilled for all x  x letting: 

Uj : = Tuj-1 + ij, j = 1, 2,………(4)  

The naive Taylor model method 

for (1) consists of the iteration  

2,1, j      ,i)T(UTU
j

1k

k

kj

00

j

j  


 …(5) 

Where (T0)
0 

x = x, (T0)
k 

x = T. 

((T0)
k+1 

x), k  N. A part from the 

different computation of the remainder 

interval, for IVP(1). The naive Taylor 

model method (5) coincides with the 

direct interval method that occurs in 

[6]. Hence the naive Taylor model 

method (5) has the same divergence 
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property as the direct interval method, 

for which it was shown in [6] that after 

j steps we have:  

)i(wT)i)T((w 1

1j

1

1j

0

  ………….(6) 

(for A = (aij), we denoted by |A| 

the matrix with components |aij|). The 

key point here is that the spectral 

radius of |T|
j-1

 may be much larger than 

spectral radius of T
j-1

, which describes 

the natural error growth of a point 

method. If this is the case, the error 

bounds for the naive Taylor model 

method may be much larger than the 

true error. 

Naive Taylor Model Method 

with Shrink Wrapping 

Berz and Makina [2] defined 

shrink wrapping as a method for 

absorbing the interval part of the 

Taylor model into the polynomial part 

by modifying the polynomial 

coefficients. The set defined by the 

sum of the giving polynomial and 

interval is wrapped by a set defined by 

a pure polynomial. The new set may be 

larger than the initial set, but it is less 

prone to the dependency problem and 

to the wrapping effect in succeeding 

calculations.  

In the verified integration of 

ODEs, shrink wrapping is usually 

applied to the Taylor model enclosures 

of the flow at the grid points, before 

continuing the integration. In practical 

computations, shrink wrapping is 

performed when the size of the interval 

remainder term exceeds some 

heuristically chosen bound. After 

shrink wrapping, the initial set of the 

subsequent integration step is purely 

symbolic, which removes the 

dependency problem and simplifies the 

verification step. The success of Taylor 

model based integration method 

depends on the successful reduction of 

the excess introduced in the shrink 

wrapping process. 

The process of applying shrinks 

wrapping to a Taylor model vector:  

U : = P(x) + i. x  x………..(7) 

Is described in [11]. Here we 

only outline its four basic steps. 

First, let U
~

 denoted the Taylor 

model that is obtain when the constant 

part of P is removed. 

Second, multiply U
~

 by the 

inverse of the matrix associated with 

its linear part and obtain the Taylor 

model U
~

. 

Third, estimate the nonlinear 

part of U
~

, its Jacobian, and the 

interval term of U
~

, to obtain the shrink 

wrap factor q ≥ 1. 

Forth, multiply the polynomial 

part of U
~

with q and add the constant 

part of U. 

We illustrate shrink wrapping 

with the following nonlinear example. 

For clarity, we use two scalar Taylor 

models u and v instead of a Taylor 

model vector, the symbolic variables 

are denoted by a and b (instead of the 

vector x).  

Example: Absorption of the 

interval part into the symbolic part of a 

Taylor model. We consider the Taylor 

model vector (U, v)
T
, where:  

]1.0,1.0[abb31:)b,a(

]2.0,2.0[a
2

1
a42:)b,a(

v

u 2




  

]1,1[b,a    Where  ……….(8) 

The set defined in (8) is shown in 

fig 1. Following the above outline, we 

obtain: 

]2.0,2.0[a
2

1
a4:)b,a(U

~ 2   

]1.0,1.0[abb3:)b,a(V
~

 …….(9) 

The matrix associated with the 

linear part of the Taylor model (9) is 
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04
:C  multiplying (9) by C

-1
, 

yields: 
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3

1
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~
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8

1
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~ 2
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Estimating the nonlinear part and 

the interval terms as described in [2], 

and compute the numbers s, t, and d 

that satisfying  

0.034d0.05,d

[-1,1] ba, allfor ,a
3

1
t,b

3

1
t,a

4

1
t

[-1,1], ba, allfor    ab
3

1
s,a

8

1
s 2
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



 

These conditions are fulfilled for 

s = t =1/3 and d = 0.05, from which 

one can deduce the shrink warp factor. 

