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H I G H L I G H T S  
 

A B S T R A C T  

• The prosthetic finger is move by tendon 

instead of motor. 

•  The system is non-linear dynamic model. 

• Sliding mode control can drive the model to 

desired position. 

• Classical Sliding mode control suffers from 

chattering. 

 In this research paper, the modeling and control of a tendon driven, instead of 

joint motors, prosthetic finger that mimics the actual human index finger were 

deliberated. Firstly, the dynamic model of the prosthetic finger is developed 

based on a 3-degree of freedom (DOF) articulated robot structure and utilizing 

the Lagrange equation. Then, the classical sliding mode control (CSMC) strategy 

was implemented to control the finger motion. To overcome the cons of CSMC, 

such as the chattering problem, an adaptive sliding mode controller (ASMC) was 

developed.  MATLAB Simuphalange was used to perform the simulation after 

the necessary equations were derived. The obtained results showed that the 

ASMC superior to the CSMC in depressing the chattering and fast response. 
A R T I C L E  I N F O  
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1. Introduction 

In our society, robots play an important role. They are currently commonly used for labor-intensive operations in various 

industrial applications that involve a high degree of precision and repetition. In the entertainment industry, robots can be used 

in the form of toys and animations. The role of robots in society is continually evolving. This research aims to bring them 

further into domestic aid, medicine, military, search, and rescue. The robot must perform only one particular task in many of 

these applications and be an engineered for a single operation. However, as robots' possible use increases, they will need to 

communicate with objects in their environments. The creation of end effectors that accumulate and use various objects as 

resources is an important challenge in robots' production. The human hand is considered to be the most dexterous end effector, 

with a total of 26 DOF [1].  The construction of a highly advanced prosthesis hand needs to deal with two significant problems: 

the development of a mechanical design that would permit enough movement freedom and how to build controllers be robust 

and capable of handling the associated mechanical design, which is commonly so complicated. The human body movement is 

based on the muscles that apply forces to the skeleton by the tendons. In the literature, with the robot and prosthetic hand, the 

human hand's motion system is commonly applied to imitate the natural movement [2]. 

The human hand tendon arrangements were tested to ensure that the robot's hands have the maximum total muscle strength 

requirements. From this analysis, it can be inferred that the robotic hand has force values highly related to that of the human 

hand. Weghe et al. [3] Created a human hand tested that was anatomically correct to determine its mechanism, function, and 

power. In recent years, many papers have investigated the serial robots assembled based on the tendon-driven mechanisms, 

which are composed of pulley-belt configurations. Kawanishi, et al. [4] have developed a system considering the fuzzy logic 

approach for fingertip position control of a 4 DOF  tendon-driven robotic finger. The tendon's elasticity was also taken into 

consideration. Hristu et al. [5] made a comparison between the efficiency of fuzzy logic and traditional PID controllers for a 

multi-finger robotic hand. The aim was to control both the fingertip's position and the forces exerted on the fingertip. It was 

established that the fuzzy logic control approach superior to the PID controller. Muscles will exercise pulling effort only, and 
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muscle forces are sent through the tendons to the finger bones. The muscles of the forearm stretch to the hand more than fifteen 

tendons. When the finger is extended, one set of muscles and tendons exercise the finger's expanding motion, and a separate set 

of muscles and tendons create the bending motion. Tendon structure in hands is problematic and, however, leads to the high 

functionality of human hand movements through this sophisticated tendon arrangement. Hand tendons that lie at the back of 

the human hand straighten the fingers and flexor tendons and turn the fingers on the palm side of the hand. In this research, a 

3-degree of freedom chain robot mechanism closely mimics the human index finger's size is modeled. On the palm and the 

back of the hand, the phalanges' tendon fixing points are reduced to three.  

However, the considered problem in this work is the control of an under actuated finger, which is a very challenging task 

than the fully actuated one, and how to guarantee the overall stability of such a system. The work suggests first designing a 

classical sliding mode controller (CSMC), which is theoretically is able to reject the bounded matched perturbation altogether. 

