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Abstract|: In the literature, there is not significant works than dealing with identifying of influential observations 

(IO) in the two stages least square (2SLS) models.  It is a clear that when a set of high leverage points (HLPs) are 

exist in a data set, the traditional and the robust diagnostic approaches fails to classify correctly the IOs. This issue 

is because of the masking and swamping affects. In this work, we propose a new robust detection approach based on 

Modified Cook distance to identify the IO and to reduce the masking and swamping effects. The proposed method 

called modified Cook distance based on modified Generalized Studentized residuals denoted by MGt-MCD. In 

addition we suggested a new cut off point depend on the Jackknife after bootstrap. To evaluate the performance of 

our proposed method, a popular data set and a Monte Carlo simulation study were used. The results refer to the 

proposed method have good performance compared with some existing method to identify IOs in the 2SLS. 
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1 INTRODUCTION:coefficients simultaneous equations model (SEM) when the disturbance term across the 

equations are not related and the equations concerned are over identified or exactly identified. It was introduced 

independently by Theil, 1953 [19] and Basmann, 1957 [4]. The 2SLS estimator includes two consecutive applications 

of the least square estimator. The stages of 2SLS procedure are presented as follows; 
First stage: Regress each of the right hand side endogenous variable in the equation to be estimated on all exogenous 

variables in the SEM using the least square (LS) estimator.  Then, compute the predicted values for each   

   of these endogenous variables.                                                                                                                       

Second stage: In the equation to be estimated, substitute each endogenous right hand side variable by its predicted 

values by using least squares estimator ([8], [15]). 

      The normality, homoscedasticity and no multicollinearity are the essential assumptions for LS estimators. 

However, the raw data are usually having heavy tail, skewed or follow a non-normal distribution ([2], [3]). This is 

leads to increase the standard error and then destroy the estimates. Since the presence of unusual data can violate the 

classical normality assumptions, robust methods is used to remedy this problem. Unusual data may come in deferent 

types depend on its position. We can classify unusual data into vertical outliers (lie in Y-direction) and high leverage 

points (lie in X-direction). Figure 1 display the types of outliers such as vertical outliers, good leverage points (GLP), 

bad leverage points (BLP) and influential observations ([1], [10]). And it’s also shows the relationship among outliers, 

leverage points and influential points [16]. It is possible for a single observation may have a high effect on the 

predicted of a regression estimator. So, in the estimate and making the analysis, it is important to take in the account 

the possibility of existence of influential observations in the dataset. Belsley et al. (1980) showed that the IOs are 

those points that have high effects in the estimators. The high value of leverage of the observation, the more potential 

the point will be influential observation [5]. A point with a value close to the average on the independent variable has 

no impact on the line of regression line regardless of its amount on the criterion variable. On the other hand, a point 

that is extreme on the independent variable has the potential to affect 

the regression line highly. The distance of a point is based on the error of prediction for the observation. The high 

error for the prediction is the larger the distance. Even a point with a large distance will not have that much impact if 

its leverage is small. It is the combination of a point leverage and distance that identify its influence. Large number of 

methods has been suggested to detect an IO in linear regression model ([1], [13]). Unfortunately, most of those 

methods not have perfect performance due to masking and swamping effects (for more details, see [18]). Furthermore, 

there is not significant work for detection IO in 2SLS. In this article, we suggested a new technique to identify IOs in 

2SLS. The suggested method depends on modified version of Cook distance based on modified Generalized 

Studentized residuals denoted by MGt-MCD. In order to assess the suggested method, a well-common data set and 

simulation study are performed. The correct detection ratio of the masking and the swamping were calculated to 

compare the study methods. Detection of influential observation with some measurements methods are discussed in 

Section 2. In Section 3, the Jackknife after bootstrap approach is presented. The proposed method (MGt-MCD) is 
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given in Section 4. A numerical example and simulation study are presented in sections 5 and 6, respectively. Finally, 

some concluding remarks are given in Section 7. 

 

 
Figure 1: The Relationship among Outliers, Leverage Points and Influential Points 

Source: [16] 

2 DETECTION OF INFLUENTIAL OBSERVATIONS 
      Outliers are those outermost, or strange, data points that lie beyond the data range in either direction. In linear 

regression analysis, outliers can be defining as a data points that have much larger absolute residuals than all other 

residuals in a dataset ([2], [3]). Usually, observations with residuals lies 3σ or more away from the average of residuals 

is considered as outlier points. Outliers may be because of data collecting errors, data entry errors, sampling errors or 

any other problem with the data or “true” outliers (i.e. not an  error) ([7], [11], [17]). Many approaches have been 

proposed to identify of outliers, however, in this study we will focus with the following identification methods. 

