Composition operator induced by $\varphi(z) = sz + t$ for which $|s| \le 1$, |t| < 1and $|s|+|t| \le 1$

Samira Naji Kadhim*

Received 5, March, 2009 Accepted 6, May, 2009

Abstract:

We study in this paper the composition operator that is induced by $\varphi(z) = sz + t$. We give a characterization of the adjoint of composition operators generated by selfmaps of the unit ball of form $\varphi(z) = sz + t$ for which $|s| \le 1$, |t| < 1 and $|s|+|t| \le 1$. In fact we prove that the adjoint is a product of toeplitz operators and composition operator. Also, we have studied the compactness of C_{φ} and give some other partial results.

Key words: composition operator, toeplitz operator, compact operator

Introduction:

Let U denote the unit ball in the complex plan, the Hardy space H^2 is of holomorphic the collection (analytic) function $f(z) = \sum_{n=1}^{\infty} \hat{f}(n) z^n$ with $\hat{f}(n)$ denoting the n-th Taylor coefficient, for which $\sum_{n=1}^{\infty} |\hat{f}(n)|^2 < \infty$. The norm is defined by $\|\|f\|^2 = \sum_{n=1}^{\infty} |\hat{f}(n)|^2$ ($f \in H^2$). The particular importance of H^2 is duo to the fact that it is a Hilbert space. Let φ be a holomorphic function that take the unit ball U into itself (which is called homomorphic self-map of U). The composition operator $C_{\boldsymbol{\phi}}$ induced by ϕ is defined on H^2 by the equation $C_{\varphi} f = f \circ \varphi (f \in H^2) [1].$

We state very loosely some basic facts on composition operator on H^2 .

Theorem 1:- Every composition operator C_{φ} is bounded.

Theorem 2:- C_{ϕ} is normal if and only if $\phi(z) = \lambda z$, $|\lambda| \le 1$.

Theorem 3:- $C_{\varphi} C_{\psi} = C_{\psi \circ \varphi}$.

Furthermore an important special family of function in H^2 , namely $\{K_{\alpha}\}_{\alpha} \in U$. For each $\alpha \in U$,

Shapiro in [1], defined $K_{\alpha} = \frac{1}{1 - \overline{\alpha}z} = \sum_{n=1}^{\infty} \overline{\alpha}^n z^n$.

It is clear for each $f \in H^2$, $f(z) = \sum_{n=*}^{\infty} \hat{f}(n) z^n$ that $\langle f, K_{\alpha} \rangle = \sum_{n=*}^{\infty} \hat{f}(n) \alpha^n = f(\alpha)$. Shapiro in [1] gives the adjoint of a composition operator on $\{K_{\alpha}\}_{\alpha \in U}$ in the following theorem.

Theorem 4:- Let φ be a holomorphic self-map of U, then for all $\alpha \in U$, C_{φ}^{*} $K_{\alpha} = K_{\varphi(\alpha)}$.

Finally, Bourdon in [2] gives an exact value of the H²-norm of composition operators induced by $\varphi(z)$ $\|C_{\varphi}\| = 2$

$$\sqrt{\frac{1+|s|^2-|t|^2+\sqrt{(1-|s|^2+|t|^2})^2-4|t|^2}}$$

The adjoint of composition operator C_{φ}

Let H^{∞} denote the collection of bounded holomorphic functions on U. The norm on H^{∞} is defined by $\| f \|_{\infty} =$ $Sup_{z \in U} |f(z)| [1].$

Recall that for $g \in H^{\infty}$, the toeplitz operator T_g is the operator on H^2 given by $(T_g f)(z) = g(z)f(z), f \in H^2$, $z \in U$ [3].

In this section we will try to calculate the adjoint of composition operator C_{ϕ}

^{*}Department of mathematics/ College of Science for women / University of Baghdad

induced by $\varphi(z) = sz + t$ for which $|s| \le 1$, |t| < 1 and $|s| + |t| \le 1$.