The following points summarize the main steps that are conducted in this research to obtain this work’s aim: 

 To analyze of dynamic model and state space representation of finger contact grasped object for the 

human prosthetic hand. 

 To the development of conventional sliding mode control (SMC) algorithm of the prosthetic finger. 

 To analyze the prosthetic finger's stability controlled by the conventional SMC scheme based on the 

sliding surface defined in the state space representation, the control action is responsible for maintaining 

and constructing the sliding motion. 

2. Model development 

Figure 1 represents the finger of a human prosthetic hand, on which the controller methods are applied. A prosthesis model 

of the two dimensions (2D) finger was considered a movie chain consisting of three cylindrical phalanges that mimic the 

inertial characteristics of the finger index's proximal, central and distal phalanges, as demonstrated in Figure 2. The 

articulations of the model to reflect the joint masses of the finger were supplemented with spherical components.  

Based on Figure 2, where X and Y represent the displacement of the prosthetic finger while  refers to the angular 

displacement of the philandering finger, the displacement equations are: 

𝑥1 = 𝑙1 cos 𝜃1   (1) 

𝑦1 = 𝑙1 sin 𝜃1   (2) 

𝑥2 = 𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜃2)   (3) 

𝑦2 = 𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜃2)   (4) 

𝑥3 = 𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜃2) + 𝑙3 cos(𝜃1 + 𝜃2 + 𝜃3)  (5) 

𝑦3 = 𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜃2) + 𝑙3 sin(𝜃1 + 𝜃2 + 𝜃3)  (6) 

The linear velocity of the masses can be found as follows, where �̇� is the angular velocity: 

�̇�1 = −𝑙1�̇�1 sin 𝜃1   (7) 

�̇�1 = 𝑙1�̇�1 cos 𝜃1   (8) 

�̇�2 = −𝑙1�̇�1 sin 𝜃1 − 𝑙2(�̇�1 + �̇�2) sin(𝜃1 + 𝜃2)   (9) 

�̇�2 = 𝑙1�̇�1 cos 𝜃1 +𝑙2(�̇�1 + �̇�2) cos( 𝜃1 + 𝜃2)   (10) 

�̇�3 = −𝑙1�̇�1 sin 𝜃1 − 𝑙2(�̇�1 + �̇�2) sin(𝜃1 + 𝜃2) − 𝑙3(�̇�1 + �̇�2 + �̇�3) sin(𝜃1 + 𝜃2 + 𝜃3)  (11) 

�̇�3 = 𝑙1�̇�1 cos 𝜃1 +𝑙2(�̇�1 + �̇�2) cos( 𝜃1 + 𝜃2) + 𝑙3(�̇�1 + �̇�2 + �̇�3) cos(𝜃1 + 𝜃2 + 𝜃3)  (12) 

𝑣1
2 = 𝑥1

2̇ + 𝑦1
2̇ = (−𝑙1�̇�1𝑠1)2 + (𝑙1�̇�1𝑐1)2 = 𝑙1

2�̇�1
2   (13) 

𝑣2
2 = 𝑥2

2̇ + 𝑦2
2  = (−𝑙1𝑠1𝜃1̇ − 𝑙2𝑠12(𝜃1̇ + 𝜃2̇))

2
+ (𝑙1𝑐1𝜃1̇ + 𝑙2𝑐12(𝜃1̇ + 𝜃2̇))

2̇
  (14) 

𝑣3
2 = 𝑥3

2̇ + 𝑦3
2̇   = (−𝑙1𝑠1𝜃1̇ − 𝑙2𝑠12(𝜃1̇ + 𝜃2̇) − 𝑙3𝑠123(𝜃1̇ + 𝜃2̇ + 𝜃3̇))

2
+ (𝑙1𝑐1𝜃1̇ +

𝑙2𝑐12(𝜃1̇ + 𝜃2̇) + 𝑙3𝑐123(𝜃1̇ + 𝜃2̇ + 𝜃3̇))
2

   (15) 
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Figure 1: Prosthetic finger type InMoov Finger 