 

2.1 Studentized Residuals and Modified Generalized Studentized Residual 

      A studentized residual sometimes referred to as (externally studentized residual) denoted as   is given as follows 

([1], [13], [14], [16]) 
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 ̂   √     

                    

where; 

      
                              

         ̂   is an i-th residuals and, 

            ̂    is a standard deviation of the residuals excluding the i-th residuals 

The standardized residual follows the t-student with                                   degree of freedom. Rousseeuw 

(1990) suggested using 2.5 as a cut- off point for    (see [18]). The i-th deletion observation residual   ̂    is computed 

as,  

  ̂         
  ̂                      

where, the   ̂    is the coefficient vector for the remaining groups (R), given by 

 ̂       
        

              

The i-th externally studentized residual   
  for the remaining groups “R” is given by 

  
  

  ̂   

 ̂   √        

         

where; 

         
    

                              

The modified generalized studentized residual (MGti) is given as follows ([1], [14]):  

     

{
 
 

 
 

  

  ̂   

 ̂   √        

                        

  ̂   

 ̂ √        

                             

                   

                   

where,  ̂  is a standard deviation for remaining group. 

 

2.2 MAHALANOBIS DISTANCE AND ROBUST MAHALANOBIS DISTANCE 
      The Mahalanobis Distance (  ) is a measurement of how far the observation    away from the mean the predicted 

variable [17]. The MD is given by; 

    √         
                              

where; 

         are the sample mean and sample covariance, respectively. 

The cutoff-point of                   √         
  . Observations that exceed the cut- off point are considered as high 

leverage points. Rousseeuw (1985) [17] suggested a robust MD (RMD) based on minim volume ellipsoid (MVE), 

given as 

     √                  
                              

where      and      are the robust mean and covariance of the MVE, respectively.  

 

2.3 Cook Distance Measurement 

      Cook Distance (CD) is a statistics measurement proposed by Cook (1977) for detecting an influential observation 

[9].  The CD is defined as 
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  ̂      ̂       ̂      ̂ 

   ̂ 
                       

where,  ̂ is estimated parameter and  ̂     is the estimated parameter with the i-th observation deleted. If     

           the i-th point is considered as influential observation. 

The modified version of Cook’s Distance (MCD) was proposed by Cook in 1977, given by [13];  

     √    
   

       

   
  ̂   

                (10) 

where,    is the class of norms which are location/scale. The cut- off point for MCD is defined as  √
   

 
  .              

 

 

2.4 Least Median of Squares  
      The least median of squares (LMS) method was suggested by Rousseeuw (1984). It is a robust approach computed 

by minimize the median of squared error as following ([5], [17]) 

         
          (   ∑    ̂ )

 

              

where; 

the least squared residual for the i-th observation      can be computed as;  

         ̂                   

The LMS estimator has high break down point (BDP) of 50%, and it has little relative efficiency of 37%.  

 

3 Jackknife after bootstrap method 
      The jackknife after bootstrap (JAB) approach is firstly described by Efrton (1992). The idea of the JAB approach 

can be summarized as following ([6], [12]): 

let     is random variable with n sample of size, hence,                             has a distribution which is similar to 

distribution of a bootstrap sample from              . The JAB approach requires about   times more resamples than a 

usual bootstrap.  

For example, for any data set, to diagnose whether an individual observation is influential or not, and to get 500 

resamples without this observation, about 500   ≈ 1500 resamples are required. Then, we use these 500 resamples to 

build the sampling distribution and to diagnose the influence cut- offs. The algorithm of JAB method for detection of 

influential points, that proposed by Martin and Roberts, 2010, can be summarized as following [6], [12]; 

Step1. Suppose    be the diagnostic statistic, the suitable model is fitted for original data set, and then calculate the 

   for            
Step2. For the original data set, create   resample with replacement. 

Step3. For each observation within   resamples, obtain a subset of the samples, which do not include that 

observation. Therefore, there are     resamples attained for each observation. Compute the n values 

of   ,           for each of these resample, so nD/e values of     are getting. Gather all nD/e values of 

  into a single vector. 

Step4: Determine appropriate quintiles (say 2.5% and 97.5%) of this produced bootstrapping distribution. 

Compare the ratios of this distribution with original   ,          , values to determine the observations 

as influential or not.  

