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Abstract: The presence of high correlation among predictors in regression mode has undesirable effects on the 

regression estimating. In the literature, there are several available biased methods to overcome this issue. The 

Poisson regression model (PRM) is a special model from the generalized linear models. The PRM is a well-known 

model in research application when the response variable under the study is count data. Numerous biased estimators 

for overcoming the multicollinearity in Poisson regression model have been proposed in the literature using different 

theories. An overview of recent biased methods for PRM is provided. A comparison among these biased estimators 

allows us to gain an insight into their performance. Simulation and real data application results show that the Liu-

type estimator is comparable to other estimators. 
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1. Introduction 

Poisson regression model is widely applied for studying several real data problems, such as in mortality studies 

where the aim is to investigate the number of deaths and in health insurance where the target is to explain the number 

of claims made by the individual [1,2,3]. In dealing with the Poisson regression model, it is assumed that there is no 

correlation among the explanatory variables [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]. However, 

this assumption often not holds, which leads to the problem of multicollinearity. In the presence of multicollinearity, 

when estimating the regression coefficients for Poisson regression model using the maximum likelihood (ML) 

method, the estimated coefficients are usually become unstable with a high variance, and therefore low statistical 

significance [25]. Numerous remedial methods have been proposed to overcome the problem of multicollinearity 

[26,27,28,29,30]. The ridge regression method [31] has been consistently demonstrated to be an attractive and 

alternative to the ML estimation method. 

Ridge regression is a biased method that shrinks all regression coefficients toward zero to reduce the large 

variance [32]. This done by adding a positive amount to the diagonal of 
T

X X . As a result, the ridge estimator is 

biased but it guaranties a smaller mean squared error than the ML estimator.   

In linear regression, the ridge estimator is defined as 

 
1ˆ ( ) ,T T

Ridge k  β X X I X y   (1) 

where y  is an 1n   vector of observations of the response variable, 1( ,..., )pX x x  is an n p  known design 

matrix of explanatory variables, 1( ,..., )p β  is a 1p   vector of unknown regression coefficients, I  is the 

identity matrix with dimension p p , and 0k   represents the ridge parameter (shrinkage parameter). The ridge 

parameter, k , controls the shrinkage of β  toward zero. The OLS estimator can be considered as a special estimator 

from Eq. (1) with 0k  . For larger value of k , the ˆ
Ridgeβ  estimator yields greater shrinkage approaching zero 

[31,33].  

 

 

2. Poisson regression model 
Count data are often arise in epidemiology, social, and economic studies. This type of data consists of positive 

integer values. Poisson distribution is a well-known distribution that fit to such type of data. Poisson regression model 

is used to model the relationship between the counts as response variable and potentially explanatory variables 

[9,34,35,36,37,38,39,40].  
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Let iy  be the response variable and follows a Poisson distribution with mean 
i , then the probability density 

function is defined as 

   , 0,1, ; 1,2, , .
!

i iy

i
i i

i

e
f y y i n

y

 

     (2) 

In a Poisson regression model, ln( ) T
i i  x β  is expressed as a linear combination of explanatory variables 

1( ,..., )Ti i ipx xx . The ln( )i  is called as canonical link function which making the relationship between 

explanatory variables, and response variable linear. The most common method of estimating the coefficients of 

Poisson regression model is to use the maximum likelihood method. Given the assumption that the observations are 

independent, the log-likelihood function is defined as 

  
1

( ) exp( ) ln ! .
n

T T

i i i i

i

y y


  β x β x β   (3) 

The ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it equal to zero, as 

 

1

( )
exp( ) 0.

n
T

i i i

i

y



   
 


β

x β x
β

  (4) 

Because Eq. (4) is nonlinear in β , the iteratively weighted least squares (IWLS) algorithm can be used to obtain the 

ML estimators of the Poisson regression parameters (PR) as  

 
1ˆ ˆ ˆ ˆ( ) ,T T

ML
β X WX X Wv   (5) 

where ˆˆ diag( )iW  and v̂  is a vector where i
th

 element equals to ˆ ˆ ˆˆ ln( ) (( ) / )i i i i iv y     . The ML 

estimator is asymptotically normally distributed with a covariance matrix that corresponds to the inverse of the 

Hessian matrix 

 

1
2

1( )ˆ ˆcov( ) ( ) .T
ML

i k

E
 




  

    
    

β
β X WX   (6) 

The mean squared error (MSE) of Eq. (5) can be obtained as 

 
1

1

ˆ ˆ ˆ ˆ ˆMSE( ) ( ) ( )

ˆ[( ) ]

1
,

T
ML ML ML

T

p

j j

E

tr







  





β β β β β

X WX   (7) 

where j  is the eigenvalue of the ˆTX WX  matrix.  

