Some Results on Fuzzy SubKS-semigroups

بعض النتائج حول شبه الزمرة الجزئية الضبابية KS

Sundus Najah

Assp.sajda kadhum Mohammed College of education Kufa university

Abstracts

In this paper we study a fuzzy subKS-semigroups, Cartesian product of fuzzy sets in KS-semigroups and strong fuzzy relation in KS-semigroups , and prove some results about this .

المستخلص

في هذا البحث درسنا شبه الزمرة الضبابية KS والضرب الكارتيزي والعلاقة الضبابية القوية على شبه الزمرة KS وبرهنا العديد من النتائج المتعلقة بهذا الموضوع.

1.Introduction

The notation of BCK-algebra was proposed by Iami and K-Iseki [1] in 1966 in the same year, K-Iseki [2] introduced the notion of BCI- algebra which is a generalization of a BCK-algebra in 1965 L.A .Zadeh[3] introduced the notion of fuzzy set , in 1971 A. Rosenfeld [4] introduced the notion of fuzzy group. and in 1991 O.G. Xi[5] introduced the notion of fuzzy BCK-algebra .The new class of algebraic structure introduced in 2006 by K.H. Kim[6] called KS-semigroups , which is the combination of BCK-algebra and semigroups , in 2007 D.R Prince Williams , Shamshad Husain [7] introduced the notion of fuzzy KS-semigroup .in this paper , we prove some results in a subKS-semigroup ,Cartesian product of fuzzy sets and strong fuzzy relation on KS-semigroups .

2.Preliminary

In this section, we introduce the fundamental definitions that will be used in the sequel.

Definition 2.1 A **BCK algebra** is a non empty set X with a binary operation "*" and a constant 0 satisfying the following axiom :

- 1. ((x * y) * (x * z)) * (z * y) = 0,
- **2.** ((x * (x * y)) * y = 0,
- 3. x * x = 0,
- **4.** 0 * x = 0
- 5. x * y = 0 and $y * x = 0 \implies x = y$, for all $x, y, z \in X$, [8].

Remarks 2.2

• A partial ordering " \leq " on X can be defined by $x \leq y$ if and only if x * y = 0,[7].

Definition 2.3 A *semigroup* is an ordered pair (S,*), where S is a nonempty set and "*" is an associative binary operation on S .[9].

Definition 2.4 Let X be a non-empty set.A fuzzy subset of X is a function $\mu: X \to [0, 1]$.[3].

Definition 2.5 A KS-semigroup is a non-empty set X with two binary operation * and ., and a constant 0 satisfies the following axioms:

- **1.** (X, *, 0) is a BCK-algebra,
- **2.** (X, .) is a semigroup,
- **3.** x.(y *z) = (x.y) *(x.z) and (x *y).z = (x.z) *(y.z), for all $x, y, z \in X$.[6],[7],[9].

Example 2.6 The set $X = \{0, a, b, c, d\}$ with two binary operations "*" and "." defined by the following tables:

*	0	a	b	c	d
0	0	0	0	0	0
a	a	0	a	a	0
b	b	b	0	0	0
С	С	c	c	0	0
d	d	d	d	0	0

	0	a	b	c	d
0	0	0	0	0	0
a	0	0	0	0	0
b	0	0	0	0	b
С	0	0	0	a	b
d	0	a	b	С	d

X is a **KS-semigroup**,[7].

Definition 2.7 A non empty subset S of a KS-semigroup X with two binary operation "*" and "." is called a **sub ks-semigroup** if it satisfies the following conditions:

- 1. $x * y \in S$,
- **2.** $xy \in S$ $\forall x, y \in S.[7],[6],[9]$.

Example 2.8 Let $X = \{0, e, f\}$ be a KS-semigroup with the following tables:

*	0	e	f
0	0	0	0
e	e	0	e
f	f	f	0

•	0	e	f
0	0	0	0
e	0	e	0
f	0	0	f

The subset $S=\{0,e\}$ of X is a subKS-semigroup of X,[7].

