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Abstract:

We study in this paper the composition operator that is induced by ¢(z) = sz + t. We
give a characterization of the adjoint of composiotion operators generated by self-
maps of the unit ball of form ¢(z) = sz + t for which [s|<1, [t|<] and |s|*+[t|<1. In fact
we prove that the adjoint is a product of toeplitz operators and composition operator.
Also, we have studied the compactness of C, and give some other partial results.
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Introduction:

Let U denote the unit ball in the
complex plan, the Hardy space H? is
the  collection of  holomorphic
(analytic) function f(z) = =, f(n) z"
with £(n) denoting the n-th Taylor
coefficient , for which X, [f(n)[<ce.
The norm is defined by
I£]|> = Zz=. [fn)P (f € H*). The
particular importance of H? is duo to
the fact that it is a Hilbert space. Let ¢
be a holomorphic function that take
the unit ball U into itself ( which is
called homomorphic self-map of U).
The composition operator C,, induced
by ¢ is defined on H? by the equation
Cof=foq (fEH) 1]

We state very loosely some
bazsic facts on composition operator on
H*.

Theorem 1:- Every composition
operator C, is bounded.

Theorem 2:- C, is normal if and
only if o(z) = Az, |A<1.

Theorem 3:-C, C, = C.,,.

Furthermore an  important
special family of function in H?
namely {K.,}, ¢ uv. For each a € U,

Shapiro in [1], defined K, =—— =
l-az

e az

It is clear for each f € H?, f(z) =
¥ H(n) 2" that < f, K, > = T2 §(n)
o' = f(a). Shapiro in [1] gives the
adjoint of a composition operator on
{Ku}. e u in the following theorem.
Theorem 4:- Let ¢ be a holomorphic
self-map of U, then for all o € U, C(p*
Ka: K(P(OQ' . .

Finally, Bourdon in [2] gives an

exact value of the H“norm of
composition operators induced by ¢(z)

IC. = 2
Lol 7+ 5 ) —

The adjoint of composition
operator C,

Let H” denote the collection of
bounded holomorphic functions on U.
The norm on H” is defined by || f]|.. =
Sup,eulf(2)] [1].

Recall that for g € H”, the
toeplitz operator Ty is the operator on
H? given by (T4f)(2) = 9(2)f(2), f € H?,
z €U [3].

In this section we will try to calculate
the adjoint of composition operator C,
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induced by ¢(z) = sz + t for which
Is|<1, [t|<1 and [s|*+|t|<]1.
Theorem 5:- C, = Ty Cs , where

iz _ sz
02) = (1), 80) =

Proof:- Since [s|+[t|<I, then |1- £z | > |
1-1t||>]s|(|]z] <1and || <1). Hence |
d(z) [<1 ( z € U). Thus clearly 6 maps
U into itself. Moreover, || g"w =
Sup,ey|l- tz | < 00
( since [t| <1). Thus g € H”. This
means that the formula makes sense .
Now, for each a € U , we have by

theorem 4 C, Ku2) = Kyo(2)=
1 _ 1 _
1-(sa+t)z 1-(sa+1t)z
e ——
l1-tz-saz —, Sz
l1-a(——
1-1z

Let g(2) = (1 -f2), 5(2) :% . Thus
—tz

Co Ky (z) = Ty Cs K, (2). Therefore,

Co Ko (2) = Ty Cs Ky (2). (Z € U).

Since {K,}, e u span a dense subset of

H?, the desired equality holds.

Proposition 6:- C; = T; C, where

g=1-tz.

Proof:- By theorem (1.) , Cs K, (2)

1 1
K5((1)(Z) = 1_mz = S_ =
W1 (2%,
B 1-ta

1 _ 1l-ta

1-ta—saz l-ta-saz
1-ta

= 1 _t )

1 1

l—a(sz+t) (-ta) 1-ad2)

T5 Ku(0(2))

=T; C, K, (2) (since Ty'f = Txf, by
[2]).

Since {K,}«eu span a dense subset of
H?, the desired equality holds.

1267

The compactness of
composition  operator  C,
induced by @(z)=sz+t, for which
Is|<1, |t|<1 amnd |[s|+|t|<1, oOn
Hardy space H?.

Recall that an operator T on Hilbert
space H is compact if it maps every
bounded set into a relativity compact
one (one whose cloure in H is compact
set) [1]. We start this section by the
following result which is proved in [1]
by Shapiro.

Theorem 7:- Let y be a liner
fractional self-map of U, that is y(z) =

+h
:H where a,b,c and d are complex

numbers. Then C, is not compact if ¢
maps a point of the unit circle dU to a

point of dU.

Now, we give the sufficient and
necessary condition for compactness of
Co-
Proposition 8:- C, is not compact if
and only if |s|+|t|=1.

Proof:- Assume that C, is not compact,
then by theorem 7 there exist z;,z,
€ dU such that ¢(z;) = z,. Hence 1 =

| 9@z1)| = | szo + t [ <[] |za] + [t| =
s[+[t|<1. Therefore |s|+|t|=1.
Conversely assume that |s|+|t|=1. Since
9(2)| = | sz +t|<|s| |z| + [t| = [s|H]t)<,
then by Maximum principle of analytic
function [4]. We have for each z € dU,
then there exists z; € dU such that
lp(z1)| =1. Hence by theorem 7 C, is
not compact.