Theorem 5:- $C_{\varphi}^{*} = T_g C_{\delta}$, where $g(z) = (1 - \overline{t}z), \ \delta(z) = \frac{sz}{1 - \overline{t}z}$.

Proof:- Since $|\mathbf{s}|+|\mathbf{t}| \le 1$, then $|1 - \mathbf{t}z| > |$ $1 - |\mathbf{t}| \ge |\mathbf{s}| (|\mathbf{z}| < 1 \text{ and } |\mathbf{t}| < 1)$. Hence | $\delta(z) |<1 (z \in U)$. Thus clearly δ maps U into itself. Moreover, $\|\mathbf{g}\|_{\infty} =$ $\sup_{\mathbf{z} \in \mathbf{U}} |1 - \mathbf{t}z| < \infty$ (since $|\mathbf{t}| < 1$). Thus $\mathbf{g} \in \mathbf{H}^{\infty}$. This means that the formula makes sense . Now, for each $\alpha \in U$, we have by theorem $4 \quad C_{\phi}^* \quad \mathbf{K}_{\alpha}(z) = \mathbf{K}_{\phi(\alpha)}(z) =$ $\frac{1}{1 - (\overline{s\alpha} + t)z} = \frac{1}{1 - (\overline{s\alpha} + \overline{t})z} =$ $\frac{1}{1 - \overline{tz} - \overline{s\alpha}z} = (1 - \overline{t}z) \frac{1}{1 - \overline{\alpha}(\frac{\overline{sz}}{1 - \overline{tz}})}$

Let $g(z) = (1 - \overline{t}z), \ \delta(z) = \frac{sz}{1 - \overline{t}z}$. Thus $C_{\phi}^{*} K_{\alpha}(z) = T_{g} C_{\delta} K_{\alpha}(z)$. Therefore, $C_{\phi}^{*} K_{\alpha}(z) = T_{g} C_{\delta} K_{\alpha}(z)$. ($z \in U$). Since $\{K_{\alpha}\}_{\alpha \in U}$ span a dense subset of H², the desired equality holds.

Proposition 6:- $C_{\delta}^* = T_{\tilde{g}}^* C_{\phi}$ where $\tilde{g} = 1 - \bar{t}z$.

 $\frac{\mathbf{Proof}}{\mathbf{Proof}}:= \text{By theorem (1.), } \mathbf{C}_{\delta}^{*} \mathbf{K}_{\alpha} (z) = \mathbf{K}_{\delta(\alpha)}(z) = \frac{1}{1-\overline{\delta(\alpha)}z} = \frac{1}{1-(\frac{s\alpha}{1-t\alpha})z} = \frac{1}{1-(\frac{s\alpha}{1-t\alpha})z} = \frac{1}{1-t\alpha} = \frac{1}{1-t\alpha} = \frac{1}{1-t\alpha} = \frac{1}{1-t\alpha} = \frac{1}{1-\alpha} = \frac{1}{1-\alpha}$

 $1 - \alpha(sz + t)$ $(1 - t\alpha)$ $1 - \alpha \vartheta(z)$

 $= T_{\tilde{g}} K_{\alpha}(\varphi(z))$ = $T_{\tilde{g}}^{*} C_{\varphi} K_{\alpha}(z)$ (since $T_{h}^{*} f = T_{\bar{h}} f$, by [2]).

Since $\{K_{\alpha}\}_{\alpha \in U}$ span a dense subset of H^2 , the desired equality holds.

The compactness of composition operator C_{ϕ} induced by $\phi(z)=sz+t$, for which $|s|\leq 1$, |t|<1 and $|s|+|t|\leq 1$, on Hardy space H^2 .

Recall that an operator T on Hilbert space H is compact if it maps every bounded set into a relativity compact one (one whose cloure in H is compact set) [1]. We start this section by the following result which is proved in [1] by Shapiro.