Definition 2.9 A fuzzy set μ of X is called a fuzzy subKS-semigroup of X if $1.\mu(x_1 * x_2) \ge \min\{\mu(x_1), \mu(x_2)\}$ $2.\mu(x_1x_2) \ge \min\{\mu(x_1), \mu(x_2)\}$.[7]

Example 2.10 Let $X = \{0, e, f\}$ be a KS-semigroup with the following tables:

*	0	e	f
0	0	0	0
e	e	0	e
f	f	f	0

	0	e	f
0	0	0	0
e	0	e	0
f	0	0	f

The fuzzy subset μ of X which is defined by $\mu(0) = 0.6$, $\mu(x) = 0.3 \quad \forall x \neq 0$ is a fuzzy subKS-semigroup of X,[7].

Definition 2.11 Let X be a KS-semigroup and μ be a fuzzy subset of X.for a fixed $0 \le t \le 1$, the set $\mu_t = \{x \in X | \mu(x) \ge t\}$ is called **an upper level** set of μ .[7].

Definition 2.12 The Cartesian product of two fuzzy sets μ and ν in X is defined by : $(\mu \times \nu)(x, y) = \min\{\mu(x), \nu(y)\}$ for all $x, y \in X$.[3],[7].

Definition 2.13 Let v be a fuzzy set in X the strong fuzzy relation on X is a fuzzy set $\rho_v: X \times X \to [0,1]$ defined by $\rho_v(x,y) = \min\{v(x),v(y)\}$ $\forall x,y \in X$.[3],[7].

Definition 2.14 Let A and B be a fuzzy sets on X ,define the fuzzy set $A \cap B$ as follows : $\forall x \in X$ $(A \cap B)(x) = \min\{A(x), B(x)\}$, [3] ,[10] .

185

Proposition 2.15 If μ, ν be two fuzzy set of X and $a \le b$ such that $a, b \in [0,1]$, then $\mu_b \subseteq \mu_a$, [3], [10].

3.Main Results

In this section , we find some results about subKS-semigroup of X and fuzzy subKS-semigroup and Cartesian product of fuzzy sets and strong fuzzy relation on KS-semigroups .

Proposition 3.1 Let A and B be a subKS-semigroup of X then $A \cap B$ is a subks-semigroup.

Proof: Let A and B are subKS-semigroup and let $x, y \in A \cap B$. Then $x, y \in A$ and $x, y \in B$ since A, B are subKS-semigroup so $x^*y \in A$ and $x^*y \in B$ then $x^*y \in A \cap B$. Now, so $xy \in A$ and $xy \in B$ therefore $xy \in A \cap B$.

Proposition 3.2 Let A and B are fuzzy subKS-semigroup of X. Then $A \cap B$ is a fuzzy subKS-semigroup.

Proof: Let A and B are the fuzzy subKS-semigroups and let $x, y \in A \cap B$ then

(1)
$$(A \cap B)(x * y) = \min\{A(x * y), B((x * y))\}\$$

$$\geq \min\{\min\{A(x), A(y)\}, \min\{B(x), B(y)\}\}\$$

$$= \min\{\min\{A(x), B(x)\}, \min\{A(y), B(y)\}\}\$$

$$= \min\{A \cap B(x), A \cap B(y)\}.$$
(2) $(A \cap B)(xy) = \min\{A(xy), B((xy)\}\$

$$\geq \min\{\min\{A(x), A(y)\}, \min\{B(x), B(y)\}\}\$$

$$= \min\{\min\{A(x), B(x)\}, \min\{A(y), B(y)\}\}\$$

$$= \min\{A \cap B(x), A \cap B(y)\}.$$

Hence $A \cap B$ is a fuzzy subKS-semigroup.

Lemma 3.3 If μ is a fuzzy subKS-semigroup of X, then $\mu(0) \ge \mu(x) \quad \forall x \in X$.

Proof :Let μ be a fuzzy subKS-semigroup and let $x \in X$ so x*x=0 for all $x \in X$, therefore $\mu(0) = \mu(x*x) \ge \min\{\mu(x), \mu(x)\} = \mu(x)$ that is mean $\mu(0) \ge \mu(x) \quad \forall x \in X$. Which completes the proof.