Notation :- We use the notation ¢, =
@ og@o--og (ntimes). To denote the
n-th iterate of ¢ for n a positive integer.
Remark 9:- By theorem 3 we can
conclude that C," = Cg, for each
positive integer.

Now, we study the compactness of n-th
power of C,,.

Theorem 10:- C," is compact
operator for every positive integer n if
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and only if |s| + |t| < 1 where |s] <1
and |t| <1.
Proof:- By using mathematical
induction of  o¢(2) we get
on(z) = s"z + (X2 =0s")t. Since the
geometric  series X% =0S" s
convergent if |s| < 1. Then ¢, is a
linear-fractional self map of U where
|s| < 1. First suppose that |s| + |t| < 1,
then by proposition 8 C, is compact, so
C,' is compact for every positive
integer n.
Conversely, assume that C," is
compact for every positive integer n.
To show that [s| +|t| < 1, assume the
converse that |s| +[t| > 1. This implies
by proposition 8 C, is not compact
which is a contradiction. Thus |s| +|t| <
1.

Now, we give the following
results.
Proposition 11:- Suppose that @ is
a linear-fractional self-map of U. Then
Co Cs is compact if and only if Co C,,-
is compact, where C, =T, Cs.
Proof:- Suppose Co C;s is compact.
Note that, Co Cy = Co Tg Cs = T,.4Cy

Cs (by theorem 5and C,Ty=T,.+C,).

Since Cy C; is compact operator.
Moreover,T,.. is bounded, then Co

C, is compact. Conversely, if Co C,
is compact. .
Note that Co C5=Cqo (Cs)
=Co (T; Cy) (by proposition 6).
=CoCy T;
=Co Cy Ty (since T =Tz).
Since Co C, is compact and T is
bounded then Co Cs is compact.
Proposition 12:- Suppose that @ is
a Iinegr-fractional self-map of U. Then
Co Cs is compact if and only if Co, C,,
IS compact. X
Proof:- Suppose that Cq C; is
compact. Then - N
Co Cp=Ca (Cy) =Co (TyCs) (by
theorem5)

=CoCs Ty

1268

= Co CB*TQ_- (Tg*: T;)
Since Co Cs is compact and T is

bounded it follows that Co C, is
compact.

Conversely, if Co C, is compact, Co
Cs = CoT; C, ( by proposition 6)

= CoT;C, (‘since T; = Tg) [3]
=T= C(D C(p (C(D Tﬁ- = Tﬁ:[;} C(P )[3]

gop
Since Co C, is compact and Co C,

is bounded, then Co C; is compact.
Proposition 13:- Let ® be a linear
fractional self-map of U. Then C; Co IS
compact, if and only if C,Co is
compact, where C, = Ty Cs.

Proof:- suppose that Cs Cq is compact.
Then C, Co = Ty Cs Co ( by theorem
5). Since C; Co is compact, then
C, Co is compact.

Conversely, assume that C, Co is
compact. Since the family {K,}, ¢ u
span a dense subset in H? then it is
enough to prove the compactness on
this family. Hence for each o € U,
Cs Co Ko(2) = (C5) Co K(2)

=(T; Cy) Co Ky(2) (Cs =T; Cy)
=C, Tj Co Kq(2)
= Cy T5Co Kqy(2)

3]
= C(p Tj’ Ka((D (Z))

=Cy g(a@) Ku(o (2))(T5 Ko= g(a) Ko)
= g(@) C, Co Ky(2) ( C, is linear)
Since Cq,*Cq) is compact, moreover , g
€ H”, then C; Co is compact on {K,},
€ U. But {Ky}. e u span a dense subset
in H2. Hence C; Co is compact on H?.
Similarly to the proof of the previous
proposition we can get the following
result.

Proposition 14:- Let ® be a linear-
fractional self-map of U. Then Cs Co
is compact, if ang only if C,Co is
compact, where C, =Ty Cs.
Corollary 15:- Suppose that @ is a

linear fractional self-map of U such
that Co Cs is not compact, then there

;)

(since T; = T;
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exist wi,w, € dU such that ¢ @ @ (wy)
= Wo.

Proof:- By proposition 12, if Co Cs_ is
not compact, then Cqo C, is not
compact. But each of @ and ¢ are
linear- functional self-map of U, then
also ¢ @ @. Then by theorem 7 C.5 =
Cy2 Co 1s not compact, if and only if ¢
= @ maps a point of the unit circle onto
the unite circle. So, there exist wi,w;
€ dU such that ¢ = ®@ (w1) = Wa.
Similarly to the proof of corollary 15.
We have by proposition 14 and
theorem 4 the next result.

Corollary 16:- Suppose that @ is a
linear-fractional self-map of U such
that

Cs Co is not compact, then there exist
W1,Wo E dU such that @ o (0] (W]_) = Ws.
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