80

89

)s1)(t1(

1
.d1q 


 ……..(10) 

The final Taylor model after 

shrink wrapping is: 

,a
160

89
a

80

89
2)b,a( 2

swu    

ab
80

89
b

80

287
1)b,a(swv  …….(11) 

As Figure 1 show, the set defined 

by (11). 

 

Fig. 1: Sets of Taylor models before (Eq. (8)) and after shrink wrapping (Eq. (11)). 

The dotted line is the boundary of the set that is described by the polynomial of the 

original Taylor model. The white area is the set described by the original Taylor 

model, including the interval term. The excess area introduced by shrink wrapping is 

shaded in grey. 

 

Applying shrink wrapping in the 

linear model problem (1) is rather 

simple. For simplicity, let us assume 

that the shrink wrapping is performed 

in every integration step. Then we 

must compute [11]. 



 )i)w((T:d  where, /2d1:q j

1j

jjj

if T is sufficiently well-condition, and 

if the interval terms are sufficiently 

small, then the factor dj are almost 

zero, and shrink wrapping is feasible 

for many integration steps.  



Um-Salama Science Journal  Vol.6(1)2009 

 

The naive Taylor model method 

with shrink wrapping resembles the 

parallelepiped method. By multiplying 

the non-constant coefficients of the 

Taylor polynomial, for linear 

autonomous ODEs the interval term is 

absorbed as in the parallelepiped 

method. While T
j
 is well-conditioned, 

dj is small, and so is the excess area. 

On the other hand, qj (and the excess 

area) becomes large if T
j
 become ill 

conditioned, which is eventually the 

case if T has eigenvalues of different 

magnitude. In this case the integration 

breaks down due to the growth of the 

Taylor polynomial coefficients. 

 

Algorithm 1 (Naive Taylor 

Model Method) 

Let the initial set be given as a 

Taylor model vector in m space 

variables.  

For j = 0, 1, …, Jmax-1: 

1. Compute the Taylor polynomial Pn 

(of dimension m in m+1 variables) 

of the solution of the j+1
st
 time step, 

using Picard iteration. 

2. Compute a remainder interval 

vector i, using S chander's fixed 

point theorem (via interval iteration 

based on Picard iteration).  

3. Evaluate iPu~ n  , the resulting m-

dimensional Taylor model u which 

contains the flow of the IVP and 

serves as initial set for the next time 

step. 

Quadratic Model Problem 

Consider the quadratic model 

problem: 

],05.1,95.0[)0(u            vu 1    

],95.0,05.1[)0(  v          uv 2  ..(12) 

Where the differentiation is with 

respect to t. In an interval method, one 

would use interval initial values u0 = 

[0.95, 1.05] and v0 = [-1.05, -0.95]. In 

the Taylor model method, the initial set 

is described by parameters, which we 

call a and b, and which we choose on 

the interval [-0.05, 0.05]. The initial 

conditions of IVP(11) at t = t0 are thus 

given by: 

].05.0,05.0[:bb        b1:)b,a(V

],05.0,05.0[:aa          a1:)b,a(U

0

0





 

For illustration, we use order n = 

3 and step size h = 0.1 in the Taylor 

model integration of (11). All numbers 

are displayed here rounded to six 

decimal digits. In each integration step, 

the multivariate Taylor series (with 

respect to t, a and b) of the solution of 

(11) is employed. The third-order 

Taylor polynomial serves as an 

approximate solution. The truncation 

error of the series is enclosed by a 

suitable reminder interval. 