Proposition 3.4 Let μ be a fuzzy subKS-semigroup of X with finite $\text{Im}(\mu)$.if $\mu_s = \mu_t$ for some $s,t \in \text{Im}(\mu)$ then s=t.

Proof: Let $s,t \in \text{Im}(\mu)$, where $\text{Im}(\mu)$ is finite, let $x,y \in X$ s.t $\mu(x) = s$ and $\mu(y) = t$ then $x \in \mu_s$ and $y \in \mu_t$, since $\mu_t = \mu_s \to x \in \mu_s = \mu_t$ then $x \in \mu_t$ so $s = \mu(x) \ge t....(1)$, also $y \in \mu_t = \mu_s \to y \in \mu_s \to t = \mu(y) \ge s....(2)$ from (1) and (2) $\to s = t$.

Proposition 3.5 Let μ and ρ be two fuzzy subKS-semigroup of X with the same family of levels.if $\operatorname{Im}(\mu) = \{t_1, \dots, t_m \}$ and $\operatorname{Im}(\rho) = \{s_1, \dots, s_p \}$ where $t_1 > t_2 > \dots > t_m$ and $s_1 > s_2 > \dots > s_p$ then 1-m=p

2-
$$\mu_{t_i} = \rho_{s_i}$$
 for $i = 1,...., m$.

3- If $\mu(x) = t_i$ then $\rho(x) = s_i \ \forall i = 1,..., m$.

Proof: (1) Let μ and ρ be two fuzzy subKS-semigroup of X, since μ and ρ we have the same family of levels then m = p.

(2) let $\operatorname{Im}(\mu) = \{t_1, \ldots, t_m\}$ and $\operatorname{Im}(\rho) = \{s_1, \ldots, s_p\}$ where $t_1 > t_2 > \ldots > t_m$ and $s_1 > s_2 > \ldots > s_p$, since μ and ρ have the same family of levels, so first if we take i=m then since $\mu_{t_m} \supset \ldots \supset \mu_{t_1}$, $\rho_{s_p} \supset \ldots \supset \rho_{s_1}$ and by (1) we have $\mu_{t_m} = \rho_{s_p}$ now let i = m-1 then we have $\mu_{t_{m-1}} = \rho_{s_{n-1}}$ and so on $\mu_{t_i} = \rho_{s_i} \quad \forall i = 1, \ldots, m$.

to proof (3) let $x \in G$ s.t $\mu(x) = t_i$ and $\rho(x) = s_j$ from (2) and $\mu(x) = t_i$ we have $x \in \rho_{s_i}$ thus $\rho(x) \ge s_i$ and $s_j \ge s_i$ that is mean $\rho_{s_i} \subseteq \rho_{s_i}$

 $\sin ce \ x \in \rho_{s_j} = \mu_{t_j} \ we \ have \ t_i = \mu(x) \ge t_j$, so

 $\mu_{t_i} \subseteq \mu_{t_j}$ and in the consequence (by 2) $\rho_{s_i} = \mu_{t_i} \subseteq \mu_{t_j} = \rho_{s_j}$ thus $\rho_{s_i} = \rho_{s_j}$

but, by corollary 3.4 $s_i = s_j$ therefore $\rho(x) = s_i$.

Corollary 3.6 If a fuzzy sub KS-semigroup μ and ρ defined on X have the same finite family of levels then $\mu = \rho$ if and only if $\text{Im}(\mu) = \text{Im}(\rho)$.

Proof: Let $\mu = \rho \rightarrow \mu(x) = \rho(x) \quad \forall x \in X \rightarrow \text{Im}(\mu) = \text{Im}(\rho)$.

Conversely let $Im(\mu) = Im(\rho) = \{t_1, ..., t_n\}$

Let $x \in X$ and $\mu(x) = t_i \ni i = 1,...,n$ since μ and ρ have the same finite family of levels so by corollary 3.5 $\mu_{t_i} = \rho_{s_i}$ for i = 1,...,n and

$$\mu(x) = t_i \text{ then } \rho(x) = t_i \rightarrow \mu(x) = t_i = \rho(x) \quad \forall x \in X \qquad \therefore \mu = \rho .$$

Theorem 3.7 A fuzzy set μ of X is a fuzzy subKS-semigroup if and only if for every $t \in [0,1]$, μ_t is either empty or a sub KS-semigroup of X,[7].