Starter 

Figure 2: Schematic diagram of a three phalanges finger 

  
However, the following equation can be used to find the total finger kinetic energy: 

𝐾 =
1

2
𝑚1(𝑣1)2 +

1

2
𝑚2(𝑣2)2 +

1

2
𝑚3(𝑣3)2   (16) 

Where 𝑚1, 𝑚2 and 𝑚3 are the masses of the first, second, and third phalanges, respectively[6]. This gives the following 

equation: 

𝐾 =
1

2
𝑚1𝑙1

2�̇�1
2 +

1

2
𝑚2 ((−𝑙1𝑠1𝜃1̇ − 𝑙2𝑠12(𝜃1̇ + 𝜃2̇))

2
+ (𝑙1𝑐1𝜃1̇ + 𝑙2𝑐12(𝜃1̇ + 𝜃2̇))

2
) +

1

2
𝑚3 ((−𝑙1𝑠1𝜃1̇ − 𝑙2𝑠12(𝜃1̇ + 𝜃2̇) −

𝑙3𝑠123(𝜃1̇ + 𝜃2̇ + 𝜃3̇))
2

+ (𝑙1𝑐1𝜃1̇ + 𝑙2𝑐12(𝜃1̇ + 𝜃2̇) + 𝑙3𝑐123(𝜃1̇ + 𝜃2̇ + 𝜃3̇))
2

)  (17) 

Where 𝑠 and 𝑐 are the sine and cosine functions, respectively. However, the potential energy at each phalange can be 

obtained as follows: 

𝑃𝑖 =
1

2
∑ (𝑚𝑖𝑔𝑦𝑖)

3

1
   (18) 

Where 𝑔 is the gravitational constant, and 𝑦 is the vertical height; thus: 

𝑃1 = 𝑚1𝑔𝑙1 sin 𝜃1   (19) 

𝑃2 = 𝑚2𝑔(𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜃2)   (20) 

𝑃3 = 𝑚3𝑔(𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜃2) + 𝑙2 sin(𝜃1 + 𝜃2 + 𝜃3)  (21) 

So, the total potential energy of the finger is: 

𝑃 = 𝑚1𝑔𝑙1 sin 𝜃1 + 𝑚2𝑔(𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜃2) + 𝑚3𝑔(𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜃2) +
𝑙2 sin(𝜃1 + 𝜃2 + 𝜃3)   (22) 

Nevertheless, the three phalanges prosthetic finger dynamic can be described by obtaining the Lagrangian using Lagrange 

Dynamics based on Equation 23, where 𝐿 is the Lagrangian, K and P are respectively the kinetic and potential finger energies. 

𝐿 = 𝐾 − 𝑃   (23) 

By substituting Equation 17 and 22 in Equation 23 and after simplification will get the Lagrangian as in the equation 

below: 

𝐿 = 0.5𝑚1(𝑙1
2�̇�1

2) + 0.5𝑚2[𝑙1
2�̇�1

2 + 𝑙2
2(�̇�1

2 + �̇�2
2 + 2𝜃1̇𝜃2̇) + 2𝑙1𝑙2𝑐2(�̇�1

2 + 𝜃1̇𝜃2̇)] + 0.5𝑚3 [𝑙1
2�̇�1

2 +

𝑙2
2(𝜃1̇ + 𝜃2̇)

2
+ 𝑙3

2(𝜃1̇ + 𝜃2̇ + 𝜃3̇)
2

+ 2𝑙1𝑙2𝑐2(�̇�1
2 + 𝜃1̇𝜃2̇) + 𝑙1𝑙3𝑐23(𝜃1̇ + 𝜃2̇ + 𝜃3̇)

2
+

𝑙2𝑙3𝑐3(𝜃1̇ + 𝜃2̇)(𝜃1̇ + 𝜃2̇ + 𝜃3̇) + 𝑙1�̇�1
2 + 𝑙2(𝜃1̇ + 𝜃2̇)

2
+ 𝑙3(𝜃1̇ + 𝜃2 +̇ 𝜃3̇)