Theorem 7:- Let ψ be a liner fractional self-map of U, that is $\psi(z) = \frac{az+b}{cz+d}$ where a,b,c and d are complex numbers. Then C_{ψ} is not compact if φ maps a point of the unit circle ∂U to a point of ∂U .

Now, we give the sufficient and necessary condition for compactness of C_{ϕ} .

Proposition 8:- C_{ϕ} is not compact if and only if |s|+|t|=1.

<u>Proof</u>:- Assume that C_{ϕ} is not compact, then by theorem 7 there exist $z_1, z_2 \in \partial U$ such that $\phi(z_1) = z_2$. Hence 1 =

 $\begin{array}{l|l} | \ \phi(z_1)| \ = \ | \ sz_1 \ + \ t \ | \ \leq \ |s| \ |z_1| \ + \ |t| \ = \\ |s|+|t| \leq 1. \ Therefore \ |s|+|t| = 1. \end{array}$

Conversely assume that |s|+|t|=1. Since $|\varphi(z)| = |sz + t| \le |s| |z| + |t| = |s|+|t|\le 1$, then by Maximum principle of analytic function [4]. We have for each $z \in \partial U$, then there exists $z_1 \in \partial U$ such that $|\varphi(z_1)| = 1$. Hence by theorem 7 C_{φ} is not compact.

Notation :- We use the notation $\varphi_n = \varphi \circ \varphi \circ \cdots \circ \varphi$ (n times). To denote the n-th iterate of φ for n a positive integer. **Remark 9**:- By theorem 3 we can conclude that $C_{\varphi}^{n} = C\varphi_n$ for each positive integer.

Now, we study the compactness of n-th power of C_{ϕ} .

Theorem 10:- C_{ϕ}^{n} is compact operator for every positive integer n if

and only if |s| + |t| < 1 where |s| < 1and |t| < 1.

Proof:-By using mathematical induction of $\varphi(z)$ we get $\varphi_n(z) = s^n z + (\sum_{n=1}^{\alpha} z + 0 s^n)t$. Since the $\sum_{n=1}^{\alpha} = 0 S^{n}$ series geometric is convergent if |s| < 1. Then ϕ_n is a linear-fractional self map of U where $|\mathbf{s}| < 1$. First suppose that $|\mathbf{s}| + |\mathbf{t}| < 1$, then by proposition 8 C_{ϕ} is compact, so C_{ϕ}^{n} is compact for every positive integer n.

Conversely, assume that C_{ϕ}^{n} is compact for every positive integer n. To show that |s| +|t| < 1, assume the converse that $|s| +|t| \ge 1$. This implies by proposition 8 C_{ϕ} is not compact which is a contradiction. Thus |s| +|t| < 1.

Now, we give the following results.

Proposition 11:- Suppose that Φ is a linear-fractional self-map of U. Then $C_{\Phi} C_{\delta}$ is compact if and only if $C_{\Phi} C_{\phi}^{*}$ is compact, where $C_{\phi}^{*} = T_g C_{\delta}$. **<u>Proof</u>**:- Suppose C_{Φ} C_{δ} is compact. Note that, $C_{\Phi} C_{\phi} = C_{\Phi} T_g C_{\delta} = T_{\sigma \circ \Phi} C_{\phi}$ C_{δ} (by theorem 5 and $C_{\phi}T_{g} = T_{\sigma \circ \Phi}C_{\phi}$). Since C_{Φ} C_{δ} is compact operator. Moreover, $T_{\sigma \circ \Phi}$ is bounded, then C_{Φ} C_{ϕ}^{*} is compact. Conversely, if $C_{\phi} C_{\phi}^{*}$ is compact. Note that $C_{\Phi} C_{\delta} = C_{\Phi} (C_{\delta}^{*})^{*}$ = $C_{\Phi} (T_{\tilde{g}}^* C_{\varphi})^*$ (by proposition 6). $= C_{\Phi} C_{\phi}^{*} T_{\tilde{a}}^{*}$ $= \mathbf{C}_{\Phi} \, \mathbf{C}_{\phi}^{*} \, \boldsymbol{T}_{\boldsymbol{\tilde{g}}} \ (\ \text{since} \ \boldsymbol{T}_{\boldsymbol{\tilde{g}}}^{*} = \boldsymbol{T}_{\boldsymbol{\tilde{g}}} \).$ Since $C_{\Phi} C_{\phi}^{*}$ is compact and $T_{\overline{\sigma}}$ is bounded then $C_{\Phi} C_{\delta}$ is compact. **Proposition 12**:- Suppose that Φ is

