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Abstract :  
in this paper we introduce the notion of semi d-ideal of d-algebra, and investigate many theorems 

and examples for this notion, Furthermore we investigate many relations and theorem between 

semi d-ideal and each of d-ideal and BCK-ideal. 
 

 : الخلاصة
ذا ( وناقشنا العذيذ هن الوبزهنات والخصائص حىل ه(d( في جبز الـ dا البحث هفهىم جذيذ لشبه هثالي الـ) ذقذهنا في ه 

 d( وبين هثالي الـ d، ثن درسنا بعض العلاقات والوبزهنات بين هفهىم شبه هثالي الـ) الوفهىم بالإضافة إلى بعض الأهثلة

 . dفي جبز الـ  BCKوهثالي الـ 
 

1. Introduction 
 Y. Iami and K. Iseki introduced two classes of abstract algebra BCK-algebra and BCI-

algebra ([1] , [2]) .It is known that the class of BCK-algebra is proper subclass of the class of BCI-

algebra . J. Neggers and H. S. Kim introduced the notion of d-algebra , which is another useful 

generalization of BCK-algebra [3], and in [4] they introduced the notation of d-ideal on d-algebra . 

We introduce the notation of semi d-ideal on d-algebra and investigate relations among each of 

semid-ideal, d-ideal and BCK-ideal.  
 

2. Preliminaries 
In this section we recall the basic definition and information which are needed in our work. 
 

Definition 2.1[3]: A d-algebra is a non-empty set X with a constant 0 and a binaryoperation

satisfying the following axioms:  

I. 0 xx  

II. 00  x  

III. 0 yx and 0 xy  imply that yx  for all yx, in X .  
 

A BCK-algebra is a d-algebra )0,;( X  satisfying the following additional axioms :  

IV. 0)())()((  yzzxyx  

V. 0))((  yyxx for all zyx ,,  in X .  
 

Definition 2.2[4] Let )0,;( X  be a d-algebra and XI  . I is calleda d-subalgebra of X if 

Iyx    whenever Ix  and Iy . I is called aBCK-ideal of X if it satisfies: 

(D 0 ) I0  

(D 1 ) Iyx  and Iy imply Ix . 

I is called a d-ideal of X if it satisfies (D 1 ) and 

(D 2 )  Ix  and Xy  imply Iyx   i.e., IXI  . 
 

Definition 2.2[3]Let )0,;( X  be a d-algebra and Xx . Define },{ XaaxXx  . X is said to 

be edge if for any x in X , }0,{xXx  .  
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Definition 2.3:Let )0,;( X  and )0,;( Y  be a d-algebra. A mapping YXf :  is called a 

1- d-morphism if )()()( yfxfyxf  for any Xyx , . Note that YXf 0)0(  [3]. 

2- d-isomorphism If f  is a bijective and d-morphism function 
 

Definition 2.4 [4] : A d-algebra X is called a d
*
-algebra if it satisfies the identity 0)(  xyx for 

all Xyx , .  
 

Theorem 2.5 [4] : In a d
*
-algebra, every BCK-ideal is a d-ideal . 

 

Corollary 2.6 [4] : In a d
*
-algebra, every BCK-ideal is a d-subalgebra.  

 

3. Semi d- ideal 
In this section we introduce the notation of semi d-ideal on d-algebra and investigate relations 

among semi d-ideal, d-ideal and BCK-ideal. 
 

Definition 3.1: A semi d-ideal of a d-algebra X is a non empty subset F of X satisfies  

i) Fyx ,  imply Fyx   , 

ii) Fyx  and Fy imply Fx  , for all ., Xyx   
 

Note that X and {0} are semi d-ideal for any d-algebra X .and If X is a d-algebra then every semi 

d-ideal of X is a d-algebra with the same binary operation on X and the constant 0 . 
 

Examples  3.2 :  

1) consider the following d-algebra X [3] where }3,2,1,0{X  with the following table  
 

* 0 1 2 3 

0 0 0 0 0 

1 1 0 0 1 

2 2 2 0 0 

3 3 3 3 0 
 

It is clear that F = {0,1} and M={0,1,2} are a semi d-ideal in X since (i) and (ii) are hold in both .  
 