2
] − [𝑚1𝑔𝑙1𝑠1 +

𝑚2𝑔(𝑙1𝑠1 + 𝑙2𝑠12) + 𝑚3𝑔(𝑙1𝑠1 + 𝑙2𝑠12 + 𝑙2𝑠123)]  (24) 

Using the Lagrange-Euler formulation  that is shown in Equation 25 below, the system equations of motion can be obtained 

for each system coordinate[𝜃1 𝜃2 𝜃2], which give the applied torque on each joint, as follows: 
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𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜃�̇�
) −

𝑑𝐿

𝑑𝜃𝑖
= 𝜏𝑖   (25) 

𝑚1𝑙1
2�̈�1 + 𝑚2[𝑙1

2�̈�1 + 𝑙2
2(�̈�1 + �̈�2) + 𝑙1𝑙2𝑐2(2�̈�1 + �̈�2) − 𝑙1𝑙2𝑠2(2𝜃1̇𝜃2̇ + �̇�2

2)] + 0.5𝑚3[2𝑙1
2�̈�1 +

2𝑙2
2(�̈�1 + �̈�2) + 2𝑙3

2(�̈�1 + �̈�2 + �̈�3) + 2𝑙1𝑙2𝑐2(2�̈�1 + �̈�2) − 2𝑙1𝑙2𝑠2(2𝜃1̇𝜃2̇ + �̇�2
2) + 2𝑙1𝑙3𝑐23(�̈�1 +

�̈�2 + �̈�3) − 2𝑙1𝑙3𝑠23(2𝜃1̇ + 2𝜃2̇ + 𝜃3̇) + 𝑙2𝑙3𝑐3[(�̈�1 + �̈�2) + (�̈�1 + �̈�2 + �̈�3)] − 𝑙2𝑙3𝑠3𝜃3̇(2𝜃1̇ +

2𝜃2̇ + 𝜃3̇) + 2𝑙1�̈�1 + 2𝑙2(�̈�1 + �̈�2) + 2𝑙3(�̈�1 + �̈�2 + �̈�3)] − [𝑚1𝑔𝑙1𝑐1 + 𝑚2𝑔(𝑙1𝑐1 + 𝑙2𝑐12) +

𝑚3𝑔(𝑙1𝑐1 + 𝑙2𝑐12 + 𝑙2𝑐123)] = 𝜏1  (26) 

 𝑚2[𝑙2
2(�̈�1 + �̈�2) + 𝑙1𝑙2𝑐2�̈�1 − 𝑙1𝑙2𝑠2𝜃1̇𝜃2̇] + 0.5𝑚3[2𝑙2

2(�̈�1 + �̈�2) + 2𝑙3
2(�̈�1 + �̈�2 + �̈�3) +

2(𝑙1𝑙2𝑐2�̈�1 − 𝑙1𝑙2𝑠2𝜃1̇𝜃2̇) + 2𝑙1𝑙3𝑐23(�̈�1 + �̈�2 + �̈�3) − 2𝑙1𝑙3𝑠23(𝜃1̇ + 2𝜃2̇ + 2𝜃3̇) + 𝑙2𝑙3𝑐3(2�̈�1 +

2�̈�2 + �̈�3) − 𝑙2𝑙3𝑠3𝜃3̇(2𝜃1̇ + 2𝜃2̇ + 𝜃3̇) + 2𝑙2(�̈�1 + �̈�2) + 2𝑙3(�̈�1 + �̈�2 + �̈�3)] − 2𝑙1𝑙2𝑠2(�̇�1
2 +

𝜃1̇𝜃2̇) − 0.5𝑚3 [2𝑙1𝑙2𝑠2𝜃1̇(𝜃1̇ + 𝜃2̇) + 𝑙1𝑙3𝑠23(𝜃1̇ + 𝜃2 +̇ 𝜃3̇)
2

] − [𝑚2𝑔(𝑙2𝑐12) + 𝑚3𝑔(𝑙2𝑐12 +

𝑙2𝑐123)] = 𝜏2   (27) 