The first integration step consists 

of integrating the IVP  

a1)0(u          ,vu   

b1)0(v        ,vv 2 

…………(13) 

For o ≤ t ≤ h. we use the Picard 

iteration to calculate a multivariate 

Taylor  

polynomial approximation of the 

solution to (12) using the initial 

approximations  

u
(0)

 (T, a, b) = 1+ a, v
(0)

 (T, a, b) = -1 + 

b  (T is time), the first step of the 

Picard iteration yields:  

TaaTTb
T

dsbasUbaVbaTV

bTTa
T

dsbasVbaUbaTU

2
21

0

2
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 

  

After two more Picard iterations 

(and omitting the higher order terms), 

we obtain the third order Taylor 

polynomials.  

3

3

1
-

2
a

2

2

1
1),,(

)3(
TTTbTTabaTU   
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………..(14) 

As multivariate approximations 

to the solution of (12). For verified 

enclosure of the flow, the Taylor 

polynomials have to be furnished with 

suitable reminder bounds. Their 

derivation is based on fixed point 

iteration [12]. Intervals i0 and j0 are 

sought such that the inclusions:  
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

 

Simultaneously hold for all a  

a, for all b  b, and for all T  [0, 0.1]. 

For details of this computation of the 

reminder interval, refer to [12]. In my 

example, these inclusions are fulfilled. 

Example 2: For i0 = [-5.09307E-

5, 7.86167E-5] and j0 = [-1.75707E-4, 

1.60933E-4] An enclosure of the flow 

of the IVP(12) for t  [0, 0.1] is given 

by Taylor models: 

,jT
3

2
bTaTTTaaT2Tb1)b,a,T(V

~

  ,iT
3

1
-TaT

2

1
bTTa1:)b,a,T(U

~

0

32222

1
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322

1





 

Where a, b  [-0.05, 0.05], T  

[0, 0.1], and t = T. 

Evaluating 1u~  and 1̂  at T = h = 

0.1, we obtain the enclosure of the 

flow at t1 = 0.1 (Taylor models of order 

at most 2 in the space variables): 

  ,
0

1.001.1904667.0

),,1.0(
1

~:),(
1

iba

baubau




 

 

0
2

1.001.119.0

909333.0),,1.0(1
~:),(1

jaba

bavbav





….(15) 

 

Which is the initial set for the 

second integration step. The latter is 

performed with a slight modification. 

we do not use the interval remainder 

terms in u1 and v1 when computing the 

polynomial part of the Taylor model in 

the space and time variables. The 

Picard iteration is again performed for 

T  [0, 0.1],with initial 

approximations: 

2
1.001.119.0909333.0),,(

)0(

  ,1.001.1904667.0),,(
)0(

ababaTV

babaTU





  

After three iteration (and again 

omitting higher order terms), we obtain  

U
(3) 

(T,a,b) = 0.904667 + 1.01a + 0.1 b 

- 0.909333T + 0.19aT + 1.01bT + 

0.409211T
2 

+ 0.1a
2
T + 

0.913713aT
2 

+ 0.0904667bT
2
 – 

0.274215T
3
 

V
(3) 

(T,a,b) = -0.909333 + 0.19a + 

1.01b - 0.818422 T + 0.1a
2
 + 

1.82743aT + 0.180933bT + 

0.180933bT - 0.822644T
2 

+ 

1.0201a
2
T + 0.202abT + 0.01b

2
T 

-0.74654aT
2 

+ 0.82278bT
2 

+ 

0.522429T
3
 

To compute the interval reminder 

term, we must find intervals i1, j1 

fulfilling the inclusions:  

1),,(
)3(

  
0

)1),,(
)3(

(),(1 ibaTu
T

dsjbasvbau  

 

1),,(

)3(
  

0

2
)1),,(

)3(
(),(1

jbaT

v
T

dsibasubav



 

………..(16) 

For all a, b  [-0.05, 0.05] and 

for all T  [0, 0.1] (Note that i0 and j0 

are contain in u1 and v1, respectively, 

from (14). Suitable reminder intervals 
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are, for example  

i1  [-1.12850E – 4, 1.65751E – 4]  

ji  [-3.31917E – 4, 3.24724E – 4] 

Thus, the flow IVP(12) for t  

[0.1, 0.2] is contained in the Taylor 

models:  

