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Abstract:

In this paper, we consider inequalities in which the function is an element of
n-th partially order space. Local and Global uniqueness theorem of solutions of the n-
the order Partial differential equation Obtained which are applications of Gronwall's
inequalities.
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Introduction:

Consider  the  differential Cu, %
equation of the type U(X)=Zf+ ”----If(v,s,.--.t,U)dvds...dt
i=0 = XoX2 X1
i=012,..n

U (X, Xp poes X, ) = T (X, Xgyeeey X, U) Xed

" (2
U (X, %) = 9(X) with 03 >(<X <j,)a_>0 ?:)d
With U(Xivxo):h(X) 0 Xi)=0
g(x;) = h(x,) U (x;,%,) = h(x) .
i=0, 1, 2,...., n... (1) g(xi)zh(xo)
where  J=[0,a) a0 are initial constant.

- Local Uniqueness:

In this section, a local
uniqueness result is proved by
applying Bihari's inequality theorem.

FelIxR%R] and R denotes the
real n-dimensional Euclidean space,
X, 1=01..,n-1is a real positive
constants and both g(x) and h(x) are
continuous functions , Liu and Ge[2]
based on the coincidence degree
method of Gaines and Mawhin [3].

Proved that (1) has at least one solution

Bihari's Inequality Theorem [1]
Suppose the following
conditions holds:

U. Elias [4] proved the existence of 1.2js positive continuous function
global at least one solution to (1). in J =[a.B)
In this paper, Bihari's inequality 5 Ki(t.s),j=123..,n are “on

is applied to obtain local uniqueness
and Gronwall's inequality to obtain
global uniqueness of solution to (1).

negative continuous functions for
a<S<t<f \which are no decreasing

It is important mentioning that it was in t for any fixed s.
shown by Baihov D. and Simeonov [1] 3.9;W,1=12...n are  non
that the solution of (1) is of the form: decreasing continuous functions in

R+,Wi'[h 9;(w>0 for u>o0 and

*Technology University

829



Baghdad Science Journal

Vol.7(1)2010

g(au)sr(a)w(u),fOr a>0,u>0

were r(a)is non negative continuous

function in R ,which is positive for
u>0.

4.u(t) is non negative continuous
function in J and

u(t) <a(t) +Zn:_[ékj(t,s)gj(u(s))ds,t e
then i

') <av, (t)Gn{Gn W+ '(""“”"’“)}jk (t,5)ds
a®
, Where
¢ dx
G, (u) = ,u>0,(u, >0)
u{ 9, (x)

Theorem 1: (Local Uniqueness)

The initial value problem (1)
has a unique solution on the interval
O<u<a, if the function f is continuous
in the region

0 <X <, |(Xy, Xp ey Xy U) = (X, Xg yeeey Xy

and such that

| (X0 Xy oo X o U) = F (X Xg 1o X, V)| snz_lqﬁi QU‘ -V'
i=0

)

where ¢(z)is a continuous non
decreasing function on 0<z<A, with
‘/5(0):0 , b>0 and A is a positive
constant .

Proof:

Let U(x) and V(x) be two
solutions to (1) which are defined in
neighborhood at the right of x,.That is

n—1
U ) =D (g04) +h(x) - g(x))
i=0

+ ff JE f(v,s,....,t,U)dvds...dt
n—lﬁ1

V() =D (G(x) + H(x) = G(x))
i=0

+ _[j....TF(v,s,...,t,V)dvds...dt

Xo X2 Xp-q

This leads easily to
[lg06) -G +

U(x) -V (x)| <

b -ve g{hm)—mxm9<Xo>—G(Xo>}+

i

Xo X1  Xp-a

f(v,s,....t,U)
F(v,s,...t,V)

dvds.. dt

n-1
IF] [ (%, —x)=0 and
i=0
|f(v.s,...t,U)=F(v,s,...tV)| <e
1 |9(Xi)—G(Xi)|+
and )" [[h(xp) = H (%) + | <e
1|9 (x0) ~ G(o))

n-1 n—
(X1 — %)

1
Ve -V D e+e
i=0 i=0
X1 Xp  Xn
+ ”....JK|U —V[dvds..dt
Xo X1 Xn_1

Let r(x)be the right hand side of the
above inequality,

n-1 n-1
r(x) < Ze,+ € 1_[(x,_1 i)+
i=0 i=0

J-J- X_f € +(V—X%)(s — Xl)'"'dvds...dt

(t—x,)Kz(v,s,...,t)