The steps 1 to 4, should be repeated R times. Then, the averages and standard deviations for the number of flagged 

observations for all these R generated can be computed. It has to consider, the JAB algorithm runs just one time with 

real dataset. If the original dataset include influential data points, these data points will potentially show several times 

in the generated sampling distributions. This is lead to; quantities computed from these samples will not be acceptable 

for comparison.  In respect of compute the suitable quantities, the cut-offs will determine from the sampling 

distribution using resamples not include the point concerned. 

4 The proposed method (MGt-MCD) 
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      The classical techniques denoted by STAND-MD and STUDENT-MD draw the standardized residuals and 

studentized residuals against the Mahalanobis distance, respectively. Rousseeuw and Van Zomeren (1990) suggested a 

robust detection method to classify dataset into clean data, vertical outliers, GLB and bad leverage points [18]. The 

Rousseeuw and Van Zomeren’s method based on the LMS versus RMD denoted by (LMS-RMD). The classical 

methods are not sufficient technique to identify IOs due to it based on the non-robust method. In addition, the LMS-

RMD is not very effective technique to classify the data points into respective categories since it is based on the RMD, 

which suffers from swamping effects. To rectify the darkness of existing method we proposed a new technique by 

combining the MGti against MCD denoted by MGt-MCD. The cut- off points of MGt-MCD is based on the Jackknife 

after bootstrap ([6], [12]) that presented in Section 4.  

 The rules for classification observation using the MGt-MCD method are displayed as following. 

i. The observation “i” is declared as clean data if  |    |       and                 . 

ii. The observation “i” is declared as vertical outlier if  |    |      and                 . 

iii. The observation “i” is declared as a GLP if |    |      and                 . 

iv. The observation “i” is declared as a BLP if |    |      and                 . 

were,              “ is a JAB cut- off point of MCD that is computed using R language. 

5 Hawkins Brado Kass Dataset 
      The Hawkins, Bradu and Kass (HBK) dataset is an artificial data set introduced by Hawkins et. al. in 1984 [17]. The 

dataset has 75 observations and contents one response variable with 3 independent variables. This data 

set includes 14 high HLPs (cases 1-14), however, (cases1-10) are BLPs and (cases11-14) are GLPs. In this example 

we are applying the STAND-MD, STUDENT -MD, LMS-RMD and the proposed method MGt-MCD to diagnostic 

influential observations in both stages of the 2SLS model for HBK dataset. We suppose that the first stage has two 

independent variables,            and the second stage has   ̂         . Figures 2 and 3 present plot for diagnostic 

methods for the first and second stages, respectively.  And the tables 1 and 2 present the values of the diagnostic 

method for the first 14
th

 observations. The result of the example pointed that the MGt-MCD has the best performance 

followed by LMS-RMD for identifying the IOs. It interesting to see; only the MGt-MCD identify correctly the good 

and bad leverage points in both stages as shown in figures 2 and 3. Tables’ 1and 2 display the values of the diagnostic 

methods for the first and second stages of 2SLS for the HBK dataset. Numbers in bold style represent the values those 

exceed its cut-off point which are identified as IOs. Where, the cut-off points for the methods put in the parentheses. 

 

Figure 2: plot for diagnostic method for the first stage for HBK dataset 
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Figure 3: plot for diagnostic method for the second stage for HBK dataset 

Table 1: The values for diagnostic method for the first stage for HBK dataset 

Number of 

observation 

MD 

(3.057) 

RMD 

(3.618 ) 

MCD 

(0.055) 

Studentized 

(2.5) 

LMS 

(2.5) 

MGti 

(2.5) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1.91 

1.81 

2.12 

1.93 

1.95 

2.14 

2.00 

1.84 

1.84 

1.72 

2.23 

2.46 

2.48 

4.90 

18.14 

18.69 

18.87 

19.68 

19.48 

19.08 

19.38 

18.07 

18.93 

17.94 

22.18 

21.71 

24.23 

30.95 

0.51 

0.53 

0.54 

0.43 

0.49 

0.50 

0.57 

0.58 

0.47 

0.54 

0.00 

0.00 

0.00 

0.00 

1.49 

1.82 

1.57 

1.45 

1.55 

1.42 

1.83 

1.80 

1.55 

1.80 

-2.98 

-3.33 

-2.90 

-2.95 

-0.02 

0.26 

0.20 

-1.20 

-0.51 

-0.34 

0.55 

0.83 

-0.57 

0.51 

-15.45 

-15.57 

-15.75 

-20.38 

6.43 

6.56 

6.59 

5.87 

6.24 

6.33 

6.78 

6.87 

6.15 

6.66 

-0.10 

-0.15 

0.04 

-0.04 

 
 