,j)b,a,T(v)b,a,T(

  ,i)b,a,T(u)b,a,T(

1

)3(

2

1

)3(

2

v~
u~




 

Where a, b  [-0.05, 0.05], T  

[0, 0.1], t = T + 0.1. Evaluating at T = 

0.1, I obtain the enclosure of the flow 

at t2 = 0.2 (Taylor models at most 2 in 

the space variables): 

 

,jb001.0ab0202.0

a20201.0b03632.1a365277.0835195.0)b,a,1.0()b,a,T(

  ,ia01.0b201905.0a03814.1817551.0)b,a,1.0()b,a,T(

1

2

2

22

1

2

22

v~v

u~u







 

 

For larger value of t, the 

integration can be continued as in the 

second integration step described 

above. In te above example, we have 

used the so-called naive Taylor model 

integration method to illustrate the 

qualitative difference of interval 

methods and Taylor model methods for 

solving (IVPs). For practical 

computations, the naive Taylor model 

method is not very useful. The interval 

remainder terms are propagated as in 

the direct interval method. The 

inclusion (15) implies that the 

diameters of the interval reminder 

terms are nondecreasing. Often, these 

diameters grow exponentially, and to 

method break down early. 

 

Conclusion 

We have used traditional 

enclosure methods with Taylor model 

based integration. For the verified 

solution of IVP's for ODEs, we have 

shown how Taylor model methods 

benefit from symbolic computations. 

Increasd flexibility in admissible 

boundary curves of enclosures is an 

intrinsic advantage over traditional 

interval methods, not only for the 

solution of ODEs. In future research, 

we hope to contribute to the further 

development and increased use of 

Taylor model methods.  
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 * قسم الرياضيات/ كمية العموم/ جامعة بغداد
 

 
 الخلاصة

لممعقققاد ت الاراضقققمية ا ةاياديقققة  (IVPS)طرائققا الراقققرات لااليقققا الاكامققذ لممسقققائذ تات اللقققيم ا بادائيققة 
وهقت  الطرائقا لهقا اامكا يقة ةمقن ضقما  اسقا   (IVPS)أةااد ةميها أكثر مق  أربعقي  سق ةف لرئقات ماعقدد  مق  

  الطرائقققا الالميديقققة اققققود القققط الريبقققات ف إت أODEاقققدود ااءطقققاي ا  سقققيابية لممعقققاد ت الاراضقققمية ا ةاياديقققة 
لماذف االاءمي  الرواي هو سا  كام  إلن الءمف لااليا هت  الطرائاف ولبعض الامري ات اكو  ادود ااءطاي 
الماسققوبة ايهققا مررطققة بالا ققا وم  كمققا أ  الاكامققذ باامكققا  أ  ير ققذف ومسققائذ ااةامققاد واقق ثير  طققاي الاغميققف 

 ءمي  الروقي لاسا  الراراتفاكو  ةممياً مصادر الا

مقققس مسقققاةديذ أ موتجقققاً لطريلقققة ايمقققر الاقققي   قققرت اسقققا  الراقققرات ت  الاسقققابات  (Berz)وطقققور العقققالم 
 الرمقيةف

وااءير  أدا  اعالة لالميص كذ م  مس لة ا ةاماد واق ثير اغميقف الغطقايف بب قاي أ مقوتق طريلقة ايمقر الاقي 
 ف(ODEs)ية طاضمية ا ةايادية  ير الءاظهر ب كذ ةممي ملائمة الاكاملات الار

وملار قة أ مقوتق ايمقر مقس  (ODEs)وام ااميذ أ موتق ايمر المب ي ةمن الاكامقذ لممعقاد ت الاراضقمية ا ةاياديقة 
 فODEsلممعاد ت الاراضمية ا ةايادية  (IVPS)الطرائا الالميدية المليد  لممسائذ تات الليم ا بادائية 

 
 فODEs  IVPsموديذ طريلة ايمر  االيا الاكامذ  كممات مفتاحية: 

 