0.5𝑚3[2𝑙3
2(�̈�1 + �̈�2 + �̈�3) + 2𝑙1𝑙3𝑐23(�̈�1 + �̈�2 + �̈�3) − 2𝑙1𝑙3𝑠23(𝜃1̇ + 2𝜃2̇ + 2𝜃3̇) + 𝑙2𝑙3𝑐3(�̈�1 +

�̈�2) − 𝑙2𝑙3𝑠3𝜃3̇(𝜃2̇ + 𝜃3̇) + 2𝑙3(�̈�1 + �̈�2 + �̈�3)] − 0.5𝑚3 [𝑙1𝑙3𝑠23(𝜃1̇ + 𝜃2̇ + 𝜃3̇)
2

− 𝑙2𝑙3𝑠3(2𝜃1
̇ +

2𝜃2̇ + 𝜃3̇)] − [𝑚3𝑔(𝑙3𝑐123)] = 𝜏3   (28) 

Where 𝜏𝑖 is the torque that each phalange experiences, and �̈� is the angular acceleration? However, the system generalized 

equations of motion in the matrix form is given by the following nonlinear form: 

𝑀(𝜃) �̈� + 𝑉(𝜃, �̇� ) + 𝐺(𝜃) = 𝜏   (29) 

Where 𝑀(𝜃) is an 3 × 3 mass matrix, 𝑉(𝜃, �̇� ) is an 3 × 1 vector contains the Coriolis and centrifugal terms, 𝐺(𝜃) is an 

3 × 1 gravity vector, and 𝜏 is an 3 × 1 generalized input torque vector;  

[

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

] [

�̈�1

�̈�2

�̈�3

] + [

𝑉𝐺1

𝑉𝐺2

𝑉𝐺3

] = [

1

2

3

]   (30) 

The terms VG1, VG2 and VG3 constitute the lumped expressions of Carioles/centrifugal forces and gravity consequences. 

We assume that phalange 1 is attached to phalanges 2 and 3 through the pulley-belt machine approach. 

3. Classical sliding mode controller (SMC) 

One of the successful methods to monitor nonlinear systems involving matched disturbances is sliding mode control 

(SMC), which has provided efficiency in design has been widely used in industrial[7]. In this control scheme, states of the 

system are handled toward a sliding surface and forced to stay on (or near) it. However, two parts are there within the layout of 

this class of controllers. Firstly, within the system's state space model, a sliding surface is introduced; secondly, to construct 

and maintain the sliding motion, the control law, which is responsible for that, is found [8]. Thus, the sliding surface (𝑠) can be 

presented as: 

𝑠 = 𝜆𝑒 + �̇� = 0   (31) 
Where  is a constant and it is > 0. However, let assume that 𝑥1 = 𝑒, 𝑥2 = �̇�  where 𝑒 is the error and   �̇� is the dervitive of 

the error and𝜆 = 1, hence the sliding surface can be rewritten as: 

𝑠 = 𝑥1 + 𝑥2    (32) 

The complete control law can be defined as follows: 

𝑢 = 𝑢𝑛 + 𝑢𝑑𝑖𝑠   (33) 

Where, 𝑢𝑛 represent the nominal control part, and 𝑢𝑑𝑖𝑠 the discontinuous control part [9], which is defined as: 

𝑢𝑑𝑖𝑠 = −𝑘(𝑥)𝑠𝑖𝑔𝑛(𝑠)   (34) 
K (𝑥) is a discontinuous gain,  and 𝑠𝑖𝑔n (𝑠) is known as a signup function, which can mathematically be expressed as in 

Equation 35 below. 
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𝑠𝑖𝑔𝑛(𝑠) = {

1                𝑖𝑓 𝑠 > 0
−1             𝑖𝑓 𝑠 < 0
0               𝑖𝑓 𝑠 = 0

   (35) 

Therefore, the control action equation can be written as [10]: 

𝑢 = 𝑢𝑛 − 𝑘(𝑥)𝑠𝑖𝑔𝑛(𝑠)   (36)               