Table 2: The values for diagnostic method for the second stage for HBK dataset 

Number of 

observation 

MD 

(3.058)    

RMD 

(3.159) 

MCD 

 (0.056) 

Studentized 

(2.5) 

LMS 

(2.5) 

MGti 

(2.5) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1.89 

1.86 

2.06 

2.18 

2.03 

2.13 

2.01 

1.85 

2.12 

2.13 

2.42 

2.54 

26.27 

26.72 

28.89 

29.41 

28.91 

27.24 

27.09 

26.70 

28.72 

28.00 

32.67 

34.70 

0.50 

0.53 

0.49 

0.42 

0.47 

0.50 

0.57 

0.54 

0.44 

0.48 
0.02 

0.02 

1.55 

1.73 

1.56 

1.23 

1.46 

1.55 

1.93 

1.79 

1.34 

1.55 

-3.31 

-3.62 

3.42 

3.61 

3.64 

3.42 

3.56 

3.50 

3.80 

3.65 

3.46 

3.58 

0.01 

-0.09 

6.08 

6.24 

5.96 

5.56 

5.84 

6.06 

6.48 

6.33 

5.70 

5.96 

0.32 

0.30 
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13 

14 

2.41 

2.29 
31.91 

31.73 

0.03 

0.02 
-2.93 

-3.11 

0.24 

0.10 

0.41 

0.35 

 

6 Monte Carlo Simulation Study 
      In this section, a simulation studies are organized to evaluate the performance of the proposed method for 

detection of IOs in the two stages LS model. The methods of the study are compared based on the average number 

correctly detected of IOs. A good diagnostic method is the one that have detected closer number of IOs that created in 

the data set with lowest number of masking and swamping ratio. The experimental design is described as follows; 

We generate randomly 5 explanatory variables following the normal distribution as                     . The 

response variables are generated according the following equations; 

First stage;                                                                     

Second stage;                                      ̃     ̃     ̃                 

where,              are assumed equal to one, and  ̃   ̃       ̃  are assumed equal to 0.5. The error term           

are distributed as       
  . Two sizes of samples are setting equals to (             . The 

generating data are contaminated with different percentages of outliers [                    ] in both X and Y 

directions. To create outliers in X and Y direction, the first      percent of clean data were replaced by fixed value 

equal to 10. For consistency of results, the Monte Carlo simulation studies are repeated 500 times. The STAND-MD, 

STUDENT-MD, LMS-RMD and the MGt-MCD methods are applying to detect the outliers and IOs in the generated 

dataset. Tables 3 to 6 present the results of simulation study. The results indicate that our proposed method (MGt-

MCD) has the supreme performances with excellent average of detection for outliers and influential observations. 

Moreover, the MGt-MCD diagnostic method has the lowest ratio of masking and swamping effects. The LMS-RMD 

has moderate performance of detection of IOs but it has the largest ratio of masking and swamping effects. It clear to 

see the STAND-MD, STUDENT-MD methods failed to detect influential observations and have not any swamping 

ratio.        

Table 3: The average number of identification of outliers for diagnostic methods when 

                 and             

C
o
n

ta
m

in
a
te

d
 p

e
r
c
e
n

ta
g
e
 

Method 

First stage Second stage 

Correct 

identify  
Masking Swamping 

Correct 

identify 
Masking Swamping 

5
 %

 

2
 o

u
tl

ie
r
s 

STAND-MD 50% 50% 0% 0% 0% 0% 

STUDENT-MD 50% 50% 0% 0% 0% 0% 

LMS-RMD 100% 0% 0% 100% 0% 0% 

MGt-MCD  100% 0% 0% 100% 0% 0% 

1
0
 %

 

4
 o

u
tl

ie
r
s 

STAND-MD 50% 50% 0% 0% 0% 0% 

STUDENT-MD 50% 50% 0% 0% 0% 0% 

LMS-RMD 100% 0% 0% 75% 25% 25% 

MGt-MCD  100% 0% 0% 100 0% 0% 

2
0
 

%
 

8
 

o
u

tl

ie
r
s STAND-MD 50% 50% 0% 100% 0% 0% 

STUDENT-MD 50% 50% 0% 100% 0% 0% 
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LMS-RMD 50% 50% 50% 25% 75% 50% 

MGt-MCD  100% 0% 0% 100 0% 0% 

 