Lemma 3.8 Let X be a KS-semigroup and let μ , ν be a fuzzy subKS-semigroup then $\mu \times \nu$ is a fuzzy subKS-semigroup.

Proof: Let μ , ν be a fuzzy subKS-semigroups \ni $(x_1, y_1), (x_2, y_2) \in X \times X$ then

$$(\mu \times \nu)((x_1, y_1)^*(x_2, y_2)) = \mu \times \nu((x_1^* x_2, y_1^* y_2))$$

$$= \min\{\mu(x_1^* x_2), \nu(y_1^* y_2)\}$$

$$\geq \min\{\min\{\mu(x_1), \mu(x_2)\}, \min\{\nu(y_1), \nu(y_2)\}$$

$$= \min\{\min\{\mu(x_1), \nu(y_1)\}, \min\{\mu(x_2), \nu(y_2)\}$$

$$= \min\{\mu \times \nu(x_1, y_1), \mu \times \nu(x_2, y_2)\}$$

$$(\mu \times \nu)((x_1, y_1).(x_2, y_2)) = \mu \times \nu((x_1..x_2, y_1.y_2))$$

$$= \min\{\mu(x_1..x_2), \nu(y_1.y_2)\}$$

$$\geq \min\{\min\{\mu(x_1), \mu(x_2)\}, \min\{\nu(y_1), \nu(y_2)\}$$

$$= \min\{\min\{\mu(x_1), \nu(y_1)\}, \min\{\mu(x_2), \nu(y_2)\}$$

$$= \min\{\mu \times \nu(x_1, y_1), \mu \times \nu(x_2, y_2)\}$$

Hence $\mu \times \nu$ is a subKS-semigroup.

Remark 3.9 It is important to note that the converse of above lemma is not true since if we take two fuzzy sets μ and ν such that $\mu(x) \le \nu(x) \ \forall x \in X$.

the Cartesian product of μ and ν depends only on μ .

Theorem 3.10 Let X be a KS-semigroup and μ , λ be two fuzzy sets in X such that $\mu \times \nu$ is a fuzzy subKS-semigroup of $X \times X$ then:

```
1. either \mu(x) \le \mu(0) or \lambda(x) \le \lambda(0) for all x \in X.
```

2. if $\mu(x) \le \mu(0)$ for all $x \in X$ then either $\mu(x) \le \lambda(0)$ or $\lambda(x) \le \lambda(0)$.

3. if $\lambda(x) \le \lambda(0)$ for all $x \in X$ then either $\mu(x) \le \mu(0)$ or $\lambda(x) \le \mu(0)$.

4. either μ or λ is a fuzzy subKS-semigroup of X.

Proof: (1) Suppose that $\mu(x) > \mu(0)$ and $\lambda(y) > \lambda(0)$ for some $x, y \in X$.then $(\mu \times \lambda)(x, y) = \min\{\mu(x), \lambda(y)\} > \min\{\mu(0), \lambda(0)\} = (\mu \times \lambda)(0, 0)$ which is contradiction .so either $\mu(x) \le \mu(0)$ or $\lambda(x) \le \lambda(0)$ $\forall x \in X$.

(2) Let $\mu(x) > \lambda(0)$ and $\lambda(y) > \lambda(0)$ for some $x, y \in X$ then $(\mu \times \lambda)(0,0) = \min \{\mu(0), \lambda(0)\} = \lambda(0)$ so

 $(\mu \times \lambda)(x, y) = \min \{\mu(x), \lambda(y)\} > \lambda(0) = (\mu \times \lambda)(0, 0) \text{ This is a contradiction }.$

Therefore (2) holds.

We can prove (3) in a similar way of (2).