2)Let },,,,0{ dcbaX   with the following table be a d-algebra [5] 
 

  0 a b c d 

0 0 0 0 0 0 

a A 0 0 a 0 

b B b 0 0 b 

c C c c 0 c 

d D d d d 0 
 

Then },0{ aI   is semi d-ideal and also },,0{ baJ  , },,0{ daL  , },,,0{ cbaK  , },,,0{ dbaM 

all are a semi d-ideal in X .  
 

3)Let be the set of all real numbers and define ).( yxxyx  , yx, , where · and – are the 

ordinary product and subtraction of real numbers. Then ( )0,;  is a d-algebra [3]. Let Q  be 

the set of rational number then Q  is an infinite semi d-ideal in   since :  

i) Let Qba ,  , ababaaba  2).( , since Qba ,  then Qaba ,2   so Qaba 2  

thus Qba  . 

ii) Let Qba  , Qb  , Qababa  2 , Qb so it is clear that Qaba 2 , since Qba .  

and Qb.  then Qa .  
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Theorem 3.3: The intersection of a family of semi d-ideal in a d-algebra X is a semi d-ideal .  

Proof : Let IiAi , is a semi d-ideal of d-algebra X  

let i
Ii
Ayx


, , then iAyx ,  for all i in I, 

so iAyx   (since iA is a semi d-ideal for all i in I), so i
Ii
Ayx


 .  

Now let i
Ii
Ayx


  and i

Ii
Ay


 , so  iAyx  and iAy , for all i in I , 

since  iA  is a semi d-ideal in X for all i in I , then iAx , for all i in I thus i
Ii
Ax


  , and this 

complete the proof .     ■ 
 

Remark 3.4: The union of two semi d-ideal of d-algebra X not necessary to be semi d-ideal in X as 

a following example  
 

Example 3.5: Let X = { 0,a,b,c } with the following table  
 

* 0 a b c 

0 0 0 0 0 

a a 0 0 b 

b b b 0 b 

c c c c 0 
 

X is a d-algebra [6] , and it is clear that  I = {0,a}and J = {0,c} both are semi d-ideal of  X . but I J 

= {0,a,c}is not semi d-ideal of X , since bca   that mean the condition (i) not hold .  
 

The condition that make the union of two semi d-ideal is semi d-ideal when X is edge d-algebra and 

the following theorem showing that , but before the theorem we will take an important lemma .  
 

Lemma 3.6 : If F is a semi d-ideal in d-algebra X then F0 . 

Proof : since F  , then there exist Fx , hence Fxx  0 by (i).     ■ 
 

Theorem 3.7 : Let I and J  be a semi d-ideal in edge d-algebra X then JI   is a semi d-ideal .  

Proof : Let JIyx , . 

If Iyx ,  or Jyx , , is clear that JIyx  , now if Ix  and Jy , since X is edge d-algebra 

0 yx  or xyx  , if 0 yx  and since J0  (by lemma 3.6)  then Jyx   thus 

JIyx  , if xyx   then Iyx  , thus JIyx   

NowLet JIyx   and JIy  , it is clear that if Iyx  and Iy   or Jyx   and Jy  

then JIx  , now if Iyx   and Jy and Iy , since X is edge d-algebra then either 0 yx  

or xyx   if 0 yx  then Jyx   (since J0  (by lemma 3.6)) and thus Jx  so JIx  , 

if xyx   is clear that JIx  . Similarly if  Jyx   and Iy and Jy  we can prove that 

JIx  . Thus JI   is a semi d-ideal of X .    ■ 
 

Remark3.8 [3] : If (X, ) is an ordered set (poset) , then the operation   on X given by 0 yx  if 

and only if yx  .  
 

Proposition 3.9 : in a semi d-ideal I if Ix  and  xy   then Iy  

Proof : it is clear that if xy   then 0 xy  thus Iy  (by lemma 3.6, and ii in Definition 3.1) ■ 
 

Remark 3.10: Every semi d-ideal is a d-subalgebra . but the converse need not be true as showing 

in following example  
 

Example 3.11 : Let (X; ,0) in (Example 3.2 ,2) is a d-algebra so is clear that S = {0,c} is a d-

subalgebra , butisn't a semi d-ideal since 0cb  but Sb , so the condition (ii) not hold. 
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Theorem 3.12 : Every d- ideal is a semi d-ideal in d-algebra X . 

Proof : let F be a d-ideal of X is clear that every d-ideal is a d-subalgebra , so the condition (i) is 

hold and the condition (ii) is same condition (D
1
)  in Definition 2.1, thus f is semi d-ideal .   ■ 

 

The converse of this theorem need not be true in general and the following example showing that .  
 

