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Abstract— Autoregressive (AR) random fields are widely use to describe 

changes in the status of real-physical objects and implemented for analyzing 

linear & non-linear models. AR models are Markov processes with a higher 

order dependence for one-dimensional time series. Actually, various estimation 

methods were used in order to evaluate the autoregression parameters. 

Although in many applications background knowledge can often shed light on 

the search for a suitable model, but other applications lack this knowledge and 

often require the type of trial errors to choose a model. This article presents a 

brief survey of the literatures related to the linear and non-linear 

autoregression models, including several extensions of the main mode models 

and the models developed. The use of autoregression to describe such system 

requires that they be of sufficiently high orders which leads to increase the 

computational costs 

Index Terms— Autoregressive process, Exponential autoregressive models, Threshold 

autoregressive models, Vector autoregressive models. 

I. INTRODUCTION 

Over the last years, the interesting on linear and nonlinear models has been growing 

steadily. Most of the processes occurring in reality are largely nonlinear [1]. Therefore, in 

many practical applications, nonlinear models are required to achieve acceptable forecast 

accuracy and to ensure sufficiently close forecasts [2]. Generally, the structures of dynamic 

phenomena can be characterized by time-series models [3,4]. In practice, one often has to 

deal with processes, the realization of which is more complex and at the same time allows 

efficient solution of problems of analysis, synthesis and simulation. Successful in this 

respect are AR models, in which recursive functions are used [5-7]. Various nonlinear 

models, namely: Bilinear models, threshold AR models, exponential AR models, state-

dependent models, spatial temporal conditional autoregressive and double stochastic 

models [8,9]. Also, several kinds of analysis of autoregressive models, such as one-

dimensional and multivariate AR models, an AR model with exogenous variables, a locally 

stationary autoregressive model, and an autoregressive model of a radial base [10,11]. Non-

linear models not only provide a better fit to data, but can also identify rich dynamic 

characteristics such as volatility, chaos, the behavior of the limit cycle and cyclic 

oscillations, which are not taken into account by linear models [12] 

A function whose value for each value of the independent variable is a random variable 

called a random function [10,11]. If it is an independent quantity, such functions called 

random (or stochastic) processes. The random process is an undefined function, and the 

ensemble of functions 𝑥 (𝑡) 𝑥 (𝑡) 𝑥 (𝑡), each of which can appear during a separate 
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experiment. Each of the ensemble functions is called the realization of a random process 

[13]. From a physical point of view, such a process represents oscillations with respect to a 

certain constant value. It is supposed, first of all, to receive information about the 

development of the process at the moment, to predict the process indicators during a short 

period, taking into account the continuity of the data and the degree of their influence on the 

process [14]. 

II. AUTOREGRESSIVE MODELS WITH MULTIPLE 

                                ROOTS OF THE CHARACTERISTIC EQUATION 

 

In signal processing and statistics fields, the autoregressive model defines as an 

illustration of the type of random process. This is because of description of signals and 

interference with the help of spatial-temporal random processes makes it possible to 

approximate mathematical models to real jamming situations in the most diverse 

information systems used in medicine, earth monitoring, navigation, etc. The output 

variable indicated by AR model is dependent on its own prior values linearly and on the 

stochastic term (the incompletly predicted term). However, the model has the form of a 

stochastic difference formula [5,7,10]. 

The processes of autoregression of order m can be given by the following stochastic 

difference equation [5,6,9]: 

𝑥𝑖 − 𝛽𝜉𝑖 = 𝜌1𝑥𝑖−1 + 𝜌2𝑥𝑖−2+. . . +𝜌𝑚𝑥𝑖−𝑚, 𝑖 = 2,3, . . . , 𝑛,                          (1)
 

where 𝜉𝑖, 𝑖 = 1,2, . . . , 𝑛, Gaussian independent random variables with zero mean & unit 

variance, and the coefficient determines the scale of the random field of
 

𝑥𝑖 . In the analysis 

of the sequence (1), the Yule-Walker (YW) equations [7,8] is used. YW is a wide-ranging 

method to estimate parameters of an autoregressive process. YW is also known to give 

preconceived results and the formula for asymptotic value of the displacement is known [8, 