The structure of the SMC is shown in Figure 4. This structure has one input: the motor’s torque and the output is the 

finger's desired position. To reduce the chattering problem, the saturation function is used instead of 𝑠𝑖𝑔𝑛 (𝑠) function in 

Equation 36; thus, it can be rewritten as: 

𝑢 = 𝑢𝑛 − 𝑘(𝑥)𝑠𝑎𝑡(𝑠)  (37) 

Where the saturation function is: 

𝑠𝑎𝑡(𝑠. 𝜑) = {
𝑠𝑖𝑔𝑛(𝑠)       𝑖𝑓 |𝑠|  >  𝜑
𝑠

𝜑
                 𝑖𝑓 |𝑠|  ≤  𝜑   (38) 

Where φ expresses the boundary layer's width, as shown in Figure 5 (saturation function). 

4. Adaptive Sliding Mode Control (ASMC) Design 

The biggest challenges to applying SMC scheme are two interrelated phenomena: chattering and high control action activity. 

The amplitude of the chattering is proportional to the magnitude of the discontinuous total control. These two issues can be 

solved at the same time if the magnitude is decreased to a minimum permissible level represented by the conditions for the 

existing sliding mode [9]. In this study, ASMC is proposed to deal with the two issues mentioned above. ASMC has repressed 

the switching gain to a low level. When the gains are decreased, the effects of control actions are minimized, which causes 

attenuating the chattering. Reduce the chattering leads to good tracking performance, which is decreasing the thermal and 

mechanical losses in the systems [11].The ASMC is more compact and relaxed in the architecture than the classical SMC. As 

well as, the system reliability is achieving with a limited control effort while using the ASMC[12]. 

𝑢 = −𝑘(𝑡)sign (𝑠)  (39) 

Where, 𝑢  is the control action to be configured, and k (t) is the adaptive controller gain that is described as in the following: 

𝑘(𝑡) = [

𝑘1(𝑡)

𝑘2(𝑡)

𝑘3(𝑡)
]  (40) 

  

Figure 1: Block diagram of the 

prosthetic finger with control 

Figure 2: Saturation function 

Table 1: The Symbol definition 

Symbol Definition Unit 

 Torque N.m 

s Sliding surface --- 

𝜆 Sliding manifold slope --- 

𝑒, �̇� the error and is the derivative of the error respectively --- 

φ The width of the boundary layer --- 

𝜌 Modification gain --- 
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And  s = [

s1

s2

s3

] is the sliding variable, and sign (𝑠) is the signup function previously described in Equation 35. The 

quantification of the adaptive controller gain is as below [13] : 

𝜇
˙

= {𝜌|𝑠(𝑥, 𝑡)|sign (|𝑠(𝑥, 𝑡)| − 𝜖)  (41) 

Where µ = [

µ1

µ2

µ3

], 𝜌 > 0 and 𝜖 > 0, and k(t) is chosen depending on the following rules [11]. 

𝑘 = {
𝜇     if Kmin < 𝜇 < Kmax
 Kmin      if 𝜇 ≤ Kmin
 Kmax      if 𝜇 ≥ Kmax

  (42) 

Where Kmin < (𝜇(0) = 𝑘(0)) < Kmax.   

𝐾𝑚𝑖𝑛 is the lowest acceptable value of k(t), 𝐾𝑚𝑎𝑥 the highest acceptable value of k(t) can the system handle it, and μ (0) 

is the initial start point of the gain 𝑘(t). To provide more information and illustrations on the rule of the adaptive control and 

how to apply the conditions of Equation 42, the following flowchart is presented. 

 

Figure 3: Flow chart algorithm of ASMC 

Finally, the controller law will be updated with a saturation function as opposed to the signup function, as described: 

𝑢 = −𝑘(𝑡)sat (𝑠, 𝜑)  (43) 

The main purpose of the ASMC technique is to design a robust controller that can be able to Orient the sliding variable 

toward the manifold surface and keep the system trajectory in this required sliding surface[14]. 