Xo X1 Xpg

n-1
If only J](x_,—x)=>0.0na compact
i=0
space, the last equation is bounded by a
constant M.JU —=V|<M eon this set

.consequently ,  the solution of such
boundary value problem equation (1)
depends continuously on f and the

boundary date .if e—0,JU-V|—0,

on the compact set.
By using Bihari's inequality we have

r() SEI//M(X)GH{Gn M +r(€)%”1(x)}
€

Global Uniqueness

The global uniqueness for the
initial value problem (1) will be
discussed with the aid of Gronwall's
inequality, which seems by the
following theorem.
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Gronwall's Inequality Theorem

[6]

Let a (1), b (t) and u (t) be
continuous functions in J=1% /81 and
let b(t) be a nonnegative in J= [ Al
and a(t) is nondecreasing in J:[a,ﬂ]
suppose
Ut <a) + [bEUE s ted

Then

tb(s)ds
u(t) <a(t)e-

teld
Theorem (2)

unigueness theorem)
Assume that:
1. f is a continuous function in the

(Global

region R={(s(X,, X5 .., X,,U)):
0O<x<a, Xg1eees Xy U) = (Xy, X000y X, V) < b
} = Qwhere Qis an open

(Xg» Xy s Xp 00y X, U) in R™ with a, b>0.
2. f satisfy Lipschitz condition with
respect to (X,, X;, Xy v X,,,U)

For some positive constant L, then the
solution of (1) is unique.

Proof

Let U(x) and V(x) be two solutions to
(1) then

n-1
U09=2,(04) +hix) - 9x0) +

X1 Xp Xn
” jf(vs ,U)dvds... dt
Xo X2 Xpo1
n-1

V(x)= > (G(x)+ H(x)—G(x))+
- i=0
” IF(vs LLV)dvds... dt
Xo X2 Xp1

Xxeld

From which we get

831

o) -Gx)|+
U(x) -V
D)V < .Zih(xo) H (%) +|9(x0) - G(Xo)l
]XJ. I Fvs bW e gt
F(v,s,...t,V)

Xo X1 X,

<"zl{|g(x> G (x| + ]
2| h(x0) = H(%)| +9 (%) — G (o)

TT ]. HV(V }dvds...dt
Let

2(v,S,.., 1) =U(v,5,.) =V (v,5,...,.t)| L
Then
< ]90x) - GO +
U(X) -V (x)| <
D0V ;[h(xo)—wo) Q(Xo)—G(Xo)}

X1 Xy

II JZ(V S,...,t)dvds.. dt

Xo X1 Xn-1

Let r(x) equal to the right hand side of
the above inequality, then

z(v,S,.., 1) < r(v,s,..., )

r(x)<zﬂg<x) G(x,)| +[N(xp) — H (%,)] +]g(X,) = G(X,)]

Xn

+ ” _fz(v,s,,...,

Xo X1 Xng

t)dvds..dt

By the above inequality (Gronwall's
inequality)

a |90x) = G(x)| + [ [ avas..t
r(x) < D [|x) = H(xo)| + e s
9 06) =G ()
Since
9(x;) =G(x;), h(x,) = H(x,) and
g(x,) =G(x,) thenr(x) < 0since
UKo Xyseres X ) = V(X Xy yevey X ) F(X) <O

Then
U(Xg, Xy pever Xy ) = V(Xg s X 1o X, )| S O
and since the absolute value larger than

or equal to zero then
Ux)=v(x) xelJ

Example: consider the two boundary
value problems
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Uy, =f(x,yu), 0<x,y<aa>0 ..

(3)
Ugx,.y) = 9(Y) =€7,

Ux,y) =X = e*

9(Yo) = e’ = h(xg) = e’
and
U,y =F(xy,U),

U(Xo, y) =G(y) =cosy,
U (X, Yo) = H(X) =cosx
G(yg) =c0sYyy = H(Xg) =C0SX,

Where all the functions are continuous
and f satisfies a Lipchitz condition with
constant K. K >0

If and only if (x—X,)(Yy—Y,)=0.0ona
compact set

Conclusion:

1- It is easy to note that the
uniqueness of a special cases solution
(n=1 or n=2) can be obtain by using
Bihari's and Gronwall's inequality
which is give the work more accuracy
and easer.

2-The quantity between the
brackets in the above example is
bounded by the constant M, hence

lu—U| <M eon this set.

3-the solution of such boundary
value  problem eq(3) depends
consequently on f and the boundary
data .

If e—>O0then |u-U|—Oon the

compact set.
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