10, 11]. The coefficients can be found on the basis of the experimental material with the 

help of the Yule-Walker equations [5, 7, 8] or obtained on the basis of the known properties 

of dynamical systems. The correlation function of the sequence (1) at different roots
 

𝑅𝑐 , 𝑐 =

1,2, . . . , 𝑚, of characteristic equation is: 

           𝑅𝑚 − 𝜌1𝑅𝑚−1 − 𝜌2𝑅𝑚−2−. . . −𝜌𝑚 = 0
,
                                       (2)  

and the condition of stability  
 

|𝑅𝑐| < 1,𝑐 = 1,2, . . . , 𝑚,  is sum of the exponents. In the 

general case, when the coefficients of Eq. (1) are large, and study of the properties of 

correlation function is a rather complicated problem. The characteristic equation (2) with a 

root 𝑅 = 𝜌 multiplicity has the form (𝑅 − 𝜌)𝑚 = 0 and AR (m=1) is written in the operator 

form as follows [12,15]: 

𝑥𝑖 =
𝛽𝜉𝑖

(1−𝜌𝑅−1)𝑚,                                     (3) 

where 𝑅−𝑘𝑥𝑖 = 𝑥𝑖−𝑘. To determine the coefficients (𝜌1, 𝜌2, . . . , 𝜌𝑚) of AR with different 

orders, we can rewrite the equations (1) and (3) in the form as follows: 

𝛽𝜉𝑖 + ∑ (−1)𝑣−1 ⋅ 𝐶𝑚
𝑣 ⋅ 𝜌𝑣𝑚

𝑣=1 𝑥𝑖−𝑙 = 𝑥𝑖 , 𝑖 = 1,2,3, . . . ..                             (4) 

  

Where 𝑚 is the order of autoregression? Multiplying (4) by 𝑥𝑖−𝑘 and finding the 

mathematical expectations of the right and left sides of such an equality, we get, after 

dividing by  𝜎𝑥
2 = 𝑀{𝑥𝑖

2}, 𝑖 = 1,2, . . . , 𝑛, The following relation for the values of the 

normalized correlation function [8,12,15]: 
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𝐹𝑥(𝑘) = ∑ (−1)𝑣−1 ⋅ 𝐶𝑚
𝑣 ⋅ 𝜌𝑣𝑚

𝑣=1 𝐹𝑥(𝑘), 𝑘 > 0                                           (5) 

but in an explicit form:
  

𝐹𝑥(𝑘) = 𝑚𝜌𝐹𝑥(𝑘 − 1) + (−1)1𝐶𝑚
2 𝜌2𝐹𝑥(𝑘 − 2)+. . . +(−1)𝑚−1𝜌𝑚𝐹𝑥(𝑘 − 𝑚), 𝑘 > 0    (6)    

In [15], their correlation properties are analyzed and relatively simple asymptotic 

relationships for the correlation intervals (k) are found. The asymptotic formula obtained 

allows finding the correlation interval of the autoregression sequence with the roots of the 

characteristic equation of any multiplicity m. For relatively small correlation intervals (k0), 

to find them, it is need to use directly the expression for correlation function 𝐹𝑥(𝑘). The 

data of [16] contains an analysis of the characteristic polynomial of the second-order 

autoregressive process with complex roots using Yule-Walker equations. Nevertheless, the 

YW equations associated with asymptotic displacement formula still bounded in precision. 