3. Ridge estimator 

In the presence of multicollinearity, the matrix ˆTX WX  becomes ill-conditioned leading to high variance and 

instability of the ML estimator of the Poisson regression parameters. As a remedy, Månsson and Shukur [41] 

proposed the Poisson ridge estimator (PRE) as 

 

1

1

ˆ ˆˆ ˆ( )

ˆ ˆ ˆ( ) ,

T T
PRE ML

T T

k

k





 

 

β X WX I X WXβ

X WX I X Wv
  (8) 

where 0k  . The ML estimator can be considered as a special estimator from Eq. (8) with 0k  . Regardless of 

k value, the MSE of the ˆ
PREβ is smaller than that of ˆ

MLβ  [25] because the MSE of  ˆ
PREβ is equal to 

 
2

2 2
1 1

ˆMSE( ) ,
( ) ( )

p p
j j
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 where j  is defined as the j
th 

element of ˆ
ML β and   is the eigenvector of  the ˆTX WX  matrix. Comparing with 

the MSE of Eq. (5), ˆMSE( )PREβ  is always small for 0k  . 

 

4. Liu estimator 
Another popular biased estimator which is known as Liu estimator has been adopted in Poisson regression 

model. The Poisson Liu estimator (PLE) is defined as  

 
1ˆ ˆˆ ˆ( ) ( ) ,T T

PLE MLd  β X WX I X WX I β   (10) 

where 0 1d  .  Regardless of d value, the MSE of the ˆ
PLEβ is smaller than that of ˆ

MLβ  [25] because the MSE 

of  ˆ
PLEβ is equal to 

 

2 2

2

2 2
1 1

( )
ˆMSE( ) ( 1) .

( 1) ( 1)

p p
j j

PLE

j jj j j

d
d

 

   


  

 
 β   (11) 

5. Liu-type estimator 
Alternative to Liu estimator, the Liu-type estimator was proposed by Liu [42] to overcome the problem of severe 

multicollinearity. The Poisson Liu-type estimator (PLTE) is defined as  

 
1ˆ ˆˆ ˆ( ) ( ) ,T T

PLTE MLk d  β X WX I X WX I β   (12) 

where d    and 0k  .  In Eq. (12), the parameter k can be used totally to control the conditioning of 

ˆT kX WX I . After the reduction of ˆT kX WX I  is reach a desirable level, then the expected bias that is 

generated can be corrected with the so-called bias correction parameter, d  [43,44,45,46,47].  

Liu [42] proved that, in terms of MSE, the Liu-type estimator has superior properties over ridge estimator. The 

MSE of  ˆ
PLTEβ  is defined as  

 

2 2

2

2 2
1 1
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6. Two-parameter estimator 
Following Asar and Genç [48] and Huang and Yang [49] the two-parameter estimator in linear regression model 

is defined as: 

 
1ˆ ˆ( ) ( ) ,T T

TPE OLSk k d  β X X I X X I β   (14) 

where 0 1d   and 0k  .  For PRM, the two-parameter estimator (PTPE) is defined as: 

 
1ˆ ˆˆ ˆ( ) ( ) .T T

PTPE MLk k d  β X WX I X WX I β   (15) 

It is obviously noted that the ˆ
PTPEβ  is a combination of two different estimators PRE and PLE. Furthermore, if 

1k  , Eq. (15) will be the ˆ
PLEβ  while if 0k  , Eq. (15) will be the ˆ

MLβ . Besides, when 0d  , then Eq. (15) 

will equal ˆ
PREβ .  

In terms of MSE, the two-parameter estimator has superior properties over ML estimator. The MSE of  ˆ
PTPEβ  

is defined as  

 

2 21
2 2

2 2
1

( )
ˆMSE( ) ( 1) .

( ) ( )

p
j j
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j j j j

kd
k d

k k
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  





 
   

   
β   (16) 

 

 

 

7. Jackknifed Ridge estimator 
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In generalized ridge estimator, the Jackknifing approach was used [50,51,52]. Batah et al. [53] proposed a 

modified Jackknifed ridge regression estimator in linear regression model. Related to Poisson regression model, 

Türkan and Özel [54] proposed a modified Jackknifed Poisson ridge estimator depending on the study of Singh et al. 

[52]. 