Proposition 12:- Suppose that Φ is a linear-fractional self-map of U. Then $C_{\Phi} C_{\delta}^*$ is compact if and only if $C_{\Phi} C_{\phi}$ is compact.

<u>Proof</u>:- Suppose that $C_{\Phi} C_{\delta}^*$ is compact. Then

$$C_{\Phi} C_{\phi} = C_{\Phi} (C_{\phi}^{*})^{*} = C_{\Phi} (T_{g} C_{\delta})^{*} (by$$

theorem 5)
$$= C_{\Phi} C_{\delta}^{*} T_{g}^{*}$$

 $= \mathbf{C}_{\Phi} \mathbf{C}_{\delta}^{*} T_{\mathbf{g}} \quad (\mathbf{T}_{g}^{*} = T_{\mathbf{g}})$

Since $C_{\Phi} C_{\delta}^*$ is compact and $T_{\bar{g}}$ is bounded it follows that $C_{\Phi} C_{\phi}$ is compact.

Conversely, if $C_{\Phi} C_{\phi}$ is compact, $C_{\Phi} C_{\delta}^* = C_{\Phi} T_{\tilde{g}}^* C_{\phi}$ (by proposition 6)

 $= C_{\Phi} T_{\tilde{g}} C_{\phi} \text{ (since } T_{\tilde{g}}^* = T_{\tilde{g}} \text{) [3]}$

 $= T_{\overline{\mathfrak{g}} \circ \varphi} C_{\Phi} C_{\varphi} (C_{\Phi} T_{\overline{\mathfrak{g}}} = T_{\overline{\mathfrak{g}} \circ \varphi} C_{\varphi})[3]$

Since $C_{\Phi} C_{\phi}$ is compact and $C_{\Phi} C_{\phi}$ is bounded, then $C_{\Phi} C_{\delta}^*$ is compact.

Proposition 13:- Let Φ be a linear fractional self-map of U. Then $C_{\delta} C_{\Phi}$ is compact, if and only if $C_{\phi}^{*}C_{\Phi}$ is compact, where $C_{\phi}^{*} = T_{g} C_{\delta}$.

<u>Proof</u>:- suppose that $C_{\delta} C_{\Phi}$ is compact. Then $C_{\phi}^{*}C_{\Phi} = T_{g} C_{\delta} C_{\Phi}$ (by theorem 5). Since $C_{\delta} C_{\Phi}$ is compact, then $C_{\phi}^{*}C_{\Phi}$ is compact.

Conversely, assume that $C_{\varphi}^{*}C_{\Phi}$ is compact. Since the family $\{K_{\alpha}\}_{\alpha \in U}$ span a dense subset in H², then it is enough to prove the compactness on this family. Hence for each $\alpha \in U$, $C_{\delta} C_{\Phi} K_{\alpha}(z) = (C_{\delta}^{*})^{*} C_{\Phi} K_{\alpha}(z)$ $= (T_{\tilde{g}} C_{\phi})^{*} C_{\Phi} K_{\alpha}(z) (C_{\delta}^{*} = T_{\tilde{g}}^{*} C_{\phi})$ $= C_{\phi}^{*} T_{\tilde{g}}^{*} C_{\Phi} K_{\alpha}(z)$ (since $T_{\tilde{g}}^{*} = T_{\tilde{g}}^{*}$) [3]

$$= C_{\varphi} \, I_{\widetilde{g}} \, K_{\alpha}(\Phi(z))$$
$$= C_{\varphi}^{*} \, \widetilde{\widetilde{g(\alpha)}} \, K_{\alpha}(\varphi(z))(T_{\widetilde{g}}^{*} \, K_{\alpha} = \widetilde{\widetilde{g(\alpha)}} \, K_{\alpha})$$