The article [17] considers an estimation parameters of linear AR model in case of presence 

of additive and uncorrelated measurement errors. This will make it possible to use 

heterosquadity in the variance of measurement errors. The asymptotic properties of new 

estimates are established and ignore the measurement error. Also, proposed estimation 

based on correction of the Yule-Walker evaluation equations. Moreover, the method of 

pseudo-libism was considered, based on assumptions about normality and calculated using 

the Kalman filter. The work of [18] present a definition of the parameters of autoregressive 

models that help to obtain random fields closely in characteristics to isotropic. The author 

proposes to use the YW systems to find the correlation coefficients from a given correlation 

function. In [4], several kinds of AR for time series analysis are presented for instance: i) 

one-dimensional and multidimensional autoregressive models, ii) an AR with exogenous 

variables, iii) a locally stationary autoregressive model, iv) an autoregressive model of a 

radial basis function. With the help of these models, various tools are obtained for the 

analysis of dynamic systems, such as the impulse response function, power spectrum, 

characteristic roots and energy contribution. In [19], a unified quasi likelihood procedure 

was proposed for estimating unknown parameters of AR (1) random coefficient under both 

for stationary and non-stationary processes. In [20], a complex AR model based on the 

mathematical derivation of least squares for a complex numerical domain was investigated. 

This model differs from the conventional one, since the real and imaginary numbers are 

calculated individually. Appendix of [20] shows that the use of a complex number to place 

the field of meteorological elements. Predicting using a complex autoregressive model is 

effective in improving the results of the forecast. In [21], one of the possible approaches to 

the interpretation of experimental data based on the theory of linear dynamical systems is 

considered. The analyzed data are considered as an output of some linear dynamical system, 

described by an ordinary differential equation (ODE) of the lst order. A method is proposed 

for identifying the ODE parameters from the current data without involving any a priori 

information. 

The proposed approach to modeling allows: to identify the statistical parameters of the 

noise present in the data; build optimal filters; organize bandpass filtering and signal 

separation; to study the structure of complex processes and many other tasks, minimum of a 

priori information. In [22] the monograph describes the geometric method. These solutions 

are objective in the sense that they have a firm theoretical basis and use the modeling of 

nonlinear dynamical systems from experimental data. The basis of the method is a 

qualitative approach to the analysis of nonlinear models and the construction of groups of 

symmetries of attractors of dynamical systems with controls. In [23], the problem of 

approximating a continuous model from the discrete data observed in its connection with 
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the Laplace transform and the z-transformation is considered. It is obtained that the 

relationship between ordinary differential and difference equations established by us is 

analogous to the inverse coordinated z-transformation, when passing from the complex z-

plane to the s-plane. A comparative analysis of the proposed and classical methods of 

transition from a continuous to a discrete model (and vice versa) is performed. The paper 

[24] offers a new set of transformed polynomial functions that deliver a flexible setting for 

nonlinear autoregressive modeling of the conditional mean and concurrently ensure strict 

stationarity, ergodicity, damped memory, and the existence of moments of the supposed 

stochastic sequence. The great flexibility of the transformed polynomial functions makes 

them interesting for both parametric and semiparametric autoregressive modeling. This 

flexibility is proven by showing that the transformed polynomial sieves are super-normed 

on the space of continuous functions and provide corresponding convergence rates in 

Holder functional spaces. 

On difference equations and autoregressive processes, we find that many seemingly 

complex mathematical objects, such as eigenvalues, diagonalized matrices, unit roots and 

nonstationary processes. The eigenmodes estimating and intervals matching with their 

oscillation periods and damping times can be calculated from estimating parameters of the 

model. The works [27-37, 56] contains data analysis collected at each spatial location and 

during time intervals and time dependence between different implementations. Also 

contains proposals, forms and applications based on AR (m). 

III. THRESHOLD AUTOREGRESSIVE MODEL (TAR) 

Tong (1978) and Tong & Lim (1980) [39] are introduces threshold time series models 

which have been effective. Via its piecewise-linear nature, the TAR model can simulate 

non-linear features like limit cycles, resonance and others as well as it is easily quantifiable. 

So, there are sudden variation in the probability structure when the threshold process is 

switch modes which may not take place in the real life. TARs usually work well, excluding 

for the boundaries between different regimes [38, 39]. Particularly, the TAR model 

produced a wide range of articles covering both theoretical and empirical problems. 