Let 1 2( ,m ,..., )pm mM  and 1 2diag( , ,..., )p  Λ , respectively, be the matrices of eigenvectors and 

eigenvalues of the ˆTX WX  matrix, such that ˆ ˆT T T M X WXM S WS Λ , where S XM . Consequently, the 

Poisson regression estimator of Eq. (5), ˆ
MLβ , can be written as 

 

1 ˆˆ ˆ

ˆ ˆ .

T
ML

ML ML





γ Λ S Wv

β Mγ
  (17) 

Accordingly, the Poisson ridge estimator, ˆ
PREβ , is rewritten as 

 

1

1

ˆˆ ( )

ˆ( ) ,

T
PRE

ML





 

 

γ Λ K S Wv

I KD γ
  (18) 

where  D Λ K  and 1 2diag( , ,..., ); 0, 1,2,...,p ik k k k i p  K . Equation (18) represents the 

generalized ridge Poisson regression estimator (GRPR) [51,53,55].  

Following the study of Batah et al. [53], let the Jackknife estimator (JE), in Poisson regression, is defined as  

 
2 2ˆ ˆ( ) ,JE ML

 γ I K D γ   (19) 

and the modified Jackknife estimator (MJE) of  Batah et al. [53], in Poisson regression model, is defined as 

 
1 2 2ˆ ˆ( )( ) .MJE ML
   γ I KD I K D γ   (20) 

The MSE of  ˆ
MJEγ  is defined as: 

 
2 2 1 2 2 4 2 2ˆMSE( ) ( ) ( ) .T T

MJE k k k       γ I D Λ I D D τ τ D   (21) 

 

8. Simulation study 
In this section, a Monte Carlo simulation experiment is used to examine the performance of the used estimators. 

The response variable of n  observations is generated from PRM by  

 ln( ) T
i i  x β   (22) 

where 0 1( , ,..., )p  β  with 
2

1

1
p

j

j




  and 1 2 ... p     . The explanatory variables 

1 2( , ,..., )T
i i i inx x xx  have been generated from the following formula  

 
2 1 2(1 ) , 1,2,..., , 1,2,..., ,l

ij ij ipx w w i n j p        (23) 

where   represents the correlation between the explanatory variables and ijw ’s are independent standard normal 

pseudo-random numbers. Three representative values of the sample size are considered: 30, 50 and 100. In addition, 

the number of the explanatory variables is considered as 4p   and 8p   because increasing the number of 

explanatory variables can lead to increase the MSE. Further, because we are interested in the effect of 

multicollinearity, in which the degrees of correlation considered more important, three values of the pairwise 

correlation are considered with {0.90,0.95,0.99}  . For a combination of these different values of ,n p , and 

  the generated data is repeated 500 times and the averaged mean squared errors (MSE) is calculated as  

 

500

1

1ˆ ˆ ˆMSE( ) ( ) ( ),
500

T

i 

  β β β β β   (24) 

where β̂  is the estimated coefficients for the used estimator.   
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The estimated MSE of Eq. (25) for ML, PRE, PLE, PLTE, PTPE, and MJE, for all the combination of ,n p , 

and  , is summarized in Table1. Two observations can be made. First, in terms of   values, there is increasing in 

the MSE values when the correlation degree increases regardless the value of ,n p . However, PLTE performs better 

than the others estimators. Second, regarding the value of p , it is easily seen that there is increasing in the MSE 

values when the p  increasing from four variables to eight variables. Although this increasing can affected the quality 

of an estimator, PLTE is achieved the lowest MSE comparing with the other used estimators. To summary, all the 

considered values of , ,n p , PLTE is superior to ML, PRE, PLE, PTPE, and MJE indicating that this estimator is 

more efficient. 

 

Table 1: MSE values of simulation study for the ML, PRE, PLE, PLTE, PTPE, and MJE estimators. 

   ML PRE PLE PLTE  PTPE MJE 

           