 $= \overline{g(\alpha)} C_{\phi}^{*} C_{\Phi} K_{\alpha}(z) \ (C_{\phi}^{*} \text{ is linear})$

Since $C_{\phi}^{*}C_{\Phi}$ is compact, moreover, g $\in H^{\infty}$, then $C_{\delta} C_{\Phi}$ is compact on $\{K_{\alpha}\}_{\alpha}$ $\in U$. But $\{K_{\alpha}\}_{\alpha \in U}$ span a dense subset in H². Hence $C_{\delta} C_{\Phi}$ is compact on H².

Similarly to the proof of the previous proposition we can get the following result.

Proposition 14:- Let Φ be a linearfractional self-map of U. Then $C_{\delta}^{*} C_{\Phi}$ is compact, if and only if $C_{\phi}C_{\Phi}$ is compact, where $C_{\phi}^{*} = T_{g} C_{\delta}$.

Corollary 15:- Suppose that Φ is a linear fractional self-map of U such that $C_{\Phi} C_{\delta}^*$ is not compact, then there

exist $w_1, w_2 \in \partial U$ such that $\varphi \circ \Phi(w_1) = w_2$.

<u>Proof</u>:- By proposition 12, if $C_{\Phi} C_{\delta}^*$ is not compact, then $C_{\Phi} C_{\phi}$ is not compact. But each of Φ and ϕ are linear- functional self-map of U, then also $\phi \circ \Phi$. Then by theorem 7 $C_{\phi \circ \Phi} =$

 $C_{\phi} \circ C_{\Phi}$ is not compact, if and only if ϕ • Φ maps a point of the unit circle onto the unite circle. So, there exist $w_1, w_2 \in \partial U$ such that $\phi \circ \Phi(w_1) = w_2$.

Similarly to the proof of corollary 15. We have by proposition 14 and theorem 4 the next result.

Corollary 16:- Suppose that Φ is a linear-fractional self-map of U such that

 $C_{\delta}^* C_{\Phi}$ is not compact, then there exist $w_1, w_2 \in \partial U$ such that $\Phi \circ \phi(w_1) = w_2$.

References:

- 1. Shapiro J. H., 1993, Composition Operator and Classical Function Theory, springer-verlag, first edition, New York, pp179.
- 2. Bourdon P. F., Fry E. E., Hammond C. and Fpofford C. H., 2003, Norms of linear fractional composition operators, Trans. Amer. Math. Soc. 356 (6): 2459-2480
- **3.** Deddens J. A., 1972, Analytic Toeplitz and Composition Operator, Can. J. Math., vol XXIV, 5: 859-865.
- Brown J. W. and Churchill, R. V., 2009, Complex Variables and Applications, Eighth Edition, McGraw- Hill International Edition, pp 468.

المؤثر التركيبي المتولد بالدالة φ(z) = sz + t و اs|+|t|≤1 و s|≤1, |t|<1 لكن s|+|t|≤1 و s|+|t|+|t|

*قسم الرياضيات / كلية العلوم للبنات / جامعة بغداد

الخلاصة:

في هذا البحث أعطي وصف للمؤثر مرافق للمؤثر C_{φ} المتولد بواسطة الدالة z = sz + t بحيث ان $[s]_{+}|s|$ الموثر البحث أعطي وصف للمؤثر مرافق للمؤثر C_{φ} المتولد بواسطة الدالة |s|+|t| و |s|+|t| المؤثر التركيبي . و كذلك درسنا تراص المؤثر التركيبي . C_{φ} مع بعض النتائج التي هي حسب علمنا جديدة.