Let us a self-excited hysteresis AR model with a mode indicator𝑅𝑡 [39]: 

𝑦𝑡 = {
𝑥𝑡

𝑇𝜑 + 𝜎1𝜀𝑡 , 𝑅𝑡 = 1

𝑥𝑡
𝑇𝜓 + 𝜎2𝜀𝑡 , 𝑅𝑡 = 0

   , 𝑅𝑡 = {

1,     𝑦𝑡−𝑑 ≤ 𝑟𝐿

0,     𝑦𝑡−𝑑 ≤ 𝑟𝑈

𝑅𝑡−1,   𝑒𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                     (7) 

where 𝑥𝑡 = (1, 𝑦𝑡−1, . . . , 𝑦𝑡−𝑚)𝑇 , 𝜑 = (𝛾1, 𝜑1, . . . , 𝜑𝑚)𝑇 , 𝜓 = (𝛾2, 𝜓1, . . . , 𝜓𝑚)𝑇, 𝜀𝑡 − are 

independent and distributed random variables identically with zero mean and unity 

variance, 𝜎1, 𝜎2 > 0 − are scalars, 𝑑 > 0 −  delay parameter, and 𝑟𝐿 ≤ 𝑟𝑈 -  are the border 

parameters of the hysteresis zone. Eq. (7) includes a traditional two-mode TAR as a special 

case for𝑟𝐿 = 𝑟𝑈 [38, 39]. 

From (7), the mode indicator becomes 

𝑅𝑡 = 𝐼(𝑦𝑡−𝑑 ≤ 𝑟𝐿) + 𝐼(𝑟𝐿 < 𝑦𝑡−𝑑 < 𝑟𝑈)𝑅𝑡−1 

    = 𝐼(𝑦𝑡−𝑑 ≤ 𝑟𝐿) + ∑ ∏ 𝐼(𝑟𝐿 < 𝑦𝑡−𝑑−𝑖 ≤ 𝑟𝑈)𝐼(𝑦𝑡−𝑑−𝑗−1 ≤ 𝑟𝐿)
𝑗
𝑖=0

∞
𝑗=0                               (8) 

almost surely. When 𝑟𝐿 < 𝑟𝑈, then the mode indicator depends upon the past observation 

which are infinitely far away and makes the hysteresis model differs from the traditional 

threshold models [38, 39]. In [40], a method is proposed for defining regimes number in 

TAR using a smooth transient (ST) autoregression as a tool. Since the ST model is TAR(1) 

estimation, but asymptotic properties are not supported for the proposed method. The 

existing tests for the adequacy of AR model with ST regime are applied sequentially to 
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determine the mode number. However, the hysteresis AR model is widely known in 

economics, engineering, mechanics, materials science, and so on. In [38, 39], a typical two-

mode TAR is extended which leads to produce a new model called a hysteresis 

autoregressive model. This proposing a hysteresis into its mode switching structure. The 

proposed model uses a piecewise linear structure of TAR model with more flexible 

mechanism for switching modes. An adequate condition for geometric ergodicity is given 

and the estimation of conditional least-squares was discussed. Asymptotic distributions and 

information criteria for model selection are derived. The derivation in self-excited threshold 

autoregressive models was discussed in [41]. The main interest is threshold parameter 

derivation. Asymptotic behavior of the corresponding estimation depends on whether TAR 

model is continuous or not. In continuous case, the bounding distribution is normal and a 

standard derivation is possible. In intermittent case, the bounding distribution is abnormal, 

and it is not known how to evaluate it consistently? In [42], the author is investigating a 

threshold estimation of TAR model when the basic threshold parameter is a random 

variable. The author is shown that the Bayesian estimation is matched, but the bounding 

distribution is expressed in terms of maximum likelihood ratio. In addition, the convergence 

estimation is also established. The bounding distribution can be calculated by explicit 

modeling from which the test and output can be performed for the threshold parameter. The 

results obtained are illustrated by numerical simulation. 

IV. EXPONENTIAL AUTOREGRESSIVE (EAR) NONLINEAR TIME SERIES MODEL 

   One of the parametric families of the non-linear time series is the exponential 

autoregression (EAR) model. The EAR model, which introduced to predicts cyclic data, is a 

kind of useful model that has properties similar to those of non-linear random oscillations. 