Table 4: The average number of identification of outliers for diagnostic methods when 

                  and             
C

o
n

ta
m

in
a
te

d
 p

e
r
c
e
n

ta
g
e
 

Method 

First stage Second stage 

Correct 

identify  
Masking Swamping 

Correct 

identify 
Masking Swamping 

5
 %

 

5
 o

u
tl

ie
r
s STAND-MD 20% 80% 0% 0% 0% 0% 

STUDENT-MD 20% 80% 0% 0% 0% 0% 

LMS-RMD 80% 20% 20% 80% 20% 20% 

MGt-MCD  100% 0% 0% 100% 0% 0% 

1
0
 %

 

1
0
 o

u
tl

ie
r
s STAND-MD 0% 100% 0% 0% 100% 0% 

STUDENT-MD 0% 100% 0% 0% 100% 0% 

LMS-RMD 60% 40% 25% 50% 50% 50% 

MGt-MCD  100% 0% 0% 100 0% 0% 

2
0
 %

 

2
0
 o

u
tl

ie
r
s STAND-MD 0% 100% 0% 100% 0% 0% 

STUDENT-MD 0% 100% 0% 100% 0% 0% 

LMS-RMD 25% 75% 50% 25% 75% 50% 

MGt-MCD  100% 0% 0% 100 0% 0% 

 

Table 5: The average number of identification of influential observations for diagnostic methods when        
                      and X’s have HLPs 

C
o

n
ta

m
in

a
te

d
 

p
e
r
c
e
n

ta
g

e
 

Method 

First stage Second stage 

Correct 

identify  
Masking Swamping 

Correct 

identify 
Masking Swamping 

5
 %

 

2
 o

u
tl

ie
r
s STAND-MD 0% 100% 0% 0% 100% 0% 

STUDENT-MD 0% 100% 0% 0% 100% 0% 

LMS-RMD 0% 100% 50% 0% 100% 50% 

MGt-MCD  100% 0% 0% 100% 0% 0% 

1
0
 %

 

4
 o

u
tl

ie
r
s STAND-MD 0% 100% 0% 0% 100% 0% 

STUDENT-MD 0% 100% 0% 0% 100% 0% 

LMS-RMD 20% 80% 50% 25% 75% 50% 

MGt-MCD  100% 0% 0% 100 0% 0% 

2
0
 %

 

8
 o

u
tl

ie
r
s STAND-MD 0% 100% 0% 0% 100% 0% 

STUDENT-MD 0% 100% 0% 0% 100% 0% 

LMS-RMD 50% 50% 50% 25% 75% 50% 

MGt-MCD  100% 0% 0% 100 0% 0% 

 

Table 6: The average number of identification of outliers for diagnostic methods when 

                  and             

C
o

n
ta

m
in

a
te

d
 p

e
r
c
e
n

ta
g
e
 

Method 

First stage Second stage 

Correct 

identify  
Masking Swamping 

Correct 

identify 
Masking Swamping 

5  %
 

5  o u t l i e r s STAND-MD 0% 100% 0% 0% 100% 0% 
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STUDENT-MD 0% 100% 0% 0% 100% 0% 

LMS-RMD 0% 100% 20% 20% 80% 20% 

MGt-MCD  100% 0% 0% 100% 0% 0% 

1
0
 %

 

1
0
 o

u
tl

ie
r
s STAND-MD 0% 0% 0% 0% 0% 0% 

STUDENT-MD 0% 0% 0% 0% 0% 0% 

LMS-RMD 50% 50% 25% 60% 40% 50% 

MGt-MCD  100% 0% 0% 100 0% 0% 

2
0
 %

 

2
0
 o

u
tl

ie
r
s STAND-MD 0% 100% 0% 100% 0% 0% 

STUDENT-MD 0% 100% 0% 100% 0% 0% 

LMS-RMD 50% 50% 25% 75% 25% 50% 

MGt-MCD  100% 0% 0% 100 0% 0% 

 

7 CONCLUSIONS 

The results of numerical data and simulation study indicate the following: 

The classical methods such as STAND-MD and STUDENT-MD failed absolutely to diagnose the influential 

observations. However, the classical methods did not suffering from swamping effects. Whereas, the LTS-RMD 

method has moderate performance for detecting outliers and influential 

observations but it is suffering from masking and swamping effects. It is clear to see that the proposed method (MGt-

MCD) is successfully detects the influential observations with reducing masking and swamping effects. It is easy to 

conclude that the MGt-MCD method has a supreme performance for detecting influential observations among all of 

the existing diagnostic methods without any ratios of masking and swamping effects. 
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