4p   30n   0.90 4.7044 4.5914 4.4634 3.3974 4.1914 4.4984 

  0.95 5.3324 5.2194 5.0914 4.0254 4.8194 5.1264 

  0.99 5.7304 5.6174 5.4894 4.4234 5.2174 5.5244 

 50n   0.90 3.0754 2.9624 2.8344 1.7684 2.5624 2.8694 

  0.95 4.1504 4.0374 3.9094 2.8434 3.6374 3.9444 

  0.99 4.3424 4.2294 4.1014 3.0354 3.8294 4.1364 

 100n   0.90 2.9184 2.8054 2.6774 1.6114 2.4054 2.7124 

  0.95 3.1284 3.0154 2.8874 1.8214 2.6154 2.9224 

  0.99 3.8834 3.7704 3.6424 2.5764 3.3704 3.6774 

8p   30n   0.90 4.8094 4.6964 4.5684 3.5024 4.2964 4.6034 

  0.95 5.4284 5.3154 5.1874 4.1214 4.9154 5.2224 

  0.99 5.8434 5.7304 5.6024 4.5364 5.3304 5.6374 

 50n   0.90 3.3444 3.2314 3.1034 2.0374 2.8314 3.1384 

  0.95 4.4874 4.3744 4.2464 3.1804 3.9744 4.2814 

  0.99 4.8124 4.6994 4.5714 3.5054 4.2994 4.6064 

 100n   0.90 3.2544 3.1414 3.0134 1.9474 2.7414 3.0484 

  0.95 3.5294 3.4164 3.2884 2.2224 3.0164 3.3234 

  0.99 4.0874 3.9744 3.8464 2.7804 3.5744 3.8814 

 

 

9. Real application 
To investigate the usefulness of reviewed biased estimators, an application related to the football English league 

(https://www.efl.com), season 2016-2017 is employed. This data contains twenty teams, where the response variable 

represents the number of won matches. The six considerable predictors included the number of yellow cards ( 1x ), the 

number of red cards ( 2x ), the total number of substitutions ( 3x ), the number of matches with 2.5 goals on average (

4x ), the number of matches that ended with goals ( 5x ), and the ratio of the goal scores to the number of matches (

6x ).  

First, the deviance test [56] is used to check whether the Poisson regression model is fit well to this data or not. 

The result of the residual deviance test is equal to 8.373 with 14 degrees of freedom and the p-value is 0.869. It is 

indicated form this result that the Poisson regression model fits very well to this data.  

Second, to check whether there are relationships between the explanatory variables or not, Figure 1 displays the 

correlation matrix among the six explanatory variables. It is obviously seen that there are correlations greater than 

0.86 between 1x  and 6x , 1x  and 4x , 2x  and 4x , and, 4x  and 6x . 

Third, to test the existence of multicollinearity, the eigenvalues of the matrix ˆTX WX  are obtained as 993.758, 

142.907, 75.560, 38.999, 21.424, and 1.016. The determined condition number max minCN /   of the data is 

31.274 indicating that the multicollinearity issue is exist. 
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The estimated Poisson regression coefficients, standard errors which are computed by using bootstrap with 500 

replications, and MSE values for the ML, PRE, PLE, PLTE, PTPE, and MJE estimators are listed in Table 2. 

According to Table 2, it is clearly seen that the PLTE estimator shrinkages the value of the estimated coefficients 

efficiently. Additionally, in terms of the calculated standard errors, the PLTE and PTPE show substantial decreasing 

comparing with ML.  

 
Figure 1: The correlation matrix among the six predictors. 

 

Table 2: The estimated coefficients and MSE values for the ML, PRE, PLE, PLTE, PTPE, and MJE estimators. The 

number in parenthesis is the standard error. 

       

 ML PRE PLE PLTE PTPE MJE 

1̂   
-1.219 

(0.151) 

0.057 

(0.022) 

-0.016 

(0.007) 

-0.052 

(0.018) 

-0.015 

(0.011) 

-1.223 

(0.127) 

2̂  
0.441 

(0.151) 

-0.035 

(0.013) 

-0.004 

(0.001) 

-0.032 

(0.011) 

-0.004 

(0.002) 

0.440 

(0.139) 

3̂  
0.575 

(0.175) 

0.007 

(0.004) 

-0.016 

(0.008) 

0.006 

(0.004) 

-0.012 

(0.008) 

0.576 

(0.108) 

4̂  
-3.476 

(0.313) 

0.066 

(0.004) 

0.034 

(0.008) 

0.063 

(0.004) 

0.014 

(0.007) 

-3.447 

(0.231) 

5̂  
-2.432 

(0.160) 

0.017 

(0.010) 

-0.008 

(0.004) 

0.0162 

(0.011) 

-0.007 

(0.003) 

-2.419 

(0.133) 

6̂  
5.121 

(0.387) 

0.073 

(0.009) 

-0.004 

(0.003) 

0.066 

(0.008) 

-0.003 

(0.001) 

5.084 

(0.249) 

       

MSE 3.681 1.184 1.065 0.977 1.032 1.152 

 

 

10. Conclusions 
In this paper, we presented a thorough review of literature regarding the biased estimators in Poisson regression 

model when the multicollinearity is existing. According to the simulation and real data application results, the Liu-

type estimator has better performance than ML, PRE, PLE, PTPE, and MJE, in terms of MSE. In conclusion, the use 

of the Liu-type estimator is recommended when multicollinearity is present in the Poisson regression model. 
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