EAR is able to generate data with different types of bound distributions associated with the 

parametric space in different specific areas. EAR also deals with the amplitude-dependent 

frequency, transition phenomena and the limit cycle. A reflective feature of this model is 

that it fixes the non-Gaussian characteristics of time series and also has a marginal 

distribution belonging to the exponential family [1,43]. 

The EAR (𝑚) model can be explicitly written as 

𝑦𝑖+1 = {𝜑1 + 𝜌1𝑒−𝛾𝑦𝑖
2
} 𝑦𝑖+. . . + {𝜑𝑚 + 𝜌𝑚𝑒−𝛾𝑦𝑖

2
} 𝑦𝑖−𝑚+1 + 𝜉𝑖+1                                  (9) 

from
 
𝛾 > 0,  a certain scaling constant and𝜉𝑖+1 −  is the process of white noise with an average zero 

and variance 𝜎𝜉
2 .Values 𝛾 are selected in such a way that 𝑒−𝛾𝑦𝑖

2
 varies significantly over the range 

(0.1). In addition, (9) can be considered as a threshold AR model.  If
 
|𝑦𝑖| - a large value, then (9) is 

analogous to an AR model with parameters approximately equal to (𝜑1, . . . , 𝜑𝑚). But if
 
|𝑦𝑖| - small 

value, the autoregression parameters are switched to (𝜑1 + 𝜌1, . . . , 𝜑𝑚 + 𝜌𝑚) [1]. 

V. DOUBLE AUTOREGRESSIVE MODEL (DAR) 

Let us consider the autoregression model with conditional hetero-dependence [44]: 

𝑦𝑡 = ∑ 𝜑𝑖𝑦𝑡−𝑖 + 𝜂𝑡√𝜔 + ∑ 𝛼𝑖𝑦𝑡−𝑖
2𝑝

𝑖=1
𝑝
𝑖=1                                               (10) 

where 𝜔, 𝛼𝑖 > 0, 𝑡 ∈ 𝑁 ≡ (−𝑝, . . . . ,0,1,2, . . . ), 𝜂𝑡 −  is an independent random sequence, 𝜂𝑡 ≈ 𝑁(0,1), 

and 𝑦𝑠  does not depend on {𝜂𝑡: 𝑡 ≥ 1} for 𝑠 ≤ 0. Consider Ft will be 𝜎 −  field generated 

{𝜂𝑡 , . . . . , 𝜂1, 𝑦0, . . . . , 𝑦𝑝}, 𝑡 ∈ 𝑁. The conditional variance for is 𝑣𝑎𝑟( 𝑦𝑡|𝐹𝑡) = 𝜔 + ∑ 𝛼𝑖𝑦𝑡−𝑖
2𝑝

𝑖=1  . The 
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data of [45] contains studies of a non-stationarity 1st order DAR model which is determined by the 

random recurrence equation:  𝑥𝑖 = 𝜑0𝑥𝑖−1 + 𝜉𝑖√𝛾0 + 𝛼0𝑥𝑖−1
2

 ,  
where

  
𝛾0 > 0, 𝛼0 ≥ 0

  and  
𝜉𝑖 −

 a 

sequence of symmetric random variables.
 
This is shown that the first-order DAR model is explosive on 

condition
 𝔼  𝑙𝑜𝑔|𝜑0 + 𝜉𝑖√𝛼0| > 0

. According this condition, the quasi-maximal likelihood of   
𝜑0, 𝛼0  

is consistent and normal asymptotically, so that the problem of the unit root does not exist in (10) [44].
 

VI. VECTOR AUTOREGRESSIVE MODELS (VAR) 

 Vector AR processes are popular in sciences, especially in economics [46]. VAR 

model is flexible and simple for multi-dimensional time series data. For example, in 

econometrics, VAR became standard tools when classical models of simultaneous 

equations were identified and recommended as alternative [46,47]. The main form of the 

VAR process is: 