(4) Since by (1) either $\mu(x) \le \mu(0)$ or $\lambda(x) \le \lambda(0)$ for all $x \in X$ without loss of generality we may assume that $\lambda(x) \le \lambda(0)$

it follows from (3) that either $\mu(x) \le \mu(0)$ or $\lambda(x) \le \mu(0)$ if $\lambda(x) \le \mu(0)$ $\forall x \in X$ then

$$\begin{split} \lambda(x_1 * x_2) &= \min\{\mu(0), \lambda(x_1 * x_2)\} = (\mu \times \lambda)(0, x_1 * x_2) \\ &= (\mu \times \lambda)(0 * 0, x_1 * x_2) \\ &= (\mu \times \lambda)((0, x_1) * (0, x_2)) \\ &\geq \min\{(\mu \times \lambda)(0, x_1), (\mu \times \lambda)(0, x_2)\} \\ &= \min\{\min\{\mu(0), \lambda(x_1)\}, \min\{\mu(0), \lambda(x_2)\}\} \\ &= \min\{\lambda(x_1), \lambda(x_2)\}. \\ \lambda(x_1, x_2) &= \min\{\mu(0), \lambda(x_1, x_2)\} = (\mu \times \lambda)(0, x_1, x_2) \\ &= (\mu \times \lambda)(0, x_1, x_2) \end{split}$$

$$= (\mu \times \lambda)(0.0, x_1. x_2)$$

$$= (\mu \times \lambda)((0, x_1).(0, x_2))$$

$$\geq \min\{(\mu \times \lambda)(0, x_1), (\mu \times \lambda)(0, x_2)\}$$

$$= \min\{\min\{\mu(0), \lambda(x_1)\}, \min\{\mu(0), \lambda(x_2)\}\}$$

$$= \min\{\lambda(x_1), \lambda(x_2)\}$$

So λ is a a fuzzy subKS-semigroup in X.

If $\lambda(x) \leq \mu(0)$ is not satisfied then $\lambda(y) > \mu(0)$ for some $y \in X$ and by the assumption , $\mu(x) \leq \mu(0)$ for all $x \in X$ we have $\lambda(0) \geq \lambda(y) > \mu(0) \geq \mu(x)$ i.e $\lambda(0) \geq \mu(x)$ $\forall x \in X$.

Therefore $(\mu \times \lambda)(x,0) = \min\{\mu(x),\lambda(0)\} = \mu(x)$ and, in the consequence

$$\mu(x_1 * x_2) = (\mu \times \lambda)(x_1 * x_2, 0)$$

$$= (\mu \times \lambda)(x_1 * x_2)(0 * 0)$$

$$= (\mu \times \lambda)((x_1, 0) * (x_2, 0))$$

$$\geq \min\{(\mu \times \lambda)(x_1, 0), (\mu \times \lambda)(x_2, 0)\}$$

$$= \min\{\mu(x_1), \mu(x_2)\}.$$

$$\mu(x_1.x_2) = (\mu \times \lambda)(x_1.x_2, 0)$$

$$= (\mu \times \lambda)(x_1.x_2)(0.0)$$

$$= (\mu \times \lambda)((x_1, 0).(x_2, 0))$$

$$\geq \min\{(\mu \times \lambda)(x_1, 0), (\mu \times \lambda)(x_2, 0)\}$$

$$= \min\{\mu(x_1), \mu(x_2)\}.$$

Which proves that μ is a fuzzy subKS-semigroup in X .this completes the proof .

Theorem 3.11 Let X be a KS-semigroup ν be fuzzy set Then ρ_{ν} is fuzzy subKS-semigroup if and only if ν is fuzzy subKS-semigroup.

Proof: Let v be fuzzy set on X and let $x_1, x_2, y_1, y_2 \in X$

1.
$$\rho_{v}((x_{1}, y_{1}) * (x_{2}, y_{2})) = \rho_{v}((x_{1} * x_{2}, y_{1} * y_{2}))$$

$$= \min\{v(x_{1} * x_{2}), v(y_{1} * y_{2})\}$$

$$\geq \min\{\min\{v(x_{1}), v(x_{2})\}, \min\{v(y_{1}), v(y_{2})\}\}$$

$$= \min\{\min\{v(x_{1}), v(y_{1})\}, \min\{v(x_{2}), v(y_{2})\}\}$$

$$= \min\{\rho_{v}(x_{1}, y_{1}), \rho_{v}(x_{2}, y_{2})\}$$

2.
$$\rho_{v}((x_{1}, y_{1}).(x_{2}, y_{2})) = \rho_{v}(x_{1}x_{2}, y_{1}y_{2})$$