5. Simulation Results 

In this work, two techniques were used to control a prosthetic finger. In the current simulation results, the adaptive sliding 

mode control shows more effectiveness than the classical sliding mode control by solving the chattering problem concerned 

with high control effort and high control gain. The system has been simplified into six states, which have the initial states as 

follow: 

 𝑥1(0) =
𝜋

4
(rad), 𝑥2(0) =

𝜋

4
(rad), 𝑥3(0) =

𝜋

4
(rad), 𝑥4(0) = 0 (

rad

sec
) , 𝑥5(0) = 0 (

rad

sec
) , 𝑥6(0) =

0 (
rad

sec
)  (44) 

Where𝑥1, 𝑥2 and 𝑥3 are the postion of the three phalanges and 𝑥4, 𝑥5 and 𝑥6 are the velocity. The parameter values are 

presented in Table 2. Figures 6 and 7 illustrate the state of trajectory from the initial to the end point for the three phalanges. 

Using the reaching condition of SMC. These trajectories reach approximately zero, and it will make the system asymptotic 

stable. Figures 8 and 9 show the tracking performance between the actual and desired position, which does not exceed 2.5 sec 
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for both CSMC and ASMC. Figures 10 - 11 show the sliding variables for the three-phalange; it is clear that the CSMC suffers 

from some chattering issue, while the ASMC has a smooth sliding surface. Figure 12 illustrates the control gain for both 

CSMC and ASMC; the ASMC can reduce the gain to an acceptable value compared with CSMC, where the high gain value is 

the reason for high charting in the torque action. Figure 13 shows the torque action for the CSMC and ASMC; however, it is 

evident that utilizing the CSMC on the system, the model will suffer from chattering while applying the ASMC minimizes the 

chattering phenomenon. 

Table 2: The model parameters 

Parameter Definition Units 

L1 Length of phalange 1  m 

L2 Length of phalange 2  m 

L3 Length of phalange 3  m 

m1 Mass of phalange 1  Kg 

m2 Mass of phalange 2   Kg 

m3 Mass of phalange 3   Kg 

𝜃1 desired The desired angle for phalange 1 rad 

𝜃2 desired The desired angle for phalange 2 rad 

𝜃3 desired The desired angle for phalange 3 rad 

G Gravitational constant 𝑚/𝑠2 

d Disturbance N.m 

Φ Boundary layer width -- 

 

Figure 4: The phase plane trajectory of CSMC 

 

Figure 5: The phase plane trajectory of ASMC 
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Figure 6: The performance of tracking between the desired and existing position of CSMC 

 

Figure 7: The performance of tracking between the desired and existing position of 

ASMC 

 

Figure 8: Sliding variable of CSMC 

 

Figure 9: Sliding variable of ASMC 
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Figure 10: Control gain for both CSMC and ASMC 

 

Figure 11: Control action for both CSMC and ASMC 

 

Figure 12: Error between desired and real for both CSMC and ASMC 

6. Conclusions 
The modeling and control of a tendon controlled 3-degree of freedom prosthetic finger was presented in this research. 

After obtaining the dynamic modeling, the classic (CSMC) and adaptive (ASMC) sliding mode control techniques were then 

applied to control the finger's motion. It was noticed that the chattering phenomenon is a severe problem of CSMC. However, 

the comparison between the CSMC and ASMC which is clarified in Table 3, demonstrated that the ASMC could reduce the 

controllers' gain value to be reasonable and minimal, thus reducing the control and chattering magnitude. It was also concluded 

that the ASMC reduces the gain to an acceptable value compared with CSMC, which produces high gain leading to high 

chattering in the torque action. This was evident from the obtained results where the model system suffered from chattering 

while applying the ASMC minimizes the chattering phenomenon. 

Table 3: The performance and the characteristics of the CSMC and ASMC 

Control Maximum Control gain 

k(t) 

maximum chattering magnitude 

(N.m) 

The steady-state 

error 

CSMC 0.0013 8.9 1775.1 

ASMC 0.0005 2.2 628.25 
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