𝑦𝑡 = 𝐷𝑑𝑡 + 𝐴1𝑦𝑡−1+. . . . +𝐴𝑚𝑦𝑡−𝑚 + 𝜉𝑡                                            (11) 

where 𝑦𝑡 = (𝑦1𝑡 , . . . . , 𝑦𝐾𝑡)𝑇 − is the vector K of observed variables of time series, a vector 

of deterministic terms such as a constant, a linear trend and/or seasonal dummy variables; D 

is a bound parameter matrix; (𝐴1, . . . , 𝐴𝑚) − are the parameters of matrices (K × K ) tied to 

retarded values 𝑦𝑖;  m - is the VAR order; 𝜉𝑡 − is a white noise with zero mean and 

considered  error process; 𝐸(𝜉𝑡) = 0, 𝐸(𝜉𝑡𝜉𝑡
𝑇) = ∑  𝜉 - is an invariant in time and all 𝜉𝑡 are 

consistently uncorrelated or independent. VAR models are useful tools for forecasting and 

also can be used to analyze the relationship between the variables involved [46,47]. The 

work [48] solve the problem of determining the time direction in VAR processes by using 

statistical method. By analogy with causal of AR(1) processes with non-Gaussian noise, the 

time-reversal remnants distribution of the linear vector AR(1) model is assumed closer to the 

Gaussian distribution than the actual remnants distribution in the forward direction. 

Experiments with simulated data show the validity of the hypothesis. According to obtained 

results, a decision rule was developed to determine the direction of VAR processes. The 

correct direction in time (forward direction) is the remainders of time series which less than 

Gaussian. A number of experiments illustrate the excellent results of the proposed rule as 

compared to other methods based on independence tests. In [49-52], VAR models with 

controlled resolution are offered, which allows controlling various sizes of sparsity, 

allowing to correctly visualizing potential causes and dependencies. The coefficients of the 

model are found as a solution to the problem of mathematical optimization, solvable by 

standard numerical optimization routines. In [53], the properties of the steady-state of the 

threshold VAR are considered. Suppose that the regime process follows the Bernoulli 

distribution and the trigger parameter is exogenous, necessary and sufficient conditions for 

the existence of a stationary distribution are derived. In [54], the problem of detecting 

anomalies in heterogeneous multidimensional multi-parameter sets of time series is 

considered. The focus is on the field of safety, in which data objects are flights, and time 

series are sensor readings and control switches. The paper proposes a structure that 

represents each flight using autoregression using polarization with Markov switching. 

When adjusting the VAR with correlated noise, despite the strong time dependence and 

covariance, [55] set the error bounds for the non-asymptotic evaluation of the structured 

parameters of the VAR. The estimation error has the same order as the corresponding Lasso 

type evaluation block with independent samples and the analysis is performed for any 

norm. The analysis is based on the results of the generalized chain; sub exponentially 

martingales, and the spectral representation of the VAR models. 
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VII. CONCLUSIONS 

This article presents a brief literature review containing developments related to the AR 

model. Also, including several extensions of the main regime model and recently developed 

models & methods for estimating forecasts. This class of tasks is relatively new and 

research on the topic contains certain contradictions. For example, among researchers there 

is no unity in the use of various concepts, terms and formulations to designate solved 

problems. Moreover, there is no qualitative classification of tasks and methods for solving 

them, and the proposed classifications are incomplete. For example, for image analysis, 

mathematical models of random fields are used. However, the used autoregressive models 

have the property of anisotropy, therefore, to describe the majority of real images that are 

isotropic; a model with multiple roots of characteristic equations is better suited 

Sometimes used models that are implemented on various geometric shapes and this 

implementation cause additional computational complexity (i.e. the transition to twice 

stochastic models of random fields’ leads to an increase in computational costs). Their use 

allows obtaining heterogeneous results, since the parameters of the model are constantly 

changing. The change of parameters, as a rule, is described by a usual autoregressive 

random field, and then some transformation occurs. As noted earlier, autoregressive models 

are used to describe random fields on multidimensional space. A special case is represented 

by autoregression processes of large orders (section II). However, the construction of such 

models should begin with a one-dimensional space and the characteristics of quality models 

are stability and accuracy, in which the minimum variance of the control error is ensured. 

Finally, the variety of different models of random fields currently used have completely 

different structures and impossible describe them with one model. 
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