Example 3.13 : Let X = {0,a,b,c} and a binary operation   is define as following table  
 

* 0 a b c 

0 0 0 0 0 

a a 0 0 a 

b b b 0 c 

c c c c 0 
 

It is clear that (X;*,0) is a d-algebra , and A = {o,b} is a semi d-ideal in X since (i) and (ii) are hold. 

But it is not d-ideal since Ab , Xc  and Accb   i.e. FXF  .  
 

The condition that make every semi d-ideal is a d-ideal , when X is edge d-algebra, and we will 

prove that in the following theorem .  
  

Theorem 3.14 : If X is edge d-algebra then every semi d-ideal in X is a d-ideal.  

Proof : Let F be a semi d-ideal in edge d-algebra X, then F0  (by lemma 3.6)  

let Fba  , Fb  then Fa  for all Xba ,  

now let Fx , Xy , since X is edge d-algebra then },0{ xXx  for all Fx there for 

FXF  , thus F  is d-ideal in X .       ■ 
 

Theorem 3.15 : every semi d-ideal in d-algebra X is a BCK- ideal. 

Proof :  let F be a semi d-ideal in X  then F0  (by lemma 3.6) so (D 1 ) is hold and it is clear that 

(D 2 ) is hold since it is same condition (ii) in Definition 3.1 thus F  is a BCK-ideal .   ■ 
 

The converse of this theorem need not be true in general , i.e. a BCK-ideal need not be a semi d-

ideal as showing in the following example .  
 

Example 3.16 : Let },,,0{ cbaX  be a d-algebra with the following table  
 

* 0 a b c 

0 0 0 0 0 

a a 0 0 b 

b b c 0 c 

c c c c 0 
 

It is clear that },,0{ baI   is a BCK-ideal [5] , which is not a semi d-ideal since cab   that mean 

the condition (i) is not hold.  
 

The condition that make every BCK-ideal is a semi d-ideal, that when X  is d
*
-algebra and we will 

prove that in the following theorem.  
 

Theorem 3.17 : In d
*
-algebra, every BCK-ideal is a semi d-ideal. 

Proof :  it is clear by corollary 2.6 and definition 2.2     ■ 
 

The following diagram showing the relation between semi d-ideal, d-ideal and BCK-ideal.  
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Proposition 3.18 : The d-isomorphism image of semi d-ideal is a semi d-ideal. 
 

Proof : Let YXf :  be a function from d-algebra  X to d-algebra Y , and let A  is a semi d-ideal 

in X , 

Let )(, Afyx  then there exist tow element ba, in A such that ybfxaf  )(,)( , so 

)()()()( Afbafbfafyx  , (since A  is a semi d-ideal in X ). 

Nowlet )(Afyx  and )(Afy , then there exist tow element wz, in A  such that yxzf )( , 

ywf )( , so )()()()( Afwfzfwzf  , since f  is onto, then there exist an element a  in A   

such that xaf )( and )()()( wfafzf   then   )()()()( Afwfwfaf  there for 

  )()( Afwwaf  , since f is one to one then Awwa  )(  then Aa  so )(Afx . 

Thus )(Af is a semi d-ideal in Y .   ■ 
 

Proposition 3.19 : The inverse d-isomorphism image of semi d-ideal is a semi d-ideal.. 

Proof :: Let YXf :  be a function from d-algebra  X to d-algebra Y , and let B  is a semi d-ideal 

in Y , 

let )(, 1 Bfyx  then Byfxf )(),(  so Byfxf  )()( , then )(1 Bfyx  . 

Now let )(1 Bfyx   and )(1 Bfy   so Byxf  )(  and Byf )(  then Bxf )(  so )(1 Bfx   

. This complete the proof .   ■ 
 

Proposition 3.20 : Let f  be a d-morphism function from d-algebra X to d-algebra Y , then ker( f ) 

is a semi d-ideal.  

Proof :  

let )ker(, fyx   so 0)()(  yfxf  and 0)(  yxf , then )ker( fyx  . 

Now let )ker( fyx  and )ker( fy  so 0)(  yxf  and 0)( yf ,  then 

0)()()(  yfxfyxf , but 0)(0)()(  xfxfyf  then 0)()(  yfxf  so )ker( fx . 

Thus )ker( f is a semi d-ideal.   ■ 
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In d
*
-
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