$$= \min\{v(x_{1}x_{2}), v(y_{1}y_{2})\}$$

$$\geq \min\{\min\{v(x_{1}), v(x_{2})\}, \min\{v(y_{1}), v(y_{2})\}\}$$

$$= \min\{\min\{v(x_{1}), v(y_{1})\}, \min\{v(x_{2}), v(y_{2})\}\}$$

$$= \min\{\rho_{v}(x_{1}, y_{1}), \rho_{v}(x_{2}, y_{2})\}$$

 $\therefore \rho_{v}$ is fuzzy a subKS-semigroup.

Conversely,

Let ρ_v be a fuzzy subKS-semigroup and $(x, y) \in X \times X$ then (x, y) * (x, y) = (x * x, y * y) = (0,0), so

$$(x, y)^{+}(x, y) = (x^{+}x, y^{+}y) = (0, 0)$$
, so

$$\rho_{v}(0,0) \ge \rho_{v}(x,y) \quad \forall (x,y) \in X \times X \quad \text{by lemma 3.3 , now}$$

$$v(0) = \min\{v(0), v(0)\} = \rho_{v}(0,0) \ge \rho_{v}(x,x) = \min\{v(x), v(x)\} = v(x)$$

$$\therefore v(0) \ge v(x) \quad \forall x \in G$$

Let
$$x_1, x_2 \in X$$
 So

```
1. v(x_1 * x_2) = \min\{v(x_1 * x_2), v(0)\}

= \rho_v(x_1 * x_2, 0 * 0)

= \rho_v((x_1, 0), (x_2, 0))

\geq \min\{\rho_v(x_1, 0), \rho_v(x_2, 0)\}

= \min\{\min\{v(x_1), v(0)\}, \min\{v(x_2), v(0)\}

= \min\{v(x_1), v(x_2)\}.

2. v(x_1x_2) = \min\{v(x_1x_2), v(0)\}

= \rho_v\{(x_1x_2), (0.0)\}

= \rho_v\{(x_1, 0), (x_2, 0)\}

\geq \min\{\rho_v(x_1, 0), \rho_v(x_2, 0)\}

= \min\{\min\{v(x_1), v(0)\}, \min\{v(x_2), v(0)\}

= \min\{v(x_1), v(x_2)\}
```

 $\therefore v \text{ is a fuzzy sub KS} - \text{semigroup.}$

References

- [1] Y.Imai and K.Iseki, "On axiom systems of propositional calculiXIV", Proc.Japan Acad,42 (1966),19-22.
- [2] K.Iseki, "An algebra related with a propositional calculus", Japan Acad., 42 1966.
- [3] L.A Zadeh, "Fuzzy sets", Information Control, 8 (1965), 338-353.
- [4] A.Rosenfeld, "Fuzzy groups", J.Math. Anal. and Appl, 35 (1971), 512-517.
- [5] O.G,Xi, "Fuzzy BCK- algebras", Math. Japon, 36(1991), 935-942.
- [6] K.H Kim, "On structure of KS-semigroups", Int. Math. Forum, 1(2006), 67-76.
- [7] Williams, D.R, Prince and Husain Shamshad, "On Fuzzy KS-semigroup". International Mathematical Forum, 2,2007, no.32,1577-1588.
- [8] Celestin Lele and Congxin Wu Harbin "Generalization of Some Fuzzy ideal in BCK- algebras" Institute of Technology ,Department of Mathematics, Harbin 150001,China .
- [9] Joncelyn S.Paradero-Vilela and Mila Cawi "On KS-Semigroup Homomorphism "International Mathematical Forum ,4, 2009, no. 23, 1129-1138.
- [10] Mordeson , J.N. ,"Lecture Notes in Fuzzy Mathematics and computer Science ", Creighton University ,Omaha ,Newaska 68178 USA , 1996 .
- [11] K.Iseki and S.Tanaka," An introduction to the theory of BCK-algebras ", Math. Japon 23, (1969),1-26.
- [12] Hungerford, Thomas W., "Algebra" Springer-Verlag New York